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Abstract
The neurodegenerative diseases Alzheimer’s disease (AD) and Parkinson’s disease (PD) both have a myriad of risk factors 
including genetics, environmental exposures, and lifestyle. However, aging is the strongest risk factor for both diseases. Aging 
also profoundly influences the immune system, with immunosenescence perhaps the most prominent outcome. Through 
genetics, mouse models, and pathology, there is a growing appreciation of the role the immune system plays in neurodegen-
erative diseases. In this review, we explore the intersection of aging and the immune system in AD and PD.
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Introduction

Over the past decade, it has become clear that the immune 
system plays a central role in neurodegenerative diseases 
[1, 2]. Parkinson’s disease (PD) and Alzheimer’s disease 
(AD) are both neurodegenerative diseases with immune and 
genetic components, but they each have distinct pathological 
and clinical phenotypes. The study of the innate immune 
system in these diseases has become a major focus for the 
field. Despite these significant research efforts, most of the 
immune processes that have been implicated in AD and PD 
remain poorly understood. The resident central nervous sys-
tem (CNS) innate immune cells, microglia, have been the 
focus of these efforts thus far. However, there is also a vital 
need to understand the role of infiltrating adaptive immune 
cells, specifically T cells, that may either maintain healthy 
neurons in the affected regions of the brain or lead to neu-
ronal loss in disease contexts.

Aging is the largest risk factor for both AD and PD, and 
importantly also severely impacts the immune system’s fit-
ness [3, 4]. By definition, the predominant form of AD, late-
onset AD (LOAD), is a disease of aging as one must be over 

65 years of age to be diagnosed with LOAD. In contrast, 
early-onset Alzheimer’s disease (EOAD) presents before age 
65 and occurs in only 5% of cases [5]. The global burden of 
AD is only expected to grow as the world’s aging population 
continues to increase. Aging is also a primary risk factor for 
Parkinson’s disease [6]. The incidence of Parkinsonism (an 
umbrella term that refers to a group of disorders that cause 
movement disturbances as classically seen in Parkinson’s 
disease such as tremors, bradykinesia, and rigidity) increases 
in the elderly and becomes very common in populations 
over age 65 [7]. In addition, age of onset for PD affects dis-
ease progression, with those developing late-onset disease 
exhibiting more severe and rapid disease progression [8, 9]. 
Patients who were older at the time of disease onset exhib-
ited more severe bradykinesia and rigidity and were more 
likely to have a balance disorder [8]. Hence, understanding 
the contribution of aging to these diseases is critical for seg-
regating subsets of patients for correct clinical treatments.

Aging and the immune system

Reduced efficacy of vaccinations and increased susceptibil-
ity to viruses in older adults are classical examples of the 
effects of aging on the immune system [3, 10, 11]. These 
effects are usually attributed to immunosenescence, a pro-
cess that leads to changes in all immune cells and an inabil-
ity to mount productive responses against pathogens and 
vaccinations. Cellular senescence, now termed replicative 
senescence, was originally defined as the loss of proliferative 
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ability in replication-competent cells. Replicative senes-
cence is thought to be a protective mechanism, designed 
to prevent stressed cells from undergoing malignant trans-
formation [12]. The signature proteins that are upregulated 
that maintain senescence are the cyclin-dependent kinase 
inhibitors  p21WAF1/Cip1 and  p16INK4a [13]. Senescent cells are 
increased in many different tissues with age, including the 
CNS [14–17]. The presence of senescent cells in the CNS 
may alter neuropathology in neurodegenerative disease, as 
clearance of senescent cells from the CNS was found to be 
beneficial in a mouse model of tauopathy [14].

Senescent cells also share a senescence-associated secre-
tory phenotype (SASP). This includes pro-inflammatory 
cytokines, growth modulators, and chemotactic proteins. 
Interleukin-6 (IL-6), a pro-inflammatory cytokine, is per-
haps the cytokine most associated with SASP. IL-8/C-X-
C motif chemokine ligand 8 (CXCL8), a chemokine that 
recruits cells expressing C-X-C motif chemokine receptor 
1 (CXCR1) as well as CXCR2 (often neutrophils), is also a 
key component of SASP. Immune cells produce many of the 
same molecules as seen in SASP in response to infections. 
These responses are designed to target damaged cells and 
pathogens and are normally robust, acute, and often self-
limiting. This protective response is very much in contrast 
with chronic inflammation which tends to be long-lasting, 
and the host inflammatory response is responsible for tissue 
damage [18]. This low level, chronic inflammation which 
often occurs with aging and senescence has been termed 
inflammaging [19]. Because of the production of pro-inflam-
matory cytokines and chemokines that occurs with inflam-
mation, the theory that anti-inflammatory treatments will be 
beneficial for diseases of aging has arisen [20]. But the pro-
inflammatory cytokines may indicate a senescent immune 
response that has reduced functionality in other activities, 
such as phagocytosis [21]. In this case, either removing the 
senescent cells or pushing the cell back towards a robust 
acute response might be a better approach.

