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Abstract

Vagus nerve stimulation (VNS) is a potential treatment option for gastrointestinal (GI) dis-

eases. The present study aimed to understand the physiological effects of VNS on gastroin-

testinal (GI) function, which is crucial for developing more effective adaptive closed-loop

VNS therapies for GI diseases. Electrogastrography (EGG), which measures gastric electri-

cal activities (GEAs) as a proxy to quantify GI functions, was employed in our investigation.

We introduced a recording schema that allowed us to simultaneously induce electrical VNS

and record EGG. While this setup created a unique model for studying the effects of VNS on

the GI function and provided an excellent testbed for designing advanced neuromodulation

therapies, the resulting data was noisy, heterogeneous, and required specialized analysis

tools. The current study aimed at formulating a systematic and interpretable approach to

quantify the physiological effects of electrical VNS on GEAs in ferrets by using signal pro-

cessing and machine learning techniques. Our analysis pipeline included pre-processing

steps, feature extraction from both time and frequency domains, a voting algorithm for

selecting features, and model training and validation. Our results indicated that the

electrophysiological changes induced by VNS were optimally characterized by a distinct set

of features for each classification scenario. Additionally, our findings demonstrated that the

process of feature selection enhanced classification performance and facilitated representa-

tion learning.

Introduction

Electrical vagus nerve stimulation (VNS) is emerging as a potential therapy for gastric motility

disorders [1]. However, the VNS mechanisms of action on gastric motility regulation has yet

to be fully understood. This understanding is crucial for developing more effective therapies.

Gastric electric activity (GEA) is known to be a physiological signal that regulates gastric

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0295297 December 1, 2023 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Zeydabadinezhad M, Horn CC, Mahmoudi

B (2023) Quantifying the effects of vagus nerve

stimulation on gastric myoelectric activity in ferrets

using an interpretable machine learning approach.

PLoS ONE 18(12): e0295297. https://doi.org/

10.1371/journal.pone.0295297

Editor: Naveen Jayaprakash, Feinstein Institute for

Medical Research Fertility Research Laboratory:

Northwell Health Feinstein Institutes for Medical

Research, UNITED STATES

Received: June 30, 2023

Accepted: November 17, 2023

Published: December 1, 2023

Copyright: © 2023 Zeydabadinezhad et al. This is

an open access article distributed under the terms

of the Creative Commons Attribution License,

which permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The dataset is

publicly available through Zenodo repository

(https://doi.org/10.5281/zenodo.8421901). We

also included a description (readme file) to the

dataset.

Funding: This work was supported by the National

Institutes of Health grants OT2OD030535 (BM)

and U18TR002205 (CH). The funders had no role

in study design, data collection and analysis,

https://orcid.org/0000-0003-3125-9886
https://orcid.org/0000-0002-5587-3912
https://orcid.org/0000-0001-5819-5072
https://doi.org/10.1371/journal.pone.0295297
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0295297&domain=pdf&date_stamp=2023-12-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0295297&domain=pdf&date_stamp=2023-12-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0295297&domain=pdf&date_stamp=2023-12-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0295297&domain=pdf&date_stamp=2023-12-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0295297&domain=pdf&date_stamp=2023-12-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0295297&domain=pdf&date_stamp=2023-12-01
https://doi.org/10.1371/journal.pone.0295297
https://doi.org/10.1371/journal.pone.0295297
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.8421901


motility and can be recorded by means of electrogastrography (EGG) [2,3]. EGG can be used

as a feedback signal for closed-loop adaptive VNS interventions, however its adoption in clini-

cal practice remains limited. The primary reasons for this underutilization include the intrinsic

properties of GEA and the absence of standardized protocols for electrode placement, both of

which constrain the clinical applicability when recorded non-invasively [4]. However, it is

worth noting that recent studies [5,6] have demonstrated the successful fabrication of high spa-

tial resolution EGG and Magnetogastrogram systems [7]. These advancements hold the poten-

tial to establish a clinical standard for EGG recording, ultimately facilitating its widespread

adoption in clinical settings.

Pre-clinical and human studies have demonstrated that implanted electrodes can record GI

myoelectric activities that contain significantly more information than skin surface electrodes [8].

Since the abdominal wall may have a low-pass filtering effect, the higher frequency information are

attenuated in non-invasive EGG recordings [9]. These attenuated signal components are known to

be associated with gastric contractions [10]. While invasive recordings provide physiological sig-

nals that contain more information, compared to that of non-invasive recordings, they pose several

challenges. In studies with electrodes implanted in the GI system, the subjects are required to

remain sedentary or under anesthesia during data recording [11]. Most EGG-based studies have

been done in a controlled environment with the subject either instructed not to move or being

anesthetized [12,13]. Although collecting data in a controlled and sedentary manner is useful for

some studies, it cannot synthesize realistic situations, such as recording data in ambulatory and

non-clinical settings. One potential application of ambulatory EGG recordings is studying motion

sickness [14–16] and the effectiveness of administered therapies to prevent emesis [17].

