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Parkinson’s disease (PD) is the second most common neurodegenerative disease
and is characterized by multiple motor and non-motor symptoms. Mutations
in the glucocerebrosidase (GBA) gene, which encodes the lysosomal enzyme
glucocerebrosidase (GCase), which hydrolyzes glucosylceramide (GlcCer) to glucose
and ceramide, are the most important and common genetic PD risk factors discovered
to date. Homozygous GBA mutations result in the most common lysosomal storage
disorder, Gaucher’s disease (GD), which is classified according to the presence
(neuronopathic types, type 2 and 3 GD) or absence (non-neuronopathic type, type
1 GD) of neurological symptoms. The clinical manifestations of PD in patients with
GBA mutations are indistinguishable from those of sporadic PD at the individual
level. However, accumulating data have indicated that GBA-associated PD patients
exhibit a younger age of onset and a greater risk for cognitive impairment and
psychiatric symptoms. The mechanisms underlying the increased risk of developing
PD in GBA mutant carriers are currently unclear. Contributors to GBA-PD pathogenesis
may include mitochondrial dysfunction, autophagy-lysosomal dysfunction, altered lipid
homeostasis and enhanced α-synuclein aggregation. Therapeutic strategies for PD and
GD targeting mutant GCase mainly include enzyme replacement, substrate reduction,
gene and pharmacological small-molecule chaperones. Emerging clinical, genetic and
pathogenic studies on GBA mutations and PD are making significant contributions to
our understanding of PD-associated pathogenetic pathways, and further elucidating the
interactions between GCase activity and neurodegeneration may improve therapeutic
approaches for slowing PD progression.

Keywords: glucocerebrosidase (GBA), mitochondrial, lysosomal, Parkinson’s disease (PD), Gaucher’s
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INTRODUCTION

Parkinson’s disease (PD) is a heterogeneous neurodegenerative
disorder characterized by the motor manifestations of resting
tremor, rigidity, bradykinesia and postural instability, as well
as some non-motor symptoms. Degeneration of dopaminergic
neurons in the substantia nigra pars compacta and the presence
of α-synuclein aggregates, that is, Lewy bodies, are the two
main pathological hallmarks of PD. Many etiological factors,
including multiple genetic causes and environmental and aging
factors, have been demonstrated to underlie dopaminergic
neurodegeneration (Obeso et al., 2017). More than 20 genetic
loci that contribute to familial PD, which accounts for 5–10%
of PD cases, have been discovered to date (Balestrino and
Schapira, 2018). Glucocerebrosidase (GBA) gene mutations are
currently recognized as the most important and common risk
factors for developing PD (Sidransky and Lopez, 2012). The GBA
gene mainly encodes the lysosomal enzyme glucocerebrosidase
(GCase), which hydrolyzes glucosylceramide (GlcCer) to glucose
and ceramide. In addition, GCase catalyzes the transfer of glucose
from GlcCer to cholesterol to contribute to in the synthesis
of β-cholesteryl glucoside (Franco et al., 2018). The GBA gene
is located on chromosome 1q21 and is composed of 11 exons
and 10 introns spanning a 7.6 kb sequence (Gan-Or et al.,
2018). More than 300 known GBA mutations, among which
L444P and N370S are the most common, have been found
(O’Regan et al., 2017). The N370S mutation is most common
in the Ashkenazi Jewish population and is often regarded as a
mild mutation (Sidransky and Lopez, 2012), whereas the L444P
mutation is found worldwide and is often regarded as a severe
mutation (Gan-Or et al., 2008; Do et al., 2019). Homozygous
mutations in GBA result in the most common lysosomal
storage disorder, Gaucher’s disease (GD) (Grabowski, 2008).
Approximately, 7–12% of PD patients carry GBA mutations
(García-Sanz et al., 2021), and 25% of GD patients have a
first- or second-degree relative with PD (Aflaki et al., 2017).
A large multicenter study estimated that the odds ratio of
PD patients harboring a GBA mutation was 5.43 compared
with that of controls, confirming that GBA mutation is the
single largest risk factor for developing PD identified to date
(Sidransky et al., 2009). The proportion of GBA mutation
carriers among PD patients ranges depending on the population
studied and whether the whole exome is sequenced, with highest
frequencies found among the Ashkenazi Jewish population
(Schapira et al., 2016).

To date, the mechanisms that underlie GBA mutations that
increase the risk of developing PD have not been fully elucidated.
Several perspectives have been provided, including enhanced
SNCA aggregation, lysosomal dysfunction, impaired autophagy,
altered lipid homeostasis and mitochondrial dysfunction. In this
review, we discuss GBA mutations and PD and focus on the
current advances in understanding the pathogenesis by which
GBA mutations increase the risk for developing PD, with the goal
of improving our understanding of the role of GCase deficiency in
the neurodegeneration of PD and gaining further insights into the
pathogenetic pathways in PD. Finally, we discuss the implications
for PD therapy based on an investigation of the relationship

between GBA and PD, with the goal of finding new therapeutic
targets that slow PD progression.