Alzheimer’s disease

AD is a progressive neurodegenerative disease and the most 
common cause of dementia. The condition can develop 
undetected for years until the clinical manifestation of cogni-
tive impairment and memory issues appear, which then pro-
gressively worsen over time [22]. Physiological changes in 
the brain begin to occur years before the onset of symptoms 
[23, 24]. The symptoms of dementia cause deterioration of 
an individual’s independence, which dramatically impacts 
the daily lives of patients and their families. There are cur-
rently no viable therapeutic options to treat the cognitive 
symptoms of AD. Clinical trials for new drugs have not seen 
significant results in alleviating the disease [25]. Although 

recently approved drugs have been found to clear pathol-
ogy, they struggle to improve cognitive outcomes [26]. This 
disconnect between the pathology and cognitive impairment 
indicates an unknown factor we have not accounted for thus 
far. A possible reason for the lack of treatment options in 
AD may be the divergence in AD pathology and cognitive 
impairment that has been described in the literature. Studies 
such as Boyle et al. have uncovered evidence that the known 
neuropathology of AD cannot fully account for dementia 
seen in these elderly patients. The majority of variation in 
cognitive decline in these patients remains unexplained [27].

Clinical presentations suggestive of Alzheimer’s demen-
tia are classified by assessments of cognitive status. How-
ever, AD continues to be biologically defined by neuropatho-
logical hallmarks [28]. This pathology is characterized by 
aberrant extracellular amyloid-beta (Aβ) aggregates, which 
form diffuse and neuritic plaques, and hyperphosphorylated 
tau aggregates, which form intraneuronal neurofibrillary tan-
gles [29]. These pathologies are progressively accompanied 
by loss of synapses, neuronal death, and gross brain atrophy 
[29]. In addition to examining the known hallmarks of AD, 
there has been a resurgence in examining the non-neuronal 
cells of the CNS in the AD brain. When Alois Alzheimer 
first characterized brains with AD, he described glial cells 
with abnormal morphology, which we now know to be 
microglia and astrocytes [30–33].

Parkinson’s disease

PD is the second most common neurodegenerative disorder 
affecting the elderly after AD [34, 35]. It is the most preva-
lent movement disorder, affecting over one million Ameri-
cans and over four million individuals worldwide, and its 
incidence is expected to double by 2030 [36]. PD is a neu-
rologic disease characterized by motor symptoms including 
tremors, rigidity, and postural instability. The clinical motor 
symptoms, such as shaking, rigidity, bradykinesia, and dif-
ficulty with walking and gait, presumably result from the 
accumulation of pathological processes that overwhelm the 
brain’s capacity to tolerate or compensate for their adverse 
effects. It is becoming clearer that the PD motor symptoms 
may only develop after years of ongoing neurodegenerative 
cell loss in the substantia nigra [37, 38].

The defining neuropathological features of PD are the loss 
of dopaminergic neurons in the substantia nigra and aggre-
gation of alpha-synuclein protein, encoded by the SNCA 
gene, within neurons. Missense mutations in the SNCA gene 
as well as overproduction of wild-type alpha-synuclein can 
cause PD [39, 40]. Further reports found alpha-synuclein 
neuronal proteins present within Lewy bodies [41]. Lewy 
bodies are intracellular protein aggregates comprised mostly 
of alpha-synuclein, ubiquitin, and neurofilament, and their 
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presence in neurons is a hallmark of PD pathology [42]. 
They are associated with activated microglia and dopamin-
ergic neuron death [43, 44]. Indeed, alpha-synuclein induces 
microglial activation and morphological changes [45].