In this study, we formulated a machine learning approach to quantify the effects of VNS on

GEA using EGG signals that were recorded invasively from the surface of the stomach. While

previous research [18,19] has demonstrated the impact of VNS on alterations in gastrointesti-

nal activity, these investigations have not explored EGG features beyond dominant frequency

[2] (DF) and its derivatives. In our present study, we have incorporated an expanded array of

diverse features, drawing from those commonly employed in related fields such as electroen-

cephalography (EEG) and electromyography (EMG), to represent a broad range of physiologi-

cal properties beyond the standard DF. Using this approach, we aim to address two main

questions: 1- Can we identify the electrophysiological effects of electrical VNS on EGG signals

recorded in an invasive and non-sedentary manner? 2- Do the electrophysiological effects

depend on the electrical VNS parameters?

Results

We considered two scenarios, i.e., baseline vs. VNS at 10 Hz and baseline vs. VNS at 30 Hz.

One motivation for feature selection is first to find features that are correlated with each other

and second, to remove those with high correlation from the analysis. Fig 1 presents the clus-

tered correlation heatmaps of all features for two distinct scenarios: baseline versus VNS at 10

Hz and VNS at 30 Hz. This visual representation facilitates a comprehensive understanding of

the relationships among features. In addition to the engineered features, we included

‘removed-pct’ which is the percentage of removed signal after applying the pre-processing

steps. We only used samples with ‘removed-pct’, less than 30% for model training. From these

heatmaps it is evident that there are clusters of features that are positively or negatively corre-

lated with each other. The correlation heatmap in Fig 1A suggests a positive correlation

between ‘removed-pct’ and features such as variance and RMS. This can be an indication of

higher error in signal measurements due to physiologically implausible high signal values or

abrupt changes in recorded signals, reflected in RMS and variance, respectively.

PLOS ONE Quantifying the effects of vagus nerve stimulation on gastric myoelectric activity

PLOS ONE | https://doi.org/10.1371/journal.pone.0295297 December 1, 2023 2 / 19

decision to publish, or preparation of the

manuscript.

Competing interests: No authors have competing

interests.

https://doi.org/10.1371/journal.pone.0295297


Fig 2 exhibits the features chosen for the first scenario, as identified by our feature selection

algorithm, and organized in a descending sequence of significance, as established by the Ran-

dom Forest classifier (See Methods). The Sample Entropy [20] (SmEn) of the signal emerged

as the most significant feature, while Root Mean Square (RMS) was identified as the second

most important attribute. RMS is a measure of the signal’s overall energy or amplitude [21],

while Sample Entropy is a measure of the complexity or irregularity of a time series signal [22].

In the context of the first scenario, the differing Sample Entropy values between the baseline

and VNS at 10 Hz suggest that the underlying dynamics or patterns of the EGG signals change

Fig 1. Correlation heatmap of the engineered features (See Table 1) a) baseline vs. VNS at 10 Hz b) baseline vs. VNS at

30 Hz. Each cell’s color shows to what extent features are correlated.

https://doi.org/10.1371/journal.pone.0295297.g001

Fig 2. Selected features via our feature selection algorithm for baseline vs. VNS at 10 Hz (first scenario) and

organized in a descending sequence of significance, as established by the Random Forest classifier. Error bars

represent one standard deviation. ’*’ is used to show the time domain features. SmEn: Sample Entropy, RMS: Root

Mean Square, MVN: (Entropy of) Multi-variate Normal, SVDEn: Singular Value Decomposition Entropy, LL: Line

Length, DP: Dominant Power.

https://doi.org/10.1371/journal.pone.0295297.g002
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because of VNS. Also, the variation in RMS could be indicative of the effect of VNS with 10 Hz

frequency on the overall energy of EGG signals being analyzed. In general, most of the features

selected in this scenario pertain to the signal’s amplitude (See S1 Fig).

Utilizing the chosen features, as illustrated in Fig 2, a Random Forest classifier [23] was

trained. Fig 3 demonstrates the Receiver Operating Characteristic—Area Under the Curve

(ROC-AUC or AUC [24]) of this classifier, encompassing three distinct cases: training the clas-

sifier using the selected features, employing randomly chosen features for training, and utiliz-

ing randomly shuffled labels for the training process. We conducted a two-sample

Kolmogorov-Smirnov (KS) test [25] to assess the null hypothesis that the AUC values, derived

from a 5-fold cross validation (CV) of the classifier trained with the selected features from Fig

2, originate from the same distribution as the AUC values for the other two cases presented in

Fig 3. The obtained p-values were< 0.001 (with test statistic of 1.0 and 0.872, respectively),

enabling us to accept the alternative hypothesis that the AUC values for each case stem from

distinct distributions (See S2 Fig for metrics other than AUC). These findings indicate that our

feature selection algorithm played an important role in augmenting the performance of the

classifier, thereby demonstrating its effectiveness. (See Methods for details)

Contrary to the first scenario, Fig 4 reveals that the majority of the selected features for the

second scenario, baseline vs. VNS at 30 Hz, are entropy and frequency based. This observation

suggests that, in the case of VNS at 30 Hz, the changes induced by the VNS are more promi-

nently reflected in the signal’s pattern or frequency content rather than its amplitude or energy

(See S1 and S3 Figs). This distinction highlights the potential differences in the underlying

mechanisms and effects of VNS at various frequencies, which may provide valuable insights

into the physiological responses to stimulation. It is worth mentioning that the most important

feature in the second scenario, Petrosian Fractal Dimension [26] (PFD), was originally intro-

duced for the quantitative interpretation of epileptic EEG recordings [26,27] (See Appendix).