GAUCHER’S DISEASE

Gaucher’s disease is a rare autosomal recessive disorder caused by
insufficient activity of the lysosomal enzyme GCase (Stirnemann
et al., 2017). A deficient GCase level leads to the accumulation of
its substrate GlcCer in lysosomes of reticuloendothelial lineage,
causing the acquisition of a variety of clinical phenotypes,
including hepatosplenomegaly, anemia, thrombocytopenia, and
bone disease (Grabowski et al., 2015). GD is a panethnic disease
but is most common in the Ashkenazi Jewish population,
which has an incidence of 1/800, significantly higher than the
1/40,000 to 1/60,000 incidence in the general population but
rises to Grabowski (2008). GD is classified by the involvement
neurological symptoms (neuronopathic types, type 2 and 3 GD)
or not (non-neuronopathic type, type 1 GD) (Sidransky, 2004).
Type 1 GD, the most common phenotype of GD, is considered to
indicate the absence of neurological involvement. The symptoms
of type 1 GD are variable and can include hepatosplenomegaly,
fatigue, anemia, thrombocytopenia, pulmonary hypertension,
and osteopenia/osteoporosis, and type 1 GD symptoms can
appear at any age (Stirnemann et al., 2017). Type 2 or acute
neuronopathic GD is the most severe form, often appearing in
infancy, with organomegaly, pancytopenia, skin abnormalities
and severe central nervous system (CNS) impairment, followed
by death in the first years of life (Weiss et al., 2015). Type 3 or
subacute neuronopathic GD primarily involves visceral signs and
impaired horizontal saccadic eye movement and usually presents
in adolescence (Stirnemann et al., 2017).

GBA MUTATIONS AND PARKINSON’S
DISEASE

The association between GBA mutations and PD was first
described in the 1990s, and GD patients also show concomitant
parkinsonism (Neudorfer et al., 1996; Tayebi et al., 2003).
A clinical study screened 99 Ashkenazi Jewish patients with
idiopathic PD and 1543 healthy Ashkenazi Jewish individuals
for six GBA mutations and found that 31.3% of the PD patients
expressed one or two GBA mutant alleles, compared with 6.2%
of the controls (Aharon-Peretz et al., 2004). Another study
reported the genotyping of 57 subjects with PD using brain
bank samples found that 12 samples (21%) obtained from PD
patients showed alterations in the GBA gene (Lwin et al., 2004).
Since these initial studies were reported, multiple studies with PD
cohorts characterized by different regions and ethnic origins have
been performed to determine the frequency of GBA mutations.
The frequency of GBA mutations ranged from 10.7 to 31.3%
in the Ashkenazi Jewish population with PD (Aharon-Peretz
et al., 2004; Clark et al., 2005) but ranged from 2.3%, the lowest
frequency and reported in the Norwegian population with PD,
to 9.8% for individuals of other ethnic origins (Toft et al., 2006;
Seto-Salvia et al., 2012). In fact, on the one hand, ethnic origin
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certainly contributes to different frequencies of GBA mutations
in PD; on the other hand, the methods used for genotyping affect
the identification of mutants, with some studies detecting specific
common GBA mutations, for instance, N370S and L444P, and
others sequencing all exons of the GBA gene.

Since most previous single-center PD cohort studies based
on GBA mutations were limited in the number of ethnic
populations included, GBA genotyping methods and sample size,
an international multicenter collaborative study including 5691
PD patients (780 were Ashkenazi Jewish patients) and 4898
controls (387 were Ashkenazi Jewish patients) from 16 centers
was performed in 2009 (Sidransky et al., 2009). All the centers
screened at least two mutations, N370S and L444P, and found
that 15% of the PD patients carried GBA mutations compared
with 3% of the controls among the Ashkenazi Jewish patients;
3% of the PD patients carried GBA mutations compared with
1% of the controls among non-Ashkenazi patients (Sidransky
et al., 2009). Importantly, when GBA was fully screened in 1883
non-Ashkenazi Jewish patients and 1611 non-Ashkenazi Jewish
controls, 7% of the patients were found to have GBA mutations,
indicating that approximately 45% of the mutant loci could be
missed when only N370S and L444P are sequenced (Sidransky
et al., 2009). This study confirms that an adequate sample size and
accurate genotyping are imperative to ascertain the frequency
of GBA mutations among populations. In a large study with a
European cohort, all exons of GBA were screened in 786 PD
patients who had a familial PD history, 605 sporadic PD patients
and 391 controls, and an overall GBA carrier frequency of 6.7%
was found for the PD patients, including sporadic and familial
subjects, compared with 1% of the control individuals (Lesage
et al., 2011). Furthermore, GBA mutations were found more
frequently in patients with a family history of PD (8.4%) than in
isolated cases (5.3%) (Lesage et al., 2011).

