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Abstract
Remdesivir is a direct-acting anti-viral agent. It was originally evaluated against filoviruses. However, during the 
COVID-19 pandemic, it was investigated due to its anti-viral activities against (SARS-CoV-2) virus. Therefore remde-
sivir received conditional approval for treatment of patients with severe coronavirus disease. Yet, its pharmacokinetic 
properties are inadequately understood. This report describes the population pharmacokinetics of remdesivir and its 
two plasma-detectable metabolites (GS-704277 and GS-441524) in healthy volunteers. The data was extracted from 
published phase I single escalating and multiple i.v remdesivir dose studies conducted by the manufacturer. The model 
was developed by standard methods using non-linear mixed effect modeling. Also, a series of simulations were carried 
out to test suggested clinical doses. The model describes the distribution of remdesivir and each of its metabolites by 
respective two compartments with sequential metabolism between moieties, and elimination from central compart-
ments. As individual data were not available, only inter-cohort variability could be assessed. The estimated point 
estimates for central (and peripheral) volumes of distribution for remdesivir, GS-704277, and GS-441524 were 4.89 
L (46.5 L), 96.4 L (8.64 L), and 26.2 L (66.2 L), respectively. The estimated elimination clearances of remdesivir, 
GS704277, and GS-441524 reached 18.1 L/h, 36.9 L/h, and 4.74 L/h, respectively. The developed model described 
the data well. Simulations of clinically approved doses showed that GS-441524 concentrations in plasma exceeded 
the reported  EC50 values during the complete duration of treatment. Nonetheless, further studies are needed to explore 
the pharmacokinetics of remdesivir and its relationship to clinical efficacy, and the present model may serve as a 
useful starting point for additional evaluations.

Keywords Anti-virals · Population pharmacokinetics · COVID-19 · Remdesivir · Pharmacometrics · GS-441524 · GS-
704277

Introduction

Current management of patients with severe COVID-
19 mainly focuses on immune response modulation and 
symptomatic therapy. In critically ill patients, man-
agement would also include supplemental oxygen and 

mechanical ventilation, along with the suppression of 
inadequate immune response. Healthcare providers also 
attempt to control secondary infections and thrombosis 
by either prophylaxis or treatment (Sieswerda et al. 2021; 
Godino et al. 2021). So far, only two anti-viral small-
molecule medications have been authorized for the treat-
ment of COVID-19 in 2020/2021, which includes the 
use of remdesivir under certain conditions (CDC 2021; 
EMA 2021; Diaz et al. 2021), and molnupiravir which 
has just been authorized in Great Britain for the use in 
patients with mild to moderate COVID-19 with risk fac-
tors for developing severe illness (UK-MHRA 2021). 
And recently, the FDA has expanded the use of rem-
desivir to certain non-hospitalized adults and pediatric 
patients for the treatment of mild-to-moderate COVID-19 
disease (FDA 2022).
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Remdesivir was originally evaluated as a broad-
spectrum filovirus inhibitor that can protect against the 
development of Ebola virus disease (de Wit et al. 2020). 
During the COVID-19 pandemic, remdesivir showed 
anti-SARS-CoV-2 activities in vitro and in animal mod-
els. These activities were attributed to its triphosphate 
nucleoside analog, which acts as an inhibitor of the 
viral RNA-dependent RNA polymerase. However, evi-
dence that supports its efficacy is still under investiga-
tion (Wang et al. 2020; de Wit et al. 2020; Alsayed et al. 
2021). Remdesivir is also being investigated as a part of 
drug cocktails that might be used to treat hospitalized 
COVID-19 patients (Kalil et al. 2021; Vitiello and Fer-
rara 2021).

Remdesivir needs to go through an extensive metabolic 
process to be active, and from those metabolism products, 
only GS‐704277 and GS‐441524 can be quantified in plasma 
(Figure S1) (Humeniuk et al. 2021a).