Additionally, the presence of dominant frequency (DF), Dominant Power (DP), and normo-

gastric band power (BP2) (See Table 1) in Fig 4, may align with the insights provided by

entropy-based features (which measure the unpredictability or complexity of a signal), further

Fig 3. This illustration compares the AUC for a Random Forest classifier trained using various feature sets. From

left to right: Features from Fig 2, features selected for VNS at 30 Hz, all features, a random selection of features

equivalent in number to those in Fig 2, and randomly shuffled labels. The comparison is conducted in the context of

the baseline versus VNS at 10 Hz scenario.

https://doi.org/10.1371/journal.pone.0295297.g003
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showing that VNS at 30 Hz may demonstrate a greater impact on signal pattern and frequency

shifts, rather than on signal amplitude or energy.

Fig 5 demonstrates the AUC values for a Random Forest classifier trained for the second

scenario (See S4 Fig for metrics other than AUC). Similar to the first scenario, the AUC values

derived from a 5-fold CV of the classifier trained with the selected features in Fig 4 were statis-

tically significantly different from the other two cases showed in Fig 5 (two-sample KS test, test

statistic: 0.948 and p-value< 0.001)

Taken together, the findings from Figs 2 to 5 indicate that, within the framework of our

study, it is feasible to distinguish the effects of VNS on the EGG signals. Furthermore, the fre-

quency of VNS may modulate the alterations observed in EGG, manifesting either as changes

in signal amplitude and energy, or as shifts in signal complexity and frequency contents.

Discussion

The main goal of this paper was to introduce a novel dataset and analysis pipeline to determine

the effect of electrically induced VNS on EGG signals. Characterizing this effect is essential for

better understanding the underlying physiological mechanisms of VNS for regulating the GI

function and inform designing closed- loop GI-VNS systems. Our primary contribution in

this study is to establish a robust methodological foundation for future research in this

Fig 4. Selected features via our feature selection algorithm for baseline vs. VNS at 30 Hz (second scenario) and organized in a descending sequence of

significance, as established by the Random Forest classifier. Error bars represent one standard deviation. ’*’ is used to show the time domain features. PFD:

Petrosian Fractal Dimension, PrEn: Permutation Entropy, DF: Dominant Frequency, ApEn: Approximate Entropy, DP: Dominant Power, BP2: Band Power in

8–11 cpm, MF: Median Frequency, LZ: Lempel-Ziv Complexity, SmEn: Sample Entropy, SpEn: Spectral Entropy.

https://doi.org/10.1371/journal.pone.0295297.g004
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domain. While our dataset has its limitations, the methods and approaches we’ve introduced

pave the way for more extensive and in-depth studies in the future.

Our study utilized a data acquisition schema that is rarely used due to the difficulties associ-

ated with surgery, electrode implantation, and long-term data collection. The advantages of

Table 1. List of time- and frequency-domain features used for EGG analysis. PMMP: Percentage of PSD that has

higher value than DP/4. BP1-3: Relative band power between 3-8cpm, 8–11 cpm, and 11–15 cpm respectively.

Time domain Frequency domain

Mean value Dominant frequency (DF)[28]

Variance Dominant Power (DP)[29]

Mode PMMP [29]

Median Spectral Entropy (SpEn)[30]

Skewness BP1 [28]

Kurtosis BP2 [28]

RMS BP3 [28]

Line Length (LL) [31,32] Crest factor of PSD [15,29]

Approximate Entropy (ApEn)[20,22] Median frequency (MF)

Sample Entropy (SmEn) [20,22] Mean power frequency [15,29]

Permutation Entropy (PrEn) [33]

SVD Entropy (SVDEn) [34,35]

Lempel-Ziv Complexity (LZ) [36]

Hjorth Mobility & Complexity [37]

Petrosian Fractal Dimension (PFD) [26,27]

Hurst Index [38]

https://doi.org/10.1371/journal.pone.0295297.t001

Fig 5. This illustration compares the AUC for a Random Forest classifier trained using various feature sets. From left to right: Features from Fig 4, features

selected for VNS at 10 Hz, all features, a random selection of features equivalent in number to those in Fig 4, and randomly shuffled labels. The comparison is

conducted in the context of the baseline versus VNS at 30 Hz scenario.