Parkinson’s research pioneer Arvid Carlsson first discov-
ered that reduced dopamine levels caused PD-like symptoms 
[46], and subsequently proposed increasing dopamine levels 
through therapeutic intervention [47]. The dopamine pre-
cursor levodopa has since been successfully used to treat 
motor symptoms of PD. It may also be beneficial for cogni-
tive decline in individuals with PD [48]. However, levodopa 
is not without its side effects, and there is a lack of effec-
tive strategies for the treatment of PD motor, cognitive, and 
behavioral symptoms beyond levodopa.

Microglia

In both AD and PD, there are indications from pathology, 
genetics, and murine studies that CNS-resident immune cells 
play an important role in disease pathogenesis. Several tis-
sues have their own specialized, resident macrophage with 
generic innate immune functions as well as tissue-specific 
roles [49]. Microglia serve as the resident immune cell of 
the CNS. While once highly debated, it is now accepted that 
microglia originate from hematopoietic progenitors in the 
yolk sac and emigrate to the CNS before the development of 
the brain, in mice that are embryonic day 8.5–10.5 [50–53]. 
Microglia detect and react to any nearby pathological agents. 
They constantly survey the environment, respond to injury 
and pathogens, and perform tissue repair [54–56]. Microglia 
closely interact with neurons and impact neuronal function, 
as they partake in neurogenesis and synaptic pruning [54, 
56, 57].

Dystrophic microglia are a morphologically described 
subset of microglia that appear to have fragmentation of 
their branches and beading in their processes [58, 59]. 
Interestingly, the number of microglia with a dystrophic 
morphology was found to be greater in cases with either 
Alzheimer’s disease, dementia with Lewy bodies, or limbic 
predominant age-related TDP-43 encephalopathy compared 
to age-matched controls [60]. It has been postulated that 
the dystrophic morphology of microglia represents senes-
cent microglia [58]. Senescent microglia exhibit reduced 
phagocytic and migration capabilities in comparison to acti-
vated microglia [61]. Markers of senescence were found to 
be increased in microglia in patients with AD [62]. These 
deviations in microglia homeostasis may contribute to the 
pathology observed in AD and PD. The murine tauopathy 
model, MAPT P301S PS19 mice, exhibits an increased 
population of microglia and astrocytes expressing the cyc-
lin-dependent kinase inhibitor  p16INK4A, which is a marker 
of senescence. Interestingly, removal of these cells leads to 

a decrease of hyperphosphorylation of tau and decreased 
degeneration of cortical and hippocampal neurons [14]. It 
is possible that depleting the pool of senescent glial cells 
may similarly be a novel therapeutic approach to alleviate 
neuropathological progression in AD and PD.

As both activated microglia and senescent microglia pro-
duce inflammatory molecules, it is important to distinguish 
between the functionality and pathogenicity of activated 
versus senescent microglia. Microglial activation and senes-
cence may both arise from inflammatory insults, as repeated 
LPS stimulation has been shown to induce senescence in 
the mouse microglial cell line BV2 [63]. It was previously 
thought that in the context of neurodegenerative disease, 
microglia were inappropriately activated, and accordingly, 
returning them to a homeostatic state would be protective. 
However, if inflammatory microglial signals in these dis-
ease contexts are really from senescent microglia rather than 
activated microglia, then either eliminating senescent cells 
or restoring them to a responsive and plastic state would 
be beneficial. A greater understanding of the activated and 
senescent microglial phenotypes is imperative for progress 
in neurodegenerative disease research.

AD microglia

After decades of research focused on neurons, genome-
wide association studies (GWAS) have unveiled significant 
genetic risk for AD in innate immunity/microglia [64–66]. 
Many of these risk genes appear to be involved in phago-
cytosis. For example, CD33, TREM2, ABI3, INPP5D, and 
PLCG2 have all been demonstrated to influence microglia 
phagocytosis of amyloid-beta or amyloid-beta deposition in 
the brain [67–70]. In addition to genetics, there have now 
been several studies that have examined postmortem micro-
glia transcriptomics from aged individuals with or with-
out AD. The microglia from AD patients appear to have 
an enhanced aging phenotype [71]. Aging microglia have 
altered expression of genes involved in cell adhesion and 
actin cytoskeleton dynamics, which suggests a functional 
decrease in cell motility [72]. Several of the pathways linked 
to aged microglia are suggestive of a senescent phenotype 
(Fig. 1). Importantly, genes that were found to vary with 
aging had very little overlap with genes of aging in murine 
microglia, emphasizing the importance of studying micro-
glial aging in the human system [73].

