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Abstract: Radiolabeled biomolecules targeted at tumor-specific enzymes, receptors, and transporters
in cancer cells represent an intensively investigated and promising class of molecular tools for the
cancer diagnosis and therapy. High specificity of such biomolecules is a prerequisite for the treatment
with a lower burden to normal cells and for the effective and targeted imaging and diagnosis.
Undoubtedly, early detection is a key factor in efficient dealing with many severe tumor types. This
review provides an overview and critical evaluation of novel approaches in the designing of target-
specific probes labeled with metal radionuclides for the diagnosis of most common death-causing
cancers, published mainly within the last three years. Advances are discussed such traditional peptide
radiolabeling approaches, and click and nanoparticle chemistry. The progress of radiolabeled peptide
based ligands as potential radiopharmaceuticals is illustrated via novel structure and application
studies, showing how the molecular modifications reflect their binding selectivity to significant onco-
receptors, toxicity, and, by that, practical utilization. The most impressive outputs in categories of
newly developed structures, as well as imaging and diagnosis approaches, and the most intensively
studied oncological diseases in this context, are emphasized in order to show future perspectives of
radiometal labeled amino acid-based compounds in nuclear medicine.

Keywords: amino acid; peptide; bifunctional chelating agent (BFCA); radiolabeling; cancer; recep-
tor; imaging

1. Introduction

Over past 20 years, in the field of nuclear medicine, substantial progress has been made
in the development of novel radiopharmaceuticals and radiolabeled agents for diagnosis
and therapy of various diseases. Nowadays, a great emphasis is put on a synthesis and
study of radiolabeled amino acid-derived biomolecules with a selective distribution and
binding to target structures in living cells and tissues, i.e., enzymes, transporters, or
peptide receptors. This allows targeted therapy and diagnostic evaluation of pathological
changes in many fields, such as oncology, neurology, endocrinology, cardiology, and also
investigation of inflammation processes or infection.

Especially, malignant tumor diseases are of the biggest interest because of their increas-
ing global incidence, and placing second in the causes of death. The effect of target-specific
radiolabeled compounds is often mediated through binding with high affinity to specific
protein structures (e.g., active places in enzymes or receptors). Many of these structures are
overexpressed in diseased cells compared to their absence or lower density under physi-
ological conditions. Since that, such radiolabeled compounds represent effective probes
in a recognizing and visualizing tumor cells in their early stage. All types of malignant
solid tumors often exhibit lower oxygenation levels than their original tissues resulting in
a hypoxic state, which impacts on the reduced effectiveness of tumor therapy and propa-
gation of metastasis. Hence, there is an urgent need to enhance detection approaches for
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monitoring various tumor types, including hypoxic cancer lesions. In this field, amino
acid-based target-specific radiopharmaceuticals have become significant tools in modern
oncology allowing cancer imaging on molecular and cellular level [1].

In order to utilize biomolecules for imaging and diagnosis, they must be properly
labeled. Metal radionuclides belong to the most powerful and the most employed labels in
nuclear medicine. In the group of metallic radioisotopes, gamma and positron emitters,
namely copper-62, copper-64, gallium-67, gallium-68, indium-111, and technetium-99m
have proved to be the most suitable for nuclear research and clinical application [2,3].
Apparently, other potential radionuclides such as zirconium-89, yttrium-86, and cobalt-
55 have been included in recent studies since these have become more readily available
with high purity. A diversity of synthesis strategies, radiolabeling approaches, modified
chelators, and linkers has been investigated and developed to reach the optimized target-
specific radiolabeled compounds, with proper characteristics for cancer imaging and
therapy. All of these crucial components of radiolabeled compounds are the subject of
many review papers, with a focus on the chemistry of metallic radionuclides [4–6], chelators,
and linkers [7–12], as well as onco-specific peptidic biomolecules [2,13–16].