https://doi.org/10.1371/journal.pone.0295297.g005
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this schema compared to cutaneous EGG were recording data that are not filtered by the

abdominal wall and synthesizing a more realistic ambulatory setting. Disadvantages of the

schema were loose electrode connections or abrupt movements of the ferrets causing artifacts

in the recorded data. These artifacts were removed effectively by utilizing band-pass filtering

in the pre-processing steps (See S5–S7 Figs). However, after removing the corrupted data por-

tions, we were left with a small sample size, whereby 19.2% of the total collected data was dis-

carded. Although dominant frequency (DF) is known to be the most widely used feature in

EGG-related studies (See Methods), our preliminary analysis showed that DF alone was not

informative enough to classify between baseline and VNS states in our data. To address this

problem, we leveraged a machine learning approach. We employed a broader range of engi-

neered features beyond DF to extract more information from our data. In exchange for these

added features, we had to resolve another problem: the ratio between the number of samples

(n) and the number of predictors or features (p). In our study, this ratio was close to 3. This

can become problematic as most machine learning algorithms assume that there are many

more samples than predictors [39] or p<< n. In our case, the condition was exacerbated

because the data was noisy, heterogeneous and could result in overfitting. There are multiple

approaches [40] such as filter, wrapper, and embedded methods to handle datasets with too

many features and a small number of observations. However, it is important to note that no

single method is suitable for all datasets and situations [41]. To harness the power of each fea-

ture selection method, we devised a voting algorithm to rank the features selected by each sin-

gle feature selection method and made a final decision based on majority voting. Our

experiments demonstrated the efficacy of the voting algorithm, as evidenced by the enhance-

ment in the AUC value of the trained classifier.

Moreover, the interpretability of the model was improved by reducing the total number of

features utilized for classification and organizing them according to their importance. A

model is considered interpretable if a human can comprehend the rationale behind its predic-

tions [42]. Reducing the number of features and organizing them according to their impor-

tance contributes to interpretability, as it makes it easier to understand how each feature

influences the prediction. Our analysis pipeline helped to demonstrate that we could program-

matically distinguish between EGG signals recorded during baseline and VNS indicating that

the electrophysiological effect of VNS on EGG signal can be identifiable. This finding is in

accordance with previous research that investigated the effect of VNS on GI function and

whether it changes the EGG signal [43]. To examine the influence of VNS frequency on the

alterations observed in EGG, we employed the selected features for VNS at 10 Hz and 30 Hz.

The selected features revealed that the impact of VNS at 10 Hz was predominantly noticeable

in time domain features associated with signal amplitude and energy. Conversely, for VNS at

30 Hz, features pertaining to frequency content and entropy of signal were of greater signifi-

cance. The observed differences in feature importance between the two scenarios highlight the

potential variability in the underlying mechanisms and effects of VNS at different frequencies.

While similar entropy features might be expected to have comparable importance, the distinct

physiological responses to VNS at 10 Hz and 30 Hz can lead to variations in their relevance for

classification.

There are limitations to our study in terms of data and methodology. The number of dis-

carded samples was 33 and 44 for VNS at 10 Hz and 30 Hz, respectively. This 33% increment

in discarded values in VNS at 30 Hz could be due to more loose electrode connection or a

change in ferret movement patterns. Nevertheless, this difference in the quality of recorded

signals during VNS at 10Hz and VNS at 30Hz could be a confounding factor and should be

accounted for in future work. Another confounding factor is the state-dependency nature of

EGG. For instance, two baseline recordings made of the same animal may differ if recorded in
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different sessions, based on how long before the recording session a ferret has ingested food.

The same holds true for signals recorded during applying electrical VNS. A limitation associ-

ated with our methodology was that frequency domain features employed in this study are

based on Fast Fourier Transform (FFT), however one assumption in FFT is that the input sig-

nal is periodic, but EGG is a non-stationary signal with chaotic properties. The future direc-

tions of our research will be focused on addressing the limitations of our data acquisition and

analysis. The quality of collected data will be improved by more robust implantation of elec-

trodes and employing wireless recording equipment. This will lead to a reduction in the num-

ber of invalid samples and more consistency in recording from different sessions. Regarding

data analysis, we will adopt spectral analysis tools better suited for non-stationary signals such

as wavelets and empirical mode decomposition [44] (EMD). These methods may provide a

more accurate representation of EGG spectral information. Modern machine learning meth-

ods designed to generalize to Out-of-Distribution (OOD) data would offer an avenue to

explore the state-dependent character of the recorded EGG and its inter- and intra-variability.

Methods

Data collection

Our data collection approach was designed to synthesize realistic ambulatory settings. We

opted for a rarely practiced approach that involved implanting the VNS cuffs and EGG elec-

trodes around the vagus nerve and on the serosal layer of the ferret stomachs, respectively. To

study the physiological effects of VNS on the gastric function, our novel dataset was collected

by recording EGG from the serosal layer of ferret stomach in two different conditions, i.e.,

before applying the VNS (baseline) and during application of the VNS. The recording was

done in-vivo while the animals were awake and freely moving in their cage. To our knowledge,

this is the first time that EGG signals were recorded in this manner. Under isoflurane anesthe-

sia (1 to 3%), seven adult male ferrets were chronically implanted with vagus nerve cuffs and

GI serosal surface electrodes. Surface electrodes were placed at four locations along the stom-

ach axis (named gastric1 to gastric4) and two locations at the duodenum (See Fig 6). Surgical

implantation procedures were similarly designed to past studies [8,19]. Leads were subcutane-

ously connected to a head connector (See Fig 6) and there were at least 10 days of recovery

from surgery before the first data acquisition. All surgical and testing procedures were

approved by the University of Pittsburgh Institutional Animal Care and Use Committee and

were conducted following approved guidelines. All animal studies reported also followed the

recommendations in the ARRIVE guidelines.