To date, publicly available information on the pharma-
cokinetics of remdesivir and its metabolites is limited. A 
non-compartmental description of data in healthy volun-
teers has been published and serves as the basis for the 
present evaluation (Humeniuk et al. 2020). Several bot-
tom-up approaches using physiologically based pharma-
cokinetic models have recently been reported (Deb and 
Reeves 2021; Fan et al. 2021; Humeniuk et al. 2021b; 
Gallo 2021), of which the most recent one was generated 
by scientists of the U.S. Food and Drug Administration 
(FDA) (Fan et al. 2021). Such models are very useful 
but in part are based on assumptions that remain to be 
verified, and occasionally use “optimization” of some of 
their predefined parameters, with no other reason than 
that simulations should match the observed data. As an 
empirical compartmental approach, the manufactur-
ers of remdesivir developed a population pharmacoki-
netic model of which only parts are publicly available 
(LHartman et al. 2020). Unfortunately, the information 
provided there is not sufficient to retrace and assess the 
performance of the model in detail. Finally, a popula-
tion pharmacokinetic model has been reported for the 
GS-441524 metabolite only in Japanese patients with 
renal impairment (Sukeishi et  al. 2021). Overall, the 
available information reflects only a first step to sup-
port more precise dosing strategies for remdesivir. Such 
information is needed to integrate intrinsic and extrinsic 
factors for a better understanding of the pharmacokinet-
ics and dynamics of remdesivir. The main objective of 
the present report was therefore to develop an independ-
ent compartmental population pharmacokinetic model 
that can fit the observed data obtained from literature 
and empirically describe the pharmacokinetic parameters 
of remdesivir, GS‐704277, and GS‐441524. This model 
may be further used in determining suitable dosing 

strategies in patients, with a perspective to be expanded 
for patients with chronic conditions.

Methods

Arithmetic-concentration data were obtained from pub-
lished randomized, blinded, placebo‐controlled, phase 
I program that evaluated the safety and pharmacokinet-
ics of single and multiple ascending intravenous doses 
of remdesivir (Humeniuk et al. 2020). Data points were 
extracted using GetData Graph Digitizer software (get-
data-graph-digitizer.com) and R.

In this trial, remdesivir was administrated as a single 2-h 
intravenous infusion at doses of 3 mg, 10 mg, 30 mg, 75 mg, 
150 mg, and 225 mg. Or as a once-daily 1-h intravenous infusion 
for 7 and 14 days. This program was carried out in healthy male 
and non-pregnant, non-lactating female volunteers with an age 
range of 18 to 55 years and a body mass index of 18 to 30 kg/
m2. No detailed information regarding individual parameters 
for each cohort was given, and the study was conducted by the 
manufacturing company, Gilead Sciences, Inc., USA (Hume-
niuk et al. 2020).

Population pharmacokinetic (PK) parameters were esti-
mated by standard methods using non-linear mixed effect 
modeling software (Monolix  2019R2 - Antony, France) .

The model was developed by testing different distribution 
patterns and different compartment numbers for remdesivir, 
GS‐774277, and GS‐441524, in addition to different elimina-
tion and metabolic models that describe the conversion of rem-
desivir to GS‐704277, and GS‐704277 to GS‐441524. For this 
purpose, metabolism was assumed to occur solely in the central 
compartment or in the central and peripheral compartments 
simultaneously.

Estimated PK parameters included total body clearance (CL), 
the volume of distribution for central and peripheral compart-
ments (Vdc and Vdp), inter-compartmental clearance (Q), and 
formation clearance of metabolites (CLm). Terminal elimination 
half-life using regression (t½ cc) was also calculated using Graph-
Pad Prism 8 (GraphPad Softwares, 2019, CA, USA). Microsoft 
Excel (Microsoft, 2021, Redmond, USA) and RStudio (PBC, 
2021, Boston, USA) were used for dataset construction, analysis, 
and graph generation.

The published concentration–time profile of remde-
sivir showed a sharp increase in plasma concentration 
immediately following the end of the 2-h intravenous 
infusion. This could be explained by intravenous line 
saline washing following the 2-h infusion (Rita Hume-
niuk, personal communication). To incorporate this sud-
den increase of remdesivir concentrations into the model, 
4% of the total administered dose was subtracted from 
the continuous infusion dose and given instantaneously 
at the end of the infusion. The choice of this method and 
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the selected percentage were based on other published 
methodology (Anh et al. 2006).

The final model was chosen based on goodness-of-fit 
plots, visual predictive checks, metabolic plausibility, 

parameter shrinkage, and the − 2 × log of likelihood (Fig-
ure S2).