The aim of this review is to summarize and critically evaluate state-of-the-art ap-
proaches and the most significant outputs related to the development of target-specific
radiometal labeled biomolecules for imaging of severe tumor types and tumors with an
increased incidence. Recent advances in synthetic approaches and radiometal-labeling
strategies of amino acid-based biologically active molecules, including most employed
peptide families and receptors such as somatostatin, cholecystokinin/gastrin, bombesin,
integrins, and hypoxia endogenous markers, as well as inhibitors of prostate-specific mem-
brane antigen and fibroblast activation protein, are highlighted in order to demonstrate
perspectives in cancer diagnostics with amino acid-based radiopharmaceuticals.

2. Basic Characteristics of Conventional Metal Radionuclides and Chelators Currently
Used in Nuclear Medicine

Radiometallic compounds with targeted biodistribution and binding in the human
body (i.e., target-specific) include in their structure: (i) biomolecules as a crucial biodistri-
bution component (specific to receptor); (ii) a linker as a connecting component preserving
specificity of biomolecule when attaching; (iii) a bifunctional chelating agent (BFCA); and
(iv) metal radionuclides (see Figure 1). Basic characteristics of the most important or most
frequently used representatives in the group of conventional metal radionuclides and
BFCA are briefly discussed in Sections 2.1 and 2.2, respectively. Discussion is led in general
point of view or, if appropriate, with respect to amino acid based biomolecules.
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2.1. Metal Radionuclides

In general, a diagnostic radioprobe contains a gamma emitting radionuclide for SPECT
imaging or a positron emitting radionuclide for PET imaging. Basic parameters of the most
common metallic radionuclides for diagnostic nuclear medicine are summarized in Table 1.

Nuclear medicine research is currently focused on development of a highly potent
target-specific biomolecule labeled with positron emitters (predominantly gallium-68,
but also zirconium-89, copper-64, and others). Anyway, there is still a leading position of
technetium-99m in diagnostic clinical practice. In research, a prognosis for the development
of Tc-radiopharmaceuticals is also quite positive due to novel modifications of BFCA and
linkers continuously presented and developed for SPECT imaging.
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Table 1. Selected metallic radionuclides employed in diagnostic nuclear medicine.

Isotope Radiation
Type Emax [keV] (Decay %) Half-Life Production

(Common Reaction) Main Application Areas

99mTc

γ

141 (89.1%) 6.01 h
99Mo/99mTc generator

(cyclotron alternatively)
SPECT of lung, brain, myocard,

bones, kidney, liver, etc.

111In
171.3 (90.2%)
245.4 (94%) 2.83 d cyclotron,

112Cd(p, 2n)111In
SPECT of somatostatin
receptor-positive NET

67Ga
93.3 (37%), 184.6

(20.4%), 300.2 (16.6%) 3.26 d cyclotron, 68Zn(p, 2n)67Ga
scintigraphy of inflammation,

infection, tumors

64Cu

β+

653 (17.6%) 12.7 h cyclotron, 64Ni(p, n)64Cu

PET imaging of hypoxic tumors,
integrin- and gastrin-releasing

peptide receptor-positive
tumors

68Ga 836 (89%) 67.7 m
68Ge/68Ga generator

(cyclotron alternatively)

PET imaging of somatostatin
receptor-, PSMA-,

FAP-overexpressed tumors
89Zr 395 (23%) 3.3 d cyclotron, 89Y(p, n)89Zr immuno-PET imaging

Dosimetry and imaging aspects, depending on a particular radiolabeled compound and its properties, as well as an overall condition of a
patient, can be found (if they were evaluated) in individual imaging studies discussed in Section 4.

2.2. Bifunctional Chelating Agents (BFCA)

Since the metallic radionuclides themselves cannot be utilized in a direct radiolabeling
of amino acid-based target-specific compounds (peptides, proteins), it is necessary to
develop bifunctional chelating agents (BFCA) [12]. An appropriate BFCA can properly
attach both a metallic radionuclide and a biomolecule as well. The double function of BFCA
helps the biomolecule to retain its receptor specificity and, thus, to match metal properties
with the intended utilization in the imaging/therapy of various diseases. The choice of
BFCA takes into account the oxidation state and nature of the metallic radionuclide. The
optimal BFCA should provide thermodynamically stable and kinetically inert complexes,
rapid reaction (at low temperatures and concentration), flexible conjugation chemistry, and
should be easily accessible [17,18].