At each data acquisition session, a within-subject design included 10 minutes baseline

recording (baseline) followed by 10 minutes of VNS. The VNS was a biphasic/bipolar signal,

and its pulse amplitude and pulse width were set at 0.5 mA and 0.1 ms, respectively. Each ani-

mal received VNS at 10 and 30 Hz stimulation frequency on two different days resulting in a

total of 14 data acquisition sessions. Utilizing the chosen VNS parameters, we did not observe

any behavioral alterations. EGG was recorded down to DC with 2 KHz sample rate using Rip-

ple Neuro’s Grapevine EMG front end (Ripple neuro, Salt Lake City, UT USA). VNS was

applied using AM4100 stimulator (A-M Systems, Carlsborg, WA USA).

Data pre-processing

To prepare our dataset for analysis, we devised specific pre-processing steps. Our EGG record-

ing conditions required pre-processing steps that may not be necessary when EGG is recorded

sedentary. Our data were acquired from planar electrodes implanted on the serosal layer of the

stomach in each ferret. Owing to the uncontrolled locomotion of the animals, which led to
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sporadic electrode or cable disconnections, the data acquired from each electrode exhibited

varying durations and quality. Subsequent to our evaluations, we selected the signal from the

electrode labeled ‘gastric2’ postulated to be proximate to the pacemaker regions of the proxi-

mal stomach [28,45] (See Fig 6). The choice of the ’gastric2’ channel was predicated on its con-

sistent representation of the gastric slow wave signal, presumably due to its proximity to the

gastric pacemaker area. While other gastric channels exhibited analogous signals, their consis-

tency was comparatively diminished. Signals from the duodenum, which were faster, were not

incorporated into this analysis, given the relatively nascent understanding of their processing

compared to gastric slow wave signals. The recording methodology employed a differential

input, with both the reference and recording electrodes situated similarly on the stomach’s

serosal surface. Before feature engineering, we developed an in-house pre-processing pipeline,

written in Python, to prepare raw signals for downstream analysis. Raw signals occasionally

contained spikes with large amplitudes that are not physiologically plausible. This could have

been a result of animal sudden movements or an electrode loose connection. We empirically

found that a threshold level of 1e8 μV can remove all these spikes (See S5 and S6 Figs). A sam-

pling frequency of 2 kHz is several orders of magnitude greater than the slow wave and spike

potential responses typically observed. The EMG front end has an analog bandpass filter that

can mitigate interference from unwanted frequency components. However, in scenarios

where such analog filters might not be in place or when they might not be sufficiently effective,

oversampling can act as an additional safeguard against aliasing. Nevertheless, given that this

domain remains relatively unexplored, we elected to include frequencies up to 1 kHz in our

sampling procedure [28]. This decision was made to encompass both known and potentially

novel, higher-frequency signals that may be present within the data. In addition to this, by

using a higher sampling rate, the quantization noise is spread over a wider frequency range

[46], and then a low-pass filter can be applied to remove high-frequency noise, resulting in a

Fig 6. Electrode placements. a) show the structure of nerve cuff, b) position of surface electrodes (only ‘gastric 2’ was used in this study) and nerve cuff. c) A

ferret’s head connection to the vagus nerve stimulator and EGG recording device.

https://doi.org/10.1371/journal.pone.0295297.g006
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cleaner signal. Finally, a higher sampling rate can help mitigate aliasing issues [47] caused by

interference from other signals or noise sources. This can be particularly useful in environ-

ments, like the lab where ferrets were kept, with much electromagnetic interference or other

signal disturbances. As the main frequency of EGG is in a narrow frequency band that is near

to DC (0.01–0.5Hz), we decided to use a digital filtering approach called Index Blocked Dis-

crete Cosine Transform Filtering Method [48] (IB-DCTFM). This method removes unwanted

frequency range signals on the time domain by blocking specific DCT index on the DCT

domain. Although like IIR filters, IB-DCTFM may cause signal distortion, such as Gibbs phe-

nomenon [48], but in comparison to FIR and IIR counterparts, IB-DCTFM provides several

advantages including superior SNR and correlation coefficient to clean signal, stability, linear

phase, and zero delay. IB-DCTFM has been used as a filtering method for EGG signals [9].

The VNS artifacts in the recordings were removed using this band-pass filtering (See S7 Fig).