CLINICAL FEATURES OF
GBA-ASSOCIATED PARKINSON’S
DISEASE

The clinical manifestations of PD patients with GBA mutations
are indistinguishable from those of sporadic PD patients on
an individual level. However, when analyzing PD associated
with GBA mutations in a group, patients with PD and GBA
mutations exhibited a 1.7– 6-year earlier age of onset than
those with idiopathic PD (Aharon-Peretz et al., 2004; Clark
et al., 2007; Neumann et al., 2009; Nichols et al., 2009). PD
patients with GBA mutations who had two mutant GBA alleles
developed PD at an earlier age (54.2 versus 65.2 years) than
patients who heterozygous, carrying one mutant allele (Alcalay
et al., 2014). However, the age-specific risk of developing PD
at age 60 and 80 years was higher in GD patients (4.4 and
9.1%) than in heterozygous individuals (1.5 and 7.7%) but this
difference was not significant (Alcalay et al., 2014). These data
suggested that a second GBA mutant allele contributes to a
younger age of PD onset but does not increase the overall
risk of developing PD. In addition, patients with PD and GBA
mutations had a higher frequency of cognitive impairment or

dementia (Neumann et al., 2009; Winder-Rhodes et al., 2013;
Creese et al., 2018). Compared with idiopathic PD patients, GBA
carriers with a severe mutation, such as L444P, presented with a
fivefold greater risk for developing dementia, while those with a
mild mutation, such as N370S, exhibited a twofold greater risk
for developing dementia (Cilia et al., 2016), suggesting that the
extent of cognitive impairment differs on the basis of the severity
of mutations. PD patients with GBA mutations were also found
to be susceptible to psychiatric symptoms, including depression,
hallucinations, sleep disturbances and anxiety (Brockmann et al.,
2011). However, the clinical features of GBA-associated PD
resemble those of idiopathic PD in terms of tremor, rigidity,
and bradykinesia (Clark et al., 2007; Westbroek et al., 2011). In
other studies, PD patients carrying GBA mutations were reported
to be less likely to have tremor at onset but more likely to
present bradykinesia at onset (Gan-Or et al., 2010; Lesage et al.,
2011; Swan and Saunders-Pullman, 2013), which may suggest the
need to expand the sample size and extend the follow-up times.
In addition to an earlier age of onset, more severe symptoms
and more rapid progression have been observed in PD patients
carrying GBA mutations than in idiopathic PD patients in most
studies (Mata et al., 2016).

PROPOSED PATHOGENESIS OF
GBA-ASSOCIATED PARKINSON’S
DISEASE

Recent studies have been exploring the contribution of mutant
GBA to PD pathogenesis. To date, the mechanisms that underlie
the increased risk of developing PD among GBA mutation
carriers have not been fully elucidated. In general, in autosomal
dominant forms of PD, such as those involving LRRK2 and
α-synuclein, gain-of-function mutations are usually involved in
PD pathogenesis. In contrast, loss-of-function mutations, such as
those in such as parkin, DJ-1 and PINK1, are implicated in most
autosomal recessive forms of PD.

Notably, the inheritance of GBA-associated PD does not
follow strict Mendelian law, although GD is an autosomal
recessive disease. Therefore, both gain-of-function and loss-of-
function have been proposed as explanations for GBA mutation
increasing the risk of PD development (Figure 1).

GBA MUTATIONS AND α-SYNUCLEIN
AGGREGATION

Multiple studies point to the vital role of α-synuclein in
the pathogenesis of GBA-associated PD, supporting a gain-of-
function mechanism in which mutant GCase may directly lead
to α-synuclein aggregation. In the brains of PD patients with
GBA mutations, GCase is present in 32–90% (mean 75%) of Lewy
bodies (Goker-Alpan et al., 2010). In contrast, GCase is positive in
<10% of Lewy bodies of subjects withoutGBAmutations (Goker-
Alpan et al., 2010), suggesting that mutant GCase may lead
to the aberrant aggregation of α-synuclein, the major element
in Lewy bodies. Several independent studies have detected

Frontiers in Aging Neuroscience | www.frontiersin.org 3 March 2022 | Volume 14 | Article 851135

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-851135 March 17, 2022 Time: 13:34 # 4

Zheng and Fan Glucocerebrosidase Mutations in Parkinson’s Disease

FIGURE 1 | The schematic diagram of proposed mechanisms by which GBA mutations contribute to the development of PD. Contributions to GBA-PD
pathogenesis may include enhanced α-synuclein aggregation, altered lipid homeostasis, autophagy-lysosomal dysfunction and mitochondrial dysfunction. GBA,
glucocerebrosidase; GCase, glucocerebrosidase.

α-synuclein accumulation in transgenic GBA mouse models
(Migdalska-Richards et al., 2017b), inhibited GCase activity in
conduritol-β-epoxide-treated SH-SY5Y cell cultures and mice
(Manning-Bog et al., 2009; Cleeter et al., 2013), and induced
pluripotent stem cell (iPSC)-derived neurons obtained from
GBA-associated PD patients and GD patients (Schondorf et al.,
2014; Woodard et al., 2014; Fernandes et al., 2016). Mazzulli et al.
(2011) proposed that a reciprocal relationship between GCase
and α-synuclein in synucleinopathies. GlcCer accumulation due
to decreased activity of GCase may lead to aggregation of
α-synuclein by stabilizing soluble toxic α-synuclein oligomeric
intermediates, which tend to transition into insoluble deposits
such as Lewy bodies; at the same time, elevation of α-synuclein
levels inhibits lysosomal GCase maturation and activity, in
turn augmenting α-synuclein aggregation, forming a self-
propagating feedback loop in PD and other synucleinopathies
that eventually leads to neurodegeneration (Mazzulli et al.,
2011). Furthermore, in another study, by Kim et al. (2018)
demonstrated that GCase deficiency due to GBA loss-of-function
mutations influences the phase transition of α-synuclein.
Accumulation of GlcCer resulting from GBA mutations increases
α-synuclein monomers that tend to aggregate and convert into
oligomers and destabilize α-synuclein tetramers and related
multimers, which are resistant to aggregation (Kim et al.,
2018). α-Synuclein, as the main pathological factor in PD, has
been demonstrated to spread between neurons in a prion-like
manner (Gomez-Benito et al., 2020). In addition to influencing
the phase transition of α-synuclein, loss of GBA function
was found to promote perpetual cell-to-cell transmission
of α-synuclein aggregates, including both exogenous and
endogenous α-synuclein aggregates (Bae et al., 2014).

Accumulation of α-synuclein not only inhibits lysosomal
GCase maturation and activity but also affects the transport
of GCase from the endoplasmic reticulum (ER) to lysosomes
through the Golgi apparatus. In normal GCase-functioning cells,
wild-type GCase is synthesized within polyribosomes on the
ER and is translocated into the ER (Ron and Horowitz, 2005).

Then, GCase is transported to the Golgi, from where to be
transported to lysosomes (Ron and Horowitz, 2005). Lysosomes
are the key organelles critical for the degradation of proteins,
such as α-synuclein (Lawrence and Zoncu, 2019). In GBA-
mutated cells, GlcCer accumulation due to lysosomal GCase
deficiency causes lysosomal dysfunction, eventually leading to
α-synuclein aggregation. The accumulation of α-synuclein can
impair the transport of GCase, in turn reducing α-synuclein
turnover (Schapira and Gegg, 2013). However, the mechanism
by which α-synuclein affects GCase transport remains unclear.
Lysosomal integral membrane protein type-2 (LIMP-2), the
lysosomal integral membrane protein critical for transporting
GCase from the ER to lysosomes, does not bind α-synuclein
(Gegg et al., 2012). The level of LIMP-2 is unaffected in the
substantia nigra of PD patients with GBA mutations (Gegg et al.,
2012). These data indicate that we should consider whether the
degree of GCase decrease depends on decreased transcription
or increased degradation of mRNA and the role of α-synuclein
in this process.

GBA MUTATIONS AND
AUTOPHAGY-LYSOSOMAL
DYSFUNCTION

Lysosomes are acidic dynamic organelles involved in the
degradation of harmful or unnecessary cellular contents,
such as long-lived proteins and damaged organelles, via
enzymatic degradation, and autophagic pathways, including
macroautophagy, microautophagy and chaperone-mediated
autophagy (Dehay et al., 2013; Chun and Kim, 2018). Disruption
of the autophagy-lysosomal system has been identified in
studies of PD pathogenesis in recent years. Given the lysosomal
localization enzyme GCase, the link between GCase and
autophagy-lysosomal pathways has attracted attention.
Schondorf et al. (2014) found that iPSC-derived neurons
from GBA-associated PD patients and GD patients exhibited
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autophagic defects due to impaired autophagosome-lysosome
fusion. GCase influenced α-synuclein accumulation not only
by enhancing the production of α-synuclein but also by
decreasing the degradation of α-synuclein via autophagy-
lysosomal dysfunction. Autophagy-lysosomal disruptions result
in enlargement of the lysosomal compartment in iPSC-derived
dopamine neurons of PD patients with GBA-N370S mutations,
subsequently increasing the extracellular α-synuclein level
(Fernandes et al., 2016). Consistent with iPSC-derived neurons
with GBA mutations, impaired autophagy and dysfunctional
lysosomes have been found in fibroblasts obtained from
PD patients with GBA mutations (Garcia-Sanz et al., 2017).
Additionally, GBA deficiency leads to α-synuclein accumulation
by inhibiting autophagy in neuroblastoma cells (Du et al.,
2015). Protein phosphatase 2A inactivation is involved in
the suppression of autophagy induced by GBA mutants (Du
et al., 2015). Importantly, the autophagy inducer rapamycin
reversed α-synuclein accumulation in GBA-knockdown cells (Du
et al., 2015). Defective autophagic clearance due to lysosomal
dysfunction has also been detected in GD iPSC-derived neural
cells (Awad et al., 2015). Further analysis revealed that decreased
level of the transcription factor EB, the main regulator of
lysosomal genes, impaired lysosomal biogenesis in GD iPSC-
derived neural cells (Awad et al., 2015). Lysosomal function
was rescued by recombinant GCase and the overexpressed
transcription factor EB, but overexpression of the transcription
factor EB alone did not restore lysosomal function, suggesting
that GCase leads to autophagy-lysosomal dysfunction in part
via transcription factor EB (Awad et al., 2015). Further studies
are needed to investigate the role of autophagy-lysosomal
dysfunction in GBA-related pathogenesis.

GBA MUTATIONS AND ALTERED LIPID
HOMEOSTASIS

Lipids, as the main component of the cell membrane, are
central to maintaining membrane structure and cellular
processes, including synaptic transmission and molecular
trafficking. Accumulating evidence has demonstrated that lipid
homeostasis and its interaction with GCase are involved in
PD pathogenesis. GCase normally cleaves GlcCer into glucose
and ceramide. Based on a loss-of-function mechanism, the
accumulation of GlcCer substrates caused by a reduced GCase
level promotes the formation of toxic α-synuclein aggregation
by stabilizing α-synuclein oligomers, subsequently resulting
in neurodegeneration (Mazzulli et al., 2011). Dysfunction of
cholesterol metabolism could result in changes in lipid rafts,
which play a vital role in synaptic function (García-Sanz
et al., 2021). Utilizing iPSC-derived neuronal models, Zunke
et al. (2018) revealed equilibrium between two α-synuclein
forms, a 100 Å-sized high molecular weight conformer
and a low-molecular-weight 35 Å-sized monomeric species.
Glycosphingolipids preferentially convert high-molecular-
weight α-synuclein conformers into compact, assembled
toxic oligomers and do not convert high-molecular-weight
species into monomers, as indicated by fewer interactions

with low-molecular-weight monomeric species (Zunke et al.,
2018). In addition, cholesterol accumulation was detected
within the lysosomes of fibroblasts from patients with GBA
mutant-associated PD (Garcia-Sanz et al., 2017). However,
it is still unclear whether sphingolipids accumulate in other
organelles and the exact location of sphingolipid accumulation.
Mitochondria purified from GBA-knockout iPSC-derived
neurons were demonstrated to have a significant accumulation of
GlcCer and deacylated GlcCer glucosylsphingosine (Schondorf
et al., 2018). Notably, only certain species of GlcCer were
increased, with 65% increases in C16:0 and C24:0 species and a
30% reduction in C20:0 species (Fernandes et al., 2016). These
data suggest that mutant GCase may promote the accumulation
of certain GlcCer species and hydrolyze certain GlcCer species at
the same time. However, the association between GBA mutations
and lipid homeostasis remains controversial. Gegg et al. (2015)
reported no changes in total GlcCer levels in the putamen or
cerebellum in PD patients carrying GBA mutations compared
with control individuals but observed loss of GCase activity. The
putamen and cerebellum in PD patients with GBA mutations
have previously been shown to exhibit decreased activity of
GCase by 48 and 47%, respectively (Gegg et al., 2012). No
GlcCer accumulation has been found in the brains of patients
with sporadic PD, as GCase activity was decreased by 33%
in the substantia nigra of patients with sporadic disease but
decreased by 58% in the substantia nigra of GBA-PD patients
(Gegg et al., 2012, 2015; Boutin et al., 2016). As lipidomic
analyses were performed on postmortem brain tissue, the
samples may have been contaminated with glia, which would
discredit findings of GCase accumulation in neurons. Another
explanation for the lack of lipid substrate accumulation upon
loss of GCase activity is that the residual enzyme could prevent
lipid accumulation. Further studies are needed to clarify whether
GCase deficiency leads to GlcCer accumulation and whether
functional compensatory pathways exist in mutant GCase cells.

GBA MUTATIONS AND
MITOCHONDRIAL DYSFUNCTION

Mitochondrial dysfunction has long been thought to participate
in PD pathogenesis. Accumulating evidence has shown that
mutant GCase is associated with mitochondrial defects in
GD and PD. In GD mouse models, mitochondria showed
impaired function and morphology, exhibiting respiratory chain
defects, a decreased mitochondrial membrane potential due to
reversal of ATPase, and fragmented mitochondrial morphology
(Osellame et al., 2013). Like mice with GD, N370S fibroblasts
exhibit fragmented mitochondria and increased reactive oxygen
production (Garcia-Sanz et al., 2017). GCase inhibition in
a human dopaminergic cell line resulted in increased free
radical formation and mitochondrial dysfunction, including
reduced mitochondrial membrane potential and decreased
adenosine diphosphate phosphorylation (Cleeter et al., 2013).
Consistent with these findings, iPSC-derived neurons from GBA-
associated PD patients showed reduced respiration, increased
morphological changes, higher levels of reactive oxygen species
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and defects in mitochondrial dynamics (Schondorf et al., 2018).
Interestingly, a gene dosage effect was not observed between
heterozygous GBA-PD and GBA-knockout neurons, suggesting
that different pathways may contribute to mitochondrial
dysfunction in heterozygous and homozygous GBA carriers. One
such pathway may be involved in the activation of the unfolded
protein response and increased ER stress in GBA-PD neurons, as
the complete loss of GCase in GBA-knockout cells was incapable
of triggering ER stress, supporting gain-of-function mechanisms
(Fernandes et al., 2016; Schondorf et al., 2018). Similarly,
Yun et al. (2018) found reduced mitochondrial size, increased
reactive oxygen species production and decreased complex
I activity in heterozygous L444P GBA-knock-in mice. The
L444P GBA heterozygous mutation increased the susceptibility
of mice to loss of nigrostriatal dopaminergic neurons and
mitochondrial damage following MPTP administration (Yun
et al., 2018). Under normal conditions, damaged and fragmented
mitochondria are degraded via mitophagy, a specific form of
autophagy, with serine/threonine kinase PTEN-induced putative
kinase protein 1 (PINK1) and the ubiquitination E3 ligase
parkin playing pivotal roles (Youle and Narendra, 2011).
When mitochondria are damaged, PINK1 accumulates on the
outer membrane in response to decreased membrane potential,
thus triggering recruitment of parkin for the elimination of
damaged mitochondria (Narendra et al., 2008; Twig et al.,
2008). However, mutant GCase has been observed to impair
mitophagy in GBA-mutant cells, leading to the accumulation
of damaged mitochondria and the production of reactive
oxygen species, subsequently leading to neurodegeneration and,
eventually, to cell death. Osellame et al. (2013) found defective
mitophagy in GBA-knockout neurons and astrocytes because
the mitochondrial membrane potential in the GBA-knockout
cells was not low enough for parkin recruitment, which is
recruited to damaged mitochondria when the mitochondrial
membrane potential is dissipated. Furthermore, Li et al.
(2019) reported that the L444P GBA mutation impaired
mitophagy via a dual mechanism, impairing autophagy induction
and abrogating damaged mitochondria priming, processes
involved in triggering autophagy machinery recruitment to
damaged mitochondria. The L444P GBA mutation was impeded
both PINK1-parkin-dependent and PINK1-parkin-independent
pathways (Li et al., 2019).

THERAPEUTIC IMPLICATIONS FOR
GBA-ASSOCIATED PARKINSON’S
DISEASE

Enzyme-Replacement Therapy
Enzyme-replacement therapy (ERT) and substrate reduction
therapy (SRT) are two Food and Drug Administration (FDA)-
approved therapies for type I GD. ERT is now accepted
as the first-line treatment of type I GD, and it is aimed
at complementing deficient GCase enzyme activity upon
intravenous administration (Shemesh et al., 2015). While ERT
treatments significantly improve the visceral and hematologic

symptoms of GD, current ERT treatments are ineffective against
the neuropathic manifestations of GD since the enzyme does
not cross the blood–brain barrier (BBB) (Boer et al., 2020).
Thus, there are no data showing ERT treatments prevent
the development of PD. To enhance ERT delivery to the
CNS, Gramlich et al. (2016) tagged GCase with BBB-crossing
peptides, and they effectively bound neurons, as expected.
Another alternative is delivering therapeutic proteins through
extracellular vesicles, such as exosomes, which are capable of
transporting therapeutic proteins across the BBB (Hall et al.,
2016). The system of delivering GCase across the BBB may
increase the options for using ERT treatment to attenuate the
neurological symptoms of GD or PD.

Substrate Reduction Therapy
Substrate reduction therapy is accepted as the second-line
treatment for GD with patients who are unsuitable for or
unwilling to receive ERT; however, SRT leads to more side
effects than ERT, the prominent of which are gastrointestinal and
neurological symptoms such as onset of tremor or peripheral
neuropathy (Cox et al., 2003; Hollak et al., 2009). SRT is
administered to inhibit GlcCer synthase, reducing the level of
lipid substrates, which effectively improves the hematological
and visceral manifestations (Sardi et al., 2018). Miglustat and
eliglustat are two SRT-approved drugs currently prescribed that
can be administered orally (Shemesh et al., 2015; Mistry et al.,
2017). Miglustat can partially cross the BBB and has been tested
in an open-label randomized clinical trial for the treatment
of GD type III; however, it did not significantly improve the
neurological symptoms of GD type III (Schiffmann et al., 2008).
SRT may be less effective than ERT in some aspects GD treatment;
for example, hematological responses of miglustat are slower
and of lesser magnitude compared to ERT, while the visceral
symptom improvement obtained with miglustat is similar to
that realized with ERT (Mistry et al., 2017). Furthermore, the
novel GlcCer synthase inhibitor Genz-682452 has shown good
CNS penetration and attenuation of several neuropathic and
behavioral symptoms in GD mouse models (Marshall et al., 2016).
Another brain-penetrating GlcCer synthase inhibitor, GZ667161,
was found to reduce the levels of GlcCer and glucosylsphingosine
in the CNS. Remarkably, prolonged administration of GZ667161
decreased α-synuclein accumulation and improved behavioral
outcomes in synucleinopathy models (Sardi et al., 2017). Based
on these studies, a multicenter, randomized, double-blind clinical
study was launched to determine the safety and efficacy of the
GlcCer synthase inhibitor GZ/SAR402671 in PD patients with
GBA mutations (clinicalTrials.gov identifier: NCT02906020).
These studies have provided promising therapeutic strategies
for GBA-associated PD patients. However, SRT, which aims to
reduce the levels of lipid substrates, does not prevent the other
mechanisms that may play a role in the development of GBA-
associated PD.

Gene Therapy
In recent years, gene therapy, which aims to deliver corrected
genetic material into human cells, has emerged as a novel
therapeutic strategy for PD (Hitti et al., 2019). Adeno-associated
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virus (AAV) vector-mediated delivery of GBA (using AAV-GBA)
has been reported to be effective in augmenting GCase expression
and protecting neurons against α-synuclein-mediated neuronal
damage in mice and macaques (Rocha et al., 2015; Sucunza
et al., 2021). AAVs are popular due to their strong neuronal
tropism and good safety profiles, as they are not known to
integrate into the host genome (Hudry and Vandenberghe, 2019).
Research reported by Sardi et al. (2013) showed that augmenting
GCase activity with an AAV vector encoding human GCase in
GD mice reduced the levels of lipid glucosylsphingosine and
aggregated proteins, such as α-synuclein, tau, and ubiquitin.
Hippocampal administration of AAV-mediated GCase reversed
the memory deficit of GD mice (Sardi et al., 2013). Massaro et al.
(2018) demonstrated that fetal intracranial injection of AAV-
GBA into GD mice elevated the level of GCase and ameliorated
neuroinflammation and neurodegeneration. AAV-GBA gene
therapy also ameliorated motor coordination and microglial and
astrocyte activation, which correlated with neuronal loss, in fetal
mice and macaques (Massaro et al., 2018). However, GCase
normalization did not completely abolish GD pathology; that is,
it did not completely normalize brain glycosphingolipid levels or
prevent long-term microglial and astrocyte activation (Massaro
et al., 2018). Based on these findings, different transduction
efficiencies of individual neurons and peripheral macrophages in
a CNS pathology model should be taken into consideration. In
addition, intravenous injection of AAV-PHP. B, encoding GBA, a
novel engineered AAV-GBA vector, restored the level of GCase,
prevented α-synuclein inclusion formation, and recovered the
loss of lifespan and cognitive performance in A53T-SNCA mice
(Morabito et al., 2017). Remarkably, AAV-PHP. B targeting the
BBB did not alter BBB integrity or selectivity (Morabito et al.,
2017). Altogether, AAV-GBA gene therapy enables non-invasive
and effective expression of GCase, possessing great potential as a
therapeutic for GD and PD.

However, the route of delivery, optimal serotype, different
transduction efficiencies of individual neurons, accessibility to
widespread neuronal circuits and potential side effects of long-
term treatment with GCase need be investigated before AAV-
GBA gene therapy is translated into the clinic.

PHARMACOLOGICAL
SMALL-MOLECULE CHAPERONES

Under normal conditions, GCase is subject to ER repair
machinery that corrects folding or transported to lysosomes.
When GBA is mutated, the number of misfolded proteins exceeds
the ER capacity, which triggers the unfolded protein response and
ER-associated degradation, through which misfolded enzymes
are broken down, leading to a reduction in GCase protein
resident in the lysosome (Meusser et al., 2005; Bendikov-Bar
et al., 2011; Schapira and Gegg, 2013). Pharmacological small-
molecule chaperones may selectively bind to mutant GCase
and stabilize and correct misfolded GCase to facilitate protein
tracking through the ER to lysosomes (Chen et al., 2020).
Small-molecule chaperones also have the ability to prevent ER
stress, subsequently attenuating apoptosis and mitochondrial

dysfunction (de la Mata et al., 2015). Small-molecule chaperones
can be divided into inhibitory chaperones, which interact with the
active site of an enzyme, and non-inhibitory chaperones, which
primarily enhance enzymatic activity.

Most small-molecule chaperones developed in recent studies
are inhibitory chaperones that bind to the active site of misfolded
GCase and facilitate its correct folding or translocation to
lysosomes (Jung et al., 2016). However, when mutant GCase and
its bound inhibitor reach lysosomes, the substrate GlcCer out-
competes the inhibitor to optimize substrate degradation (Aflaki
et al., 2017). This competition between inhibitors and substrates
makes it a challenge to optimize drug dosing to balance the
chaperoning and inhibitory capacity of inhibitory small-molecule
chaperones for clinical applications. From this drug collection,
ambroxol and isofagomine have shown their potential and have
been investigated in preclinical and early-stage clinical studies.
Ambroxol is a potential inhibitory chaperone candidate that
has been selected via high-throughput screening of a library of
FDA-approved drugs (Maegawa et al., 2009). Ambroxol, a cough
medicine widely used to treat airway mucus hypersecretion and
hyaline membrane disease in newborns, was identified as a mixed
inhibitor of GCase activity. Ambroxol exerts its maximal activity
in the ER where the pH is neutral and loses its binding affinity
in lysosomes where the pH is acidic (Maegawa et al., 2009). This
pH dependence of ambroxol prevents degradation blockades
of the substrate, making ambroxol a desirable small molecule.
Ambroxol has been demonstrated to increase GCase activity and
lysosomal localization of mutant GCase significantly in various
in vitro and in vivo models, such as patient cells (Bendikov-Bar
et al., 2013; Luan et al., 2013; McNeill et al., 2014; Yang et al.,
2017), mice (Sanders et al., 2013; Migdalska-Richards et al., 2016),
and non-human primates (Migdalska-Richards et al., 2017a), in
independent studies. In an open-label, non-randomized, non-
controlled clinical trial with 17 PD patients, ambroxol crossed
the BBB and bound to GCase and increased GCase protein levels
and α-synuclein concentrations in the cerebrospinal fluid in
patients both with and without GBA mutations, and it induced no
serious adverse effects (Mullin et al., 2020). In addition, another
clinical trial on ambroxol as a treatment for PD dementia is
currently underway (clinicalTrials.gov identifier: NCT02914366).
Another inhibitory chaperone is the iminosugar isofagomine,
which binds and stabilizes GCase and increases cellular and
lysosomal GCase levels (Lieberman et al., 2007). Treatment of
patient cells and mice with isofagomine increased GCase activity
in brain and visceral tissue, reduced GlcCer levels, attenuated
proinflammatory responses, delayed the onset of neurological
disease and extended the lifespan (Khanna et al., 2010; Sun
et al., 2012). However, isofagomine did not lead to significant
clinical improvement in 18 patients of a GD clinical study, and
therefore, further development was discontinued, suggesting that
more elaborate early-stage clinical trials are needed to ensure the
safety and efficiency of isofagomine in GD or PD patients.

A major limitation of inhibitory chaperones is the
optimization of drug dosing to balance their chaperoning
and inhibitory capacities, as discussed in the previous section.
Non-inhibitory chaperones promote the folding of mutant
GCase in the ER and translocate it to lysosomes by binding to
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a site that differs from the active site, thus directly inducing the
residual activity of mutant GCase (Baden et al., 2019), making
non-inhibitory chaperones promising candidate pharmacological
targets. A novel non-inhibitory GCase chaperone, NCGC607,
which was identified by high-throughput screening, was
demonstrated to restore GCase activity and reduce glycolipid
storage in dopaminergic neurons of patients with GD,
highlighting the potential of NCGC607 treatment for GD (Aflaki
et al., 2016). Additionally, NCGC607 was capable of reducing
α-synuclein levels in dopaminergic neurons of patients with
parkinsonism, indicating its potential as a therapy for PD
(Aflaki et al., 2016). Another non-inhibitory small-molecule
chaperone, NCGC758, was reported to enhance GCase activity
and reduce the level of GlcCer, ultimately enhancing the clearance
of α-synuclein in iPSC-derived dopaminergic neurons of PD and
GD patients (Mazzulli et al., 2016). Overall, pharmacological
small-molecule chaperones have exhibited some advantages
over standard therapy, including ERT and SRT. Small-molecule
chaperones not only exhibit the ability to cross the BBB but can
also be orally administered and are inexpensive to manufacture.

SUMMARY AND FUTURE
PERSPECTIVES

GBA mutations are the most significant and common genetic
risk factors associated with PD and are especially common in
the Ashkenazi Jewish population. The mechanism by which GBA
mutations result in an increased risk of developing PD remains
unclear. Several mechanisms have been suggested to contribute
to the pathogenesis of GBA-associated PD, including enhanced
α-synuclein aggregation, autophagy-lysosomal dysfunction,
altered lipid homeostasis and mitochondrial dysfunction. Both
gain-of-function and loss-of-function explanations have been
proposed to describe the pathogenesis of GBA-associated
PD. The gain-of-function theory suggests that mutant GCase
increases α-synuclein aggregation, leading to neurodegeneration.
Alternatively, enhanced α-synuclein aggregation results in
lysosomal dysfunction or impairment of autophagy, subsequently
contributing to the development of parkinsonism. The loss-
of-function theory posits that parkinsonism arises as a result
of GCase deficiency, which influences lysosomal degradation
function, negatively affecting α-synuclein turnover and substrate
degradation. However, each of the models and potential pathways
attributed to these theories has limitations. First, neither theory
adequately explains the reason that only a fraction of GD
patients and GBA carriers develop PD. Second, some patients
with PD express GBA-null alleles; for example, those with
c.84dupG also develop PD, in conflict with the gain-of-function
theory. GBA carriers with null alleles may exhibit a higher

risk of developing PD (Gan-Or et al., 2015). The current
mechanisms can only be supported when GBA is mutated and
has an enhanced effect on neurodegeneration but is not the
initiator of pathogenesis. Other factors may contribute and may
help determine whether mutant GBA can disrupt the cellular
homeostatic system and subsequent α-synuclein pathology and
PD, to an extent. Alternatively, GBA may act as a ‘second hit’ in
some carriers and patients who are genetically predisposed to
developing PD in the presence of other factors, such as aging and
environmental factors.

The activity of GCase is diminished in the substantia nigra
of brains with GBA mutations; however, it is also decreased
in sporadic PD brains (Gegg et al., 2012). These findings
suggest that therapies modulating GCase may not only be
applied for the treatment of GBA-associated PD but may also
provide a novel therapeutic target for sporadic PD. Importantly,
AAV-mediated GCase expression reduced the accumulation of
substrate and α-synuclein in both early and late symptomatic
GD mice and was effective in reversing cognitive impairment
when added before or after the protein aggregate (Sardi et al.,
2013). These data demonstrate that modulating GCase activity
may be beneficial before or after the diagnosis of PD to
prevent the onset of PD or impede the progression of some
aspects of GD-associated parkinsonism and PD. In general, the
understanding of the function of GCase and the link between
GBA mutations, α-synuclein accumulation and PD have made
a significant contribution to the thinking on the pathogenesis
of PD, and modulation of GCase may be beneficial to all PD
patients, GD patients and those with other synucleinopathies.
Although many studies have focused on the association between
GBA mutations and PD, the GCase story may remain incomplete.
Further exploration into the role of this enzyme in PD
pathogenesis, manipulation of the GCase pathway, and potential
genetic modifications may enable us to better understand the
pathogenetic factors in the etiology of PD.
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