Various acyclic and cyclic BFCA have been introduced into (potential) radiopharmaceu-
ticals. Traditional examples of acyclic and cyclic BFCA are discussed in Sections 2.2.1 and
2.2.2, respectively, while the most commonly used BFCA in radiolabeling with a particular
diagnostic radiometal including newer developed chelators in Sections 3.2.1–3.2.5.

2.2.1. Acyclic BFCA

The polyaminopolycarboxylic acids-derived BFCA, such as DTPA, EDDA, EDTA,
as well as tripeptide MAG3 (Figure 2), are the most commonly used acyclic BFCA contain-
ing hard donor atoms (N, O) in their molecule to form the coordination bond with metallic
radionuclide. Another acyclic chelator, a siderophore-based desferrioxamine-B (DFO) has
been utilized for effective radiolabeling of biomolecules with a metal. The thermodynamic
stability and inert kinetics of a formed complex is unique and influenced by properties
of both, a metal radionuclide as well as a BFCA. A significant advantage of the acyclic
BFCA is faster metal binding kinetics, resulting in a faster radiolabeling procedure [17].
On the contrary, acyclic BFCA form less stable complexes than cyclic ones due to a higher
interaction probability and more fixed geometry of donor atoms in the cyclic BFCA [18].
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2.2.2. Cyclic BFCA

The cyclic BFCA containing macrocycle such as DOTA, NOTA, TETA, and their deriva-
tives as well as various structurally related analogues (for selected representatives see
Figure 3) are holding an important position in syntheses of radiolabeled peptide-based
compounds over a long period. Several new next generation cyclic chelators or chelators
derived from traditional ones with improved properties have been developed over past
decade such as PCTA, AAZTA, TRAP, THP, and fusarinine C [19]. As mentioned above,
cyclic BFCA are beneficial generally by providing more kinetically inert and thermody-
namically stable complexes with metal radionuclides. In order to obtain complexes with
enhanced stability, several properties have to be considered such as hard and soft acid
and base concept, a higher number of donor atoms providing a better steric fixation of
complex, and a proper cavity size for the encapsulation of the whole size of metal ion in a
tight structural arrangement.
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DOTA is considered as the golden standard of chelators owing to its high kinetic sta-
bility. Several types of DOTA-derived chelators have been developed to bind with target
peptide biomolecules, i.e., protected DOTA forms, active DOTA esters, and DOTA- deriva-
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tives with a coupling moiety [20]. Concerning NOTA, derivatives with aminocarboxylic
acids have been applied as BFCA, e.g., NODAGA (with glutaric acid), NODASA (with
succinic acid), or NODAPA (with p-phenylacetic acid) [21]. Abrams and co-workers used
6-hydrazinopyridin-3-carboxylic acid, in short HYNIC, for radiolabeling of a polyclonal
antibody with technetium-99m [22]. Ever since, HYNIC has become the most convenient
chelator for 99mTc-labeled peptides and antibodies. Other chelators related to bisthiosemicar-
bazone [23,24], cyclam [25,26], and sarcophagine [27,28] have been increasingly studied to
improve kinetic inertness and stability of complexes, especially those with copper isotopes.

3. Complexes and Radiolabeling Approaches for Target-Specific Peptide Molecules

The amino acids, main peptide and protein building blocks, play an important role
essentially in all biological processes. Radiolabeled amino acids (AA) have become actively
studied, owing to the role of their transporters in the tumor environment. Studies indicated
that AA transporters, which recognize, bind and carry amino acids across the plasma
membrane, serve not only to maintain nutritional requirements, but also to accumulate
particular amino acids in specific cells [29,30].

Analogically, radiolabeled peptides as amino acid-based biomolecules are in the center
of interest in the field of nuclear medicine and pharmacy because their biological action
is mediated upon selective binding to specific peptide receptors and transporters overex-
pressed in numerous tumor cells. These receptors have shown potential as a molecular
target for tumor imaging or targeted therapy with radiolabeled peptides (for the most
important onco-specific peptide receptors and radiolabeled peptides see Section 4). The
following Sections 3