After bandpass filtering, we applied another thresholding but this time with the threshold level

set to 2000 μV to keep signal amplitude in a physiologically plausible range [28]. The thresh-

olding procedure was done by substituting the values surpassing the designated threshold with

the mean value of the signal amplitude. This method ensures that the signal is effectively con-

strained within the established bounds while maintaining its overall statistical properties. Our

proposed analysis pipeline is built upon four modules (1) pre-processing and time and fre-

quency domain feature extraction, (2) Feature selection using our proposed voting algorithm,

(3) train and validate classifiers for two different classification scenarios, and (4) reporting the

feature importance and classification metrics (See Fig 7).

Feature engineering

For feature engineering, we used windows of 1-minute length with 20-seconds overlap for

each 10-minute segment of our EGG signal. The choice of 1-minute length is to capture fre-

quencies as low as 3 cycles per minute (cpm). This lower limit of 3 cpm is the reported bottom

range for ferret gastric slow wave signals [28]. As the EGG signal is not stationary and has a

chaotic nature, we hypothesized that dominant frequency (DF) and other features that are

derived from DF, may not accurately describe the effects of VNS. Furthermore, existing

research demonstrates that under conditions of dynamic and noisy EGG, particularly during

rapid and unexpected movements, the selection of suitable EGG biomarkers (features)

assumes heightened significance for maintaining the validity of the analysis [20]. Other fields

of biosignal analysis, such as EEG or Electromyography (EMG) analysis [49,50], have devel-

oped features from both time and frequency domains that could be more suitable to extract

information from non-stationary signals. In the following two sub-sections, we introduce the

features that we adopted from the literature to represent 1-minute segments of the EGG

signals.

Time domain features

Time-domain features (TDFs) are derived from the amplitude of EGG signals, capturing vari-

ous characteristics that reflect the underlying dynamics of the data. Previous research has

Fig 7. The analytic pipeline for EGG analysis and biomarker identification.

https://doi.org/10.1371/journal.pone.0295297.g007
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demonstrated that the amplitude of EGG signals is influenced by factors such as the ingestion

of food or pharmaceutical substances [17], as well as the presence of nausea [20]. Conse-

quently, we hypothesized that the statistical distributions of EGG signals during baseline and

VNS periods would exhibit differences. We calculated a group of statistical features including

mean, variance, mode, median, skewness (third moment describing data asymmetry), and

kurtosis (fourth moment determining tailedness of the distribution). Root mean squared value

(RMS) and Line length are TDFs pertinent to signal amplitudes. Notably, Line length serves as

an approximation of Katz’s fractional dimension, as described in previous literature [31]. RMS

offers insights into a signal’s overall energy [21], which can facilitate differentiation between

distinct signal classes or detection of particular events. For instance, research findings pre-

sented in [51] demonstrate a higher mean value or RMS during fasting as opposed to the post-

prandial state. The application of RMS in EGG analysis, therefore, may provide an additional

perspective for understanding and interpreting data. Both RMS and Line length have been

employed in EEG [31] and EGG studies [14,32], attesting to their relevance and applicability

in the analysis of such signals. Fractal dimensions, including PFD [26], have been extensively

employed in EEG and ECG literature [52–55], indicating that they may offer valuable insights

into the complexity and self-similarity of physiological signals. We direct readers with an inter-

est in comparing various fractal dimension methodologies to consult reference [27] for a

detailed examination and comparative analysis.

Entropy is a measure of the unpredictability, complexity, or randomness of a signal or data-

set [56]. Different entropy measures are related in the sense that they all quantify the complex-

ity or randomness of a signal. Still, they do so using different approaches and algorithms.

Some measures are more suitable for specific types of signals or applications. For example,

approximate and sample entropy is more suitable for analyzing the regularity of time-series

data, and permutation entropy is particularly useful for non-stationary signals [33]. It can be

applied to study the dynamics and interactions of complex systems, such as biological systems.

Entropy-based measurements serve as valuable tools for quantifying uncertainty and disorder

in time series signals [33,56,57], including EGG signals [20]. Among the various entropy mea-

sures, approximate entropy and sample entropy are particularly useful for assessing the regu-

larity and fluctuation in a time series [22]. Sample entropy has been demonstrated to be a

robust feature for analyzing noisy EGG signals [20]. In addition to sample entropy, permuta-

tion entropy [33] and Singular Value Decomposition entropy (SVDEn) are employed to evalu-

ate the local complexity and temporal- spatial complexity of a process [34], respectively.

SVDEn has been employed in the examination of heart rate variability, owing to its straightfor-

ward implementation, and reduced computational complexity, particularly when analyzing

short, nonstationary data series [58]. Signal variance, also known as the Hjorth activity param-

eter, is another time-domain feature. It indicates the surface of the power spectrum in the fre-

quency domain [59]. Mobility and complexity, the other two Hjorth parameters [37], were

also selected as time-domain features for their unique contributions. The mobility parameter

is defined as the square root of the ratio of the variance of the first derivative of the signal to

that of the signal itself. This parameter offers insights into the signal’s dynamic characteristics.