The most suitable model was developed using ordi-
nary differential equations (ODE) in non-linear mixed-
effect modeling software (Table 1). The probable post 

Table 1  Ordinary differential equations that best describe the pharmacokinetic model for remdesivir and its two metabolites GS‐774277 and 
GS‐441524

Ordinary differential equation pharmacokinetic behavior model was developed based on mean concentration data obtained from phase I clini-
cal trials, where remdesivir was administered in different doses as single-dose 2-h intravenous infusion in healthy subjects. DA/DT represents 
the change rate of drug amount in the respective compartment. Cc concentration in the central compartment; Cp concentration in the peripheral 
compartment; A the amount of a substance at a time; CL total body clearance; Vdc and Vdp the volume of distribution for central and peripheral 
compartments, respectively; Q inter-compartmental clearance; CLm formation clearance of metabolites

Cc RDV = A(RDV Central compartment)/Vdc RDV

Cp RDV = A(RDV Peripheral compartment)/Vdp RDV

Cc GS‐774277 = A(GS‐774277 Central compartment)/Vdc GS‐774277

Cp GS‐774277 = A(GS‐774277 Peripheral compartment)/Vdp GS‐774277

Cc GS‐441524 = A(GS‐441524 Central compartment)/Vdc G GS‐441524

Cp GS‐441524 = A(GS‐441524 Peripheral compartment)/Vdp GS‐441524
DA

DT(RDV Central compartment) = (Input) + (QRDV × Cp RDV) − (QRDV × Cc RDV) − (CLRDV × Cc RDV) − (CLmc GS‐774277 × Cc RDV)
DA

DT(RDV Peripheral compartment) = (QRDV × Cc RDV) − (QRDV × Cp RDV) − (CLmp GS‐774277 × Cp RDV)
DA

DT(GS‐774277 Central compartment) = (CLmc GS‐774277 × Cc RDV) + (QGS‐774277 × Cp GS‐774277) − (QGS‐774277 × Cc GS‐774277) − 
CLGS‐774277 × Cc GS‐774277) − (CLmc GS‐441524 × Cc GS‐774277)
DA

DT(GS‐774277 Peripheral compartment) = (QGS‐774277 × Cc GS‐774277) + (CLmp GS‐774277 × Cp RDV) − (QGS‐774277 × Cp GS‐774277)
DA

DT(GS‐441524 Central compartment) = (CLmc GS‐441524 × Cc GS‐774277) + (QGS‐441524 × Cp GS‐441524) − (CLGS‐441524 × Cc GS‐441524) − (QGS‐441524 × Cc GS‐441524)
DA

DT(GS‐441524 Peripheral compartment) = (QGS‐441524 × Cc GS‐441524) − (QGS‐441524 × Cp GS‐441524)

Fig. 1  Overview of the final population pharmacokinetic model for 
remdesivir (RDV) and its metabolites: GS‐704277 and GS‐441524 
that was developed using non-linear mixed effect modeling software. 
The model described each moiety to have a 2-compartment distribu-
tion, with sequential metabolism occurring from the central compart-

ment, in addition to remdesivir peripheral metabolism to GS‐774277. 
And elimination is modeled to occur in the central compartments. CL 
total body clearance (CL), Vdc and Vdp the volume of distribution for 
central and peripheral compartments, Q inter-compartmental clear-
ance, CLm formation clearance of metabolites
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hoc values of each dose’s fixed parameters were calcu-
lated using empirical Bayes method in Monolix software.

As no individual values were available, the obtained vari-
ability of fixed parameters reflects inter-cohort variabilities 
rather than inter-individual variability. And they lump the vari-
ability due to differences between volunteers in the different 
cohorts and they were defined with a log-normal distribution as.

where θi is the estimated parameter for the mean concen-
tration of the ith dose, θpopulation is the mean across doses, 
and ηi is a random effect describing the deviation of the 
PK parameter for the ith dose level from the typical PK 
parameter estimated for all doses. Parameter ηi is assumed 

log
(

�
i

)

= log
(

�population
)

+ �i

Fig. 2  Observed mean con-
centrations (black dots) and 
model predictions (black line) 
of each given dose, following 
single 2-h intravenous infusion 
of either 3 mg, 10 mg, 30 mg, 
75 mg, 150 mg, or 225 mg of 
remdesivir
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Fig. 3  Goodness-of-fit plots 
describing remdesivir model-
predicted plasma concentra-
tion value agreement with the 
observed values
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to follow a normal distribution with a mean of zero and a 
variance of ω2.

Additive, proportional, and combined error models were 
tested:

Here, Cij is the observed value for the mean concentration of 
the dose i at time point j. Yij is the predicted concentration 
value of the dose i at time point j estimated by the model. 
Parameters a and b are additive and proportional residual 
errors, respectively.

Simulations were run using R (R Core Team 2021), Simulx 
2020R1, and Simulx R package bootstrapping and simulation 
function (Lixoft, Antony, France), with 256 simulated subjects. 
To simulate a real-life clinically relevant dosing regimen, the 
simulation also included a 200 mg, 30-min intravenous infusion 
of remdesivir on day 1, with subsequent 100 mg, 30-min intrave-
nous infusions for the following 4 days. The choice of this regi-
men schedule was based on what is recommended by internal 
hospital physicians, the FDA (U.S. Food and Drug Administra-
tion) fact sheet for healthcare providers, and the EMA (Euro-
pean Medicines Agency) Summary of Product Characteristics 
(CHMP 2020; FDA 2020). The fraction of censored observa-
tions for remdesivir, GS‐774277, and GS‐441524 were calcu-
lated by determining the ratio of numbers of observations with 
values below the reported lower limit of quantification to the 
total number of observations at a time point.