Among the genes increased with aging across various 
studies is IL15. IL-15 is pro-inflammatory and helpful for a 
productive response against infections. It is also one of the 
cytokines that are secreted by senescent cells and is con-
sidered a part of SASP [74, 75]. Inhibition of IL-15 activ-
ity disrupts microglial activation and decreases cytokine 
and chemokine release [76]. IL-15/interleukin 15 receptor 
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subunit alpha (IL-15RA) signaling may be neuroprotective, 
as IL-15RA knockout mice have increased motor neuron 
death after facial nerve axotomy [77]. IL-15 has wide-reach-
ing effects on neural signaling in the brain, as it is thought 
to be essential in maintaining neurochemical homeostasis 
and is even thought to have anti-depressive effects on mouse 
behavior [78]. Additionally, IL-15 holds a very important 
immunological role in the development of natural killer cells 
and memory CD8 + T cells.

Another microglial gene that is increased in aging and 
AD is APOE. APOE has three main isoforms, named APOE 
e2, e3, and e4. Individuals having the APOE e4 isoform 
are at higher risk for LOAD [79]. Conversely, the APOE 
e2 haplotype is protective for AD and is associated with 
a decrease in the aging microglia phenotype [73]. APOE 
is a multifunctional protein with an important role in lipid 
transport [80]. Expression of APOE is upregulated early and 
implicated in the switch from homeostatic to neurodegenera-
tive disease–associated microglia [81, 82]. While astrocytes 
are the main cell type for APOE production in the CNS, 
a recent mouse study suggested that microglial-produced 
APOE is important for synapse maintenance [83].

PD microglia

Alpha-synuclein aggregates are a hallmark of PD [84], and 
microglia help clear and degrade misfolded alpha-synuclein 
[85, 86]. The activation state of microglia modulates the rate 
of protein degradation, with LPS-activated microglia show-
ing decreased alpha-synuclein degradation and increased 
cytoplasmic accumulation [86]. And while microglial 
phagocytosis of extracellular alpha-synuclein can lead to 
degradation, microglia can also release alpha-synuclein 
through exosomes. Exosomes from these microglia can 
transport alpha-synuclein to neurons and induce protein 
aggregation in the neurons [87]. This mechanism has also 

been proposed for microglial-mediated transport of tau in 
AD [88]. These studies indicate a complex role for microglia 
in both clearing and transferring alpha-synuclein pathology 
in PD.

Alpha-synuclein has repeatedly been shown to activate 
both murine and human microglia [87]. In vitro experi-
ments using the murine microglial BV2 cell line as well 
as in vivo experiments in mice demonstrate that exosomes 
carrying alpha-synuclein derived from PD patients enter 
microglia and induce activation, leading to enhanced micro-
glial cytokine release and NO production [89]. Evidence 
of microglial activation has been found in the substantia 
nigra of postmortem PD brains, and in the 1-methyl-4-phe-
nyl-1,2,3,6-tetrahydropyridine (MPTP)–induced mouse 
model of PD [90, 91]. Activated microglia in the PD brain 
exhibit increased expression of ICAM-1, a pro-inflamma-
tory intercellular adhesion molecule [92]. These microglia 
also express the cytokines TNF-alpha and IL-6 [92, 93]. In 
addition to these pro-inflammatory markers, McGeer et al. 
described an increase of HLA-DR positive cells in the sub-
stantia nigra of patients with PD [94]. HLA-DR, part of the 
antigen-presenting machinery used to activate T cells, is 
almost exclusively expressed on innate immune cells, and 
therefore, in the CNS is specifically expressed in microglia. 
The human leukocyte antigen (HLA) locus is also genetically 
associated as discussed below.