Meanwhile, the complexity parameter reveals how similar the shape of the signal is to a pure

sine wave, providing information about the signal’s waveform morphology. The value of Com-

plexity converges to 1 as the shape of signal becomes more similar to a pure sine wave [59]. In

the context of signal analysis, certain features such as RMS and entropy measures may not

exhibit a direct mathematical relationship. Nevertheless, these features can be employed in

conjunction to provide a comprehensive understanding of a signal’s characteristics. For

instance, a high RMS value coupled with elevated entropy may be indicative of a signal charac-

terized by significant noise and an abundance of random variations. Conversely, a high RMS
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value accompanied by diminished entropy could suggest the presence of a robust, periodic sig-

nal exhibiting a regular pattern.

Frequency domain features

Analysis of frequency domain features (FDFs) is important because FDFs can provide infor-

mation regarding the rhythmic patterns of signals. In the field of EGG, DF or peak frequency,

is an FDF that has been widely used by researchers for EGG related analysis [28,45,60]. Domi-

nant power (DP) or the power associated with DF is another feature often used along with DF

[20]. Spectral entropy (SE) is a measure of the random process uncertainty from the frequency

distribution. SE has been used to measure depth of anaesthesia using EEG [30]. A low SE value

means the frequency distribution is intense in some frequency bands. Its calculation is similar

to that used for the Shannon entropy, but it replaces the probability distribution with the nor-

malized power spectral density [61] (PSD). We calculated the mean value of signal power for

3–8 cpm, 8–11 cpm, and 11–15 cpm bands equivalent to bradygastria, normogastria, and

tachygastria bands [28].

There is no broad consensus on what these ranges should be in ferrets, however we chose

these ranges based on methodology and findings of past studies [19,28] related to ferrets EGG.

In order to calculate the PSD, we set the desired frequency resolution to 0.1 cpm and used the

Welch method. Table 1 lists the time- and frequency domain features used in this paper.

Feature selection

As the number of features, also known as predictors (p), increases, the domain that they span

increases at rates that the available data become sparse. This, in turn, requires more samples

(n) to provide effective coverage of the domain for a predictive modeling problem such as clas-

sification. This concept is known as the "curse of dimensionality” [62]. As samples in high

dimensional space may become equidistant, machine learning algorithms that use distance

measures or other local models (in feature space) often degrade in performance as the number

of features is increased [39]. In this study, we had a total of 223 samples and 29 features. For

the first scenario, VNS at 10 Hz, we had 114 samples (baseline = 61, during VNS = 53). For the

second scenario, VNS at 30 Hz, we had 109 samples (baseline = 51, during VNS = 58). Draw-

ing upon features utilized in other fields, such as EEG, ECG, or EMG, the present study incor-

porated infrequently employed features, such as PFD 27, into EGG signal analysis. Due to the

lack of prior exploration of these features in the EGG domain, it was challenging to ascertain

their informativeness a priori. Consequently, the inclusion of potentially redundant or non-

informative features may have an adverse effect on the performance of the classifier [40,63],

necessitating further investigation and potential refinement of the feature set. To demonstrate

the presence of redundancy and correlation among the features, a three-step process was

undertaken. First, the Spearman correlation coefficient was computed for the features, result-

ing in a symmetric correlation matrix. Second, this matrix was transformed into a distance

matrix by subtracting each correlation coefficient from 1. Finally, hierarchical clustering [64]

was employed to group and organize the features based on their similarity. A correlation heat-

map, generated using the ordered features, illustrated the extent of correlation among the engi-

neered features by exhibiting distinct hot and cold clusters (Fig 1). As each feature selection

method (Table 2) may select a different set of features with different orders [65] (importance),

we proposed a voting algorithm to assign a weight to each feature. These weights are scaled to

add up to one. Feature importance is a by-product of some feature selection methods such as

linear regression or decision trees [23]. Additionally, we used variance thresholding that

removes all low-variance features. In this case, we had no feature importance, so we assigned
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an equal weight to each feature, the weight being 1/ (number of selected features). Next, we cal-

culated the average weights for all features and sorted them based on their normalized rank.

Ultimately, the optimal subset of features was determined by selecting features in descending

order based on their respective normalized rank, with the cumulative sum of the ranks reach-

ing a threshold of 0.9. A threshold of 0.9 for cumulative feature importance is based on a heu-

ristic approach to retain a majority of the information while reducing the overall

dimensionality of the dataset [66] (See Fig 8).

EGG state classification

We calculated all TDFs and FDFs listed in Table 1 for each 1-minute of the EGG signal. Fol-

lowing Algorithm 1, we selected the most important features for classification scenarios (See

Results) and used them to train the classifiers.

Table 2. List of feature selection methods used in the voting algorithm. Except for Variance Thresholding that is

independent from the target variable and hence was applied to the whole data, all the other methods were implemented

using 5-fold cross validation.

Feature selection with feature importance

ANOVA F-value Mutual Information[39]

L1-based Linear Support Vector Classifier (LSVC) [40,65]

L2-based LSVC[40,65]

Recursive Feature Elimination (RFE) Random Forest [39,40]

Backward Sequential Feature Selection (SFS) [40,65]

Forward SFS [40,65]

Permutation Importance (PI) Random Forest [23,65]

Feature selection without feature importance

Variance Threshold [39]

https://doi.org/10.1371/journal.pone.0295297.t002

Fig 8. Feature selection algorithm.

https://doi.org/10.1371/journal.pone.0295297.g008
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Model selection/training

The choice of classification method depends on the data and the context in which the classifi-

er’s output will be used. Finding a classification method with the highest predictive accuracy

and interpretability is challenging in practical settings, especially in datasets with small sample

size. Moreover, the desired trade-off between interpretability, accuracy, and computational

efficiency also plays a crucial role in determining the appropriate method for a given task [67].

There are advantages and disadvantages to each classification model under different cir-

cumstances. Decision trees are relatively fast and useful if one needs to share the results with

an audience interested in how a conclusion was reached, however, they tend to overfit [68].

Support vector machines (SVM) are another choice for binary classification. They often pro-

vide high accuracy and tend not to overfit the data. Linear SVMs, as opposed to their non-lin-

ear counterparts, produce a linear decision boundary that can be easily understood and

visualized [69]. However, the practitioners need to spend time training and tuning SVMs up

front. Artificial neural networks (ANNs) are powerful for modeling nonlinear data with a high

number of input features. However, ANNs can become computationally expensive. As the

number of nodes and layers increase, it is difficult to interpret how an ANN has reached its

solution and fine-tuning an ANN may involve multiple steps and hyperparameters. In our

case, with a rather small number of observations and large number of features, it is crucial to

select models that can effectively handle high-dimensional data and mitigate the risk of overfit-

ting. To identify the best model, we took an empirical approach to test and discover which

classifier achieves the best classification performance [70]. Considering the limitations of our

dataset (small sample size, large number of features) and the research questions we aimed to

answer, we used Random Forest classifiers [23], SVM [69] (with linear and radial kernel),

Naïve Bayes classifier [71], and logistic regression classifier for our binary classification tasks.

Our preliminary experiments showed that Random Forest was consistently performing better

than the other classifiers we used. (See S8 and S9 Figs)

The model selection procedure was as follows: Data were divided into training and test sets

in a stratified manner to keep the ratio of baseline (class0) to VNS (class1) the same for both

training and test data. 80% of the whole data was used for training, and the rest was used at the

inference step. All models were trained with their default parameters and evaluated using strat-

ified 5-fold cross validation (CV). The shuffle parameter of cross-validation was set to False, to

maintain the original sequence of the samples. After the initial training, we selected the best

classifier based on its performance and tuned its hyper parameters. Tuning was implemented

by utilizing a hyper parameter optimization framework named Optuna [72]. Optuna allows

for dynamic construction of the search space and provides a combination of an efficient

searching and pruning algorithm to speed up optimization.

Model evaluation

In this study, we utilized several evaluation metrics, including accuracy, ROC-AUC, f1-score,

and f2-score, to assess the performance of our models. In our dataset, there exists an imbalance

in the distribution of samples. Specifically, in the context of the VNS at 10 Hz scenario, we

observe an approximate surplus of 15% in VNS samples relative to the baseline. Similarly, in

the VNS at 30 Hz scenario, the excess of VNS samples over the baseline is approximately 14%.

The ROC-AUC has been demonstrated to be a measure of choice for assessing the perfor-

mance of a classifier for imbalanced data [24,73]. Consequently, we have chosen to highlight

AUC as the primary metric in our results, while providing additional metrics such as accuracy,

f1-score, and f2-score in the supplementary materials for further reference. To prove that our

trained classifier has a ROC-AUC score significantly higher than chance level (0.5), we
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conducted a permutation test [74,75]. We first trained the classifier on the original dataset and

computed its ROC-AUC scores using 5-fold CV. Following this, we performed a permutation

test by randomly shuffling the true labels of the dataset, retrained the classifier on this per-

muted dataset, and obtained the ROC-AUC scores of 5-fold CV for each shuffle. This proce-

dure was repeated 1000 times to generate a distribution of permuted ROC-AUC scores. Next,

we compared the ROC-AUC scores of the trained classifier on the original dataset to the distri-

bution of permuted ROC-AUC scores by calculating the p-value, using a two-sample Kolmo-

gorov-Smirnov (KS) test [25]. KS test is a non-parametric test that is sensitive to variations in

both the location and shape of the empirical cumulative distribution functions pertaining to

the two samples under consideration. If the p-value was found to be below 0.05 significance

level, we could reject the null hypothesis and conclude that the trained classifier exhibited a

ROC-AUC score significantly higher than 0.5, indicating its performance surpasses random

guessing.

Appendix

The Petrosian Fractal Dimension (PFD) [26,27] is a method designed to measure the complex-

ity or irregularity of a signal and is computationally efficient compared to other traditional

fractal dimension estimation techniques. The subsequent equation illustrates the computation

of the Petrosian Fractal Dimension:

PFD ¼
log

10
N

log
10
N þ log

10
N

Nþ0:4Nd

� �

where N is the window length, and Nδ is the number of sign changes in the signal derivative.
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