Results

The best model describing PK data of all moieties 
included two compartments for remdesivir and each 
metabolite. The model suggested metabolism to occur 
mainly in the central compartment from one moiety to 

Additive ∶ Cij = Yij + �

Proportional ∶ Cij = Yij + (b) × Yij

Mixed ∶ Cij = Yij +

√

(�)2 + ((b) × Yij)2

the next one. Additional metabolism was assumed to take 
place from the peripheral remdesivir compartment to the 
peripheral GS‐704277 compartment, and elimination was 
assumed to occur from the central compartments of rem-
desivir and both metabolites (Fig. 1).

The final model predicted PK profiles for remdesivir, 
GS‐704277, and GS‐441524 at individual dose levels. 
The predicted concentration values were in good agree-
ment with the observed concentrations at each time point 
(Figs. 2 and 3).

Population parameter estimates for the mean of the 
published plasma concentration‐vs.‐time profiles of rem-
desivir, GS‐704277, and GS‐441524 following remdesi-
vir 2-h single-dose intravenous administration in healthy 
volunteers are described in detail in Table 2. Exposure 
values were similar to previously published remdesivir 
PK non-compartmental analysis (Table S1). The termi-
nal elimination half‐lives in the central compartment for 
remdesivir, GS‐704277, and GS‐441524 were 1 h, 1.1 h, 
and 20 h, respectively.

The final model had exponential inter-cohort variabilities 
for the following PK parameters: Vdc G GS‐441524, Vdp GS‐441524, 
CLRDV, CLmp GS‐774277, CLmc GS‐774277, CLGS‐774277, and 
CLmc GS‐441524 (Table 2). Also, the error models which matched 
the data best were proportional for remdesivir, combined for 
GS‐704277, and proportional for GS‐441524.

We found by simulating remdesivir administration at 
the recommended dosage that the Cmax (between-dose SD) 
of remdesivir, GS‐704277, and GS‐441524 were 13.7 µM 
(2.39), 807 nM (173), and 726 nM (240), respectively, fol-
lowing the initial loading dose. GS‐704277 tmax was reached 
immediately after the end of the infusion, while GS‐441524 
reached its tmax 1 h after the end of the infusion. The fraction 
of censored observations for remdesivir reached the value of 
1 after 20 h following the initial 200-mg infusion, and 17 h 
for each sequential 100-mg infusion. In contrast, GS‐774277 
and GS‐441524 did not reach the values of their reported 
LLOQ during the whole duration of therapy (Fig. 4).

Table 2  Pharmacokinetic 
population parameter estimates 
of remdesivir, GS‐441524, 
and GS‐704277 following 
remdesivir single-dose 
administration (2-h infusion) in 
healthy subjects

Population parameter estimates of the fixed effects (SD of the random effects) for remdesivir and its metab-
olites (GS‐704277 and GS‐441524). The estimates were generated by Monolix software and using mean 
concentration data points obtained from Gileads’ phase I clinical trials, where remdesivir was administered 
in doses of 3 mg, 10 mg, 30 mg, 75 mg, 150 mg, and 225 mg as single 2-h intravenous infusion in healthy 
subjects

PK parameters Remdesivir GS‐704277 GS‐441524

Central compartment volume of distribution (L) 4.89 96.4 26.2 (0.71)
Peripheral compartment volume of distribution (L) 46.5 8.64 66.2 (0.24)
Inter-compartmental clearance (L/h) 13.2 0.12 55
Total body clearance (L/h) 18.1 (0.39) 36.9 (0.31) 4.74
Central formation clearance (L/h) - 16.9 (0.25) 50.5 (0.27)
Peripheral formation clearance (L/h) - 18.9 (0.53) -
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Fig. 4  Simulated plasma 
concentration‐vs.‐time profiles 
of remdesivir, GS‐704277, 
and GS‐441524 following a 
simulated 30-min intravenous 
infusion of 200 mg of remde-
sivir on day 1, with 100 mg, 
30-min intravenous infusion for 
the following 4 days. The bot-
tom part of the remdesivir panel 
shows the fraction of censored 
observation numbers to the total 
observations at a given time. 
There were no censored obser-
vations for the metabolites. 
Dotted lines reflect standard 
deviation values
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Subsequent Cmax value for GS‐441524, following the 
administration of multiple 100-mg remdesivir doses, was 
645.5 nM (17.57) and the half-life reached 29.36 h both 
estimated by simulation.