Genetics

The advent of unbiased genome-wide association studies 
has been critical in shifting the focus in neurodegenerative 
research away from a concentration on only neurons to one 
that includes other CNS cell types, specifically microglia. 
Many genes that have been associated with susceptibility 
to AD are significantly enriched in microglia compared to 
total brain tissue [73]. Risk genes for PD do not implicate 

Fig. 1  Pathways enriched in 
aged microglia. Two hundred 
seventy-one genes that were 
enriched in aged microglia were 
used to identify pathways that 
are upregulated in aged human 
microglia compared to micro-
glia from younger individuals 
[72]. The figure was made in 
BioRender
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microglia as clearly, as they are expressed in many CNS 
cell types. However, some of these genes are enriched in 
microglia, including the HLA region and CTSB. Under-
standing how one’s genetic background influences micro-
glia behavior in neurodegenerative diseases will lead to a 
more comprehensive understanding of the disease mecha-
nism, as well as identify potential therapeutic directions.

From work translating genetic associations to func-
tional outcomes, it is becoming clearer that many of the 
genetic variants associated with LOAD lead to a hypo-
functional innate immune system, specifically microglia 
[95]. For example, the AD-protective allele in the PLCG2 
gene leads to a proline to arginine amino acid change, and 
this mutation results in enhanced immune signaling [96, 
97]. The AD-risk alleles in the CD33, IL34, PILRA, and 
SPI1 loci lead to a dampened immune response [67, 68, 
98–100]. Understanding the functional outcomes of these 
genetic associations has helped to reframe thinking about 
the approach to targeting the immune system in neurode-
generative disease. The previous thinking that the innate 
immune system needed to be suppressed is not supported 
by the genetic findings [20]. We hypothesize that aging, 
which leads to increased susceptibility to AD and PD, also 
induces a hypofunctional innate immune system and this, 
compounded with genetic risk factors, leads to a failure of 
microglia and the progression of AD.

The genetics of PD are not as clear in implicating innate 
immunity in the susceptibility to disease. Many of the 
genetic risk alleles in AD lead to a suppressed immune 
response, while some of the immune genetic hits in PD 
modify the pathways of antigen processing and presenta-
tion in immune cells. For example, CTSB, which is geneti-
cally linked to PD, codes for a lysosomal protease enriched 
in microglia, which is known to be important in process-
ing antigens, including alpha-synuclein, for presentation 
by antigen-presenting cells to T cells [101, 102] [103]. 
Moreover, CTSB has been shown to influence the polariza-
tion of T cells through modulation of antigen-presenting 
cell cytokine production [104]. While we do not know 
about microglia specifically, the genetic association with 
PD in the CTSB locus leads to reduced expression levels 
in multiple tissues [103].

In addition to CTSB, other PD risk genes, LRRK2, GBA, 
and BAG-3, have all been implicated in antigen presentation 
as well [105–107]. We have shown that the common genetic 
association in the LRRK2 locus leads to increased expres-
sion of LRRK2 with the risk allele in a model of human 
microglia [108]. LRRK2 KO mice have innate immune cells 
that produce more proinflammatory cytokines upon activa-
tion and greater T cell proliferation in an antigen presenta-
tion assay [105], suggesting that LRRK2 expression may 
inhibit productive antigen presentation and activation of T 
cells. Whether the genetic variation changes the spectrum of 

antigens presented in the CNS of individuals with PD, and 
how this variation influences T cell phenotypes, is unknown.

The HLA complex region is an immune-specific, geneti-
cally associated locus for both AD and PD [109–113]. 
The proteins encoded in the HLA region present peptides 
(antigens) to T cells to activate antigen-specific immune 
responses. HLA is the strongest genetic association for most 
autoimmune diseases, and the pairing of particular autoim-
mune risk HLA genes with specific antigens can lead to inap-
propriate immune activation and destruction of very specific, 
disease-defining cell types. The HLA association with AD 
and PD implies that antigen presentation by innate immune 
cells (including microglia) to T cells is an important part of 
the susceptibility to both diseases.

One PD-focused study used deep sequencing of the HLA 
region to identify amino acid changes in the protein coded 
for by HLA-DRB1 as a genetic risk for PD [114]. HLA-DRB1 
codes for part of MHC class II, which is the molecule on 
antigen-presenting cells responsible for presenting antigens 
to CD4 + helper T cells. Interestingly, the authors found an 
interaction between the protective genetic association and a 
history of smoking, which is a known protective factor for 
PD [115]. The authors hypothesize that smoking may lead 
to post-translational modifications of proteins such as alpha-
synuclein, which then changes the binding affinity to MHC 
class II depending on the genetically associated amino acid 
changes. In a large study dissecting the HLA association 
with AD, the group found independent MHC class I and 
class II associations, suggesting that antigen presentation 
to both helper CD4 + T cells and CD8 + cytotoxic T cells is 
important to the disease susceptibility [112].

T cells in AD and PD

Our understanding of microglial diversity in form and func-
tion is currently only rudimentary in the human system, 
especially their antigen-presenting function [116]. Microglia 
have the machinery to process and present antigens to both 
CD4 + and CD8 + T cells via MHC class I and II proteins 
(Fig. 2) [117, 118]. Infiltrating T cells have been described 
in the hippocampus in AD and the substantia nigra in PD, 
both primary foci of neurodegeneration in each disease 
respectively. Interestingly, in addition to T cell infiltration, 
these regions are also enriched with MHC class I and II 
expression in AD and PD. As previously described, the HLA 
region, which encodes MHC proteins, is genetically associ-
ated with AD and PD. In this way, microglia T cell interac-
tions are implicated through several lines of evidence in the 
AD and PD brain [119–121]. A study looking at T cells in 
the CSF of PD and AD patients found clonally expanded 
CD8 + T cells in both diseases, suggesting that the T cells 
are infiltrating in response to a particular antigen [122]. In a 
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study using the 5XFAD AD mouse model, intracerebroven-
tricular injection of amyloid-beta-specific T cells induced 
MHC class II expression on microglia. These MHC class 
II–positive microglia have a neuroprotective phenotype with 
increased plaque-clearing abilities [123]. This highlights the 
reciprocal signaling between immune cells.

T cells are drastically affected by aging. Atrophy of the 
thymus with age is a clear example of this phenomenon 
and leads to a lack of new pluripotent T cells to repopulate 
the naïve T cell compartment [124]. The diversity of the 
T-cell receptor (TCR) repertoire found in 20–35-year-olds 
is reduced by 10–25% in 70–80-year-olds [125]. The phe-
notype of memory T cells in aging also changes, with an 
increase of clonality and T cells lacking the expression of 
necessary co-stimulatory molecules [126].

Peripheral immune aberrations, particularly in lympho-
cyte subsets, are abundant in PD patients. Specifically, it 
has been shown that peripheral T cells are diminished in 
PD patients [127, 128]. In AD, there is an increase in a par-
ticular type of CD8 + T cell that has been associated with 
chronic viral infections, and expansion of this T cell sub-
set was found to be correlated with cognitive decline [122]. 

These effector memory T cells, which are defined by re-
expression of the CD45RA protein, are termed  TEMRA. These 
cells tend to be highly responsive to IL-15, which has been 
found to be increased in microglia in AD [129]. They have 
also been associated with a senescent phenotype; however, 
the senescent population is likely a subset of  TEMRA [130]. 
Interestingly, these  TEMRA T cells were found to be reduced 
in the circulation of individuals newly diagnosed with PD 
[131]. We have much work to do to understand the nuances 
of the role of various T cell populations in both AD and PD.

Conclusions

A better understanding of the influence of the aging immune 
system on neurodegenerative diseases will be helpful in the 
search for novel therapeutic approaches. In terms of infil-
trating T cells, it will be imperative to understand which 
populations are detrimental and which may be protective 
in disease contexts. For example, in one study, it was found 
that higher plasma IL-12p70 and IFNg in cognitively nor-
mal individuals was associated with reduced future cogni-
tive decline [132]. IL-12p70 polarizes T cells towards the 
pro-inflammatory INFγ-producing T cell subset, suggest-
ing that this subset of T cells may be protective. Defining 
how microglia act as antigen-presenting cells in key areas 
of neurodegeneration is also important to comprehensively 
understand their contribution to disease processes. The inter-
section of aging and genetics is also very likely to be critical 
to any immune dysregulation. The development of therapies 
that modify the role of these cells’ contribution to disease 
pathophysiology or enhance disease resistance will facili-
tate health and well-being among aging adults and markedly 
reduce health care expenditures.
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Fig. 2  Microglia have antigen-presenting functions. Both CD4 + and 
CD8 + T cells infiltrate key CNS areas of neurodegeneration in AD 
and PD. Genetic risk for both diseases has been identified in the 
region that codes for the MHC proteins, which present antigens to T 
cells. Microglia also produce cytokines that can support the survival 
and polarization of T cells. Aged microglia produce more IL-15, an 
activating T cell cytokine. The figure was made in BioRender
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