The simulation used the previously generated population 
parameters of fixed effects, the standard deviation of the 
random effects, and error model estimates (Figure S3).

Discussion

In this report, we were able to develop a compartmental 
non-linear mixed effect model that can describe the mean 
concentration vs. time course of remdesivir and its two 
detectable metabolites reasonably well, while also adapting 
for and describing inter-dose variability.

Both the developed model and the simulations gave simi-
lar values for the derived PK parameters (AUC, elimination 
half-life, Cmax) compared to other published non-compart-
mental analyses of remdesivir, GS‐441524, and GS‐704277 
(Tables 2 and S2) (Humeniuk et al. 2020; Tempestilli et al. 
2020). The model itself is empirical but physiologically 
and metabolically plausible. The model incorporates a 
sequential metabolism from remdesivir to GS‐704277 fol-
lowed by GS‐704277 metabolism to GS‐441524, which is 
in agreement with the known metabolic fate of remdesivir 
(Humeniuk et al. 2021a; Wen et al. 2021). As a peculiarity, 
the developed model incorporated a peripheral metabolism 
to GS‐704277, and this does not contradict physiological 
considerations. A comparison of the parameters to those 
reported by Sukeishi et al. (2021) is difficult because their 
evaluation could not consider that a remdesivir dose is not 
metabolized completely to GS‐441524, and therefore, any 
values reported indeed are values relative to the fraction 
metabolized (fm) to GS-441524. Assuming a fraction of 
about 0.5 (Humeniuk et al. 2021a, b), the basic clearance 
value reported of about 12 L/h (= CL/fm) corresponds to 
a true clearance of 6 L/h, which is close to our result of 
about 5 L/h and also not far from 5.71 L/h value, which was 
reported by Gilead (Hartman et al. 2020).

We found by the simulation of the clinically approved 
regimen that plasma concentrations of GS-441524 after 
20 min from the beginning of the 200-mg infusion would 
reach the reported  EC50 value (180 nM) in SARS-CoV pri-
mary human airway epithelial cells (Yan and Muller 2020). 
The concentration stayed above  EC50 values throughout the 
whole simulated 6 days (Fig. 4). Here we assume that lung 
epithelial cell exposure is close to plasma exposure. How-
ever, PBPK modeling predicts that lung concentrations of 
GS-441524 are several-fold lower than plasma concentra-
tion and that GS-441524 plasma concentrations would not 
be useful to predict lung exposure of the active metabolite 
GS-443902 (Fan et al. 2021).

At the end, clinical data are required to assess any rela-
tionship between plasma pharmacokinetics of remdesivir 
and its metabolites and efficacy in patients.

A recent study showed that early administration of 
remdesivir among non-hospitalized patients with at least 
one risk factor for disease progression could in fact lower 
the risk of hospitalization or death compared to placebo 
groups (Gottlieb et al. 2021). However, this study did not 
associate efficacy with the level of exposure to remdesivir 
or its metabolite. And so far, the relevance of EC50 level 
interpretation for remdesivir or its metabolite levels is 
still unclear.

We attempted to apply our model to the data we 
reported for a patient with renal impairment (Sörgel et al. 
2021) — but we failed. The concentrations in this patient 
were much higher than those observed by Humeniuk 
et al. (2020) already at the end of the infusion, which 
cannot be readily explained by a decreased elimination 
only. A reason for this could be that the model here is 
estimating the variability in mean concentrations across 
cohorts, which might be magnitudes lower than the vari-
ability at the level of individual patients.

Thus, further testing by independent datasets including 
data obtained from various patient populations is required 
to assess the external validity of this model. Also tak-
ing into account that this model was developed from data 
including only healthy volunteers with a focus on a His-
panic population, and no detailed information regarding 
age, BMI, or renal and hepatic function was available.

The model lacks variabilities on individual levels and 
does not consider reported standard errors in the clini-
cal trials, which are considered to be some limitations 
associated with the model. Further investigations on drug 
efficacy, target tissues and/or intracellular concentra-
tions, and protein binding are needed for a better under-
standing of the overall pharmacokinetics of remdesivir. 
Ideally, a comprehensive population model of remdesivir 
would also integrate pharmacodynamic data. The present 
model however may serve as a good starting point for 
such additional evaluations.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00210- 022- 02292-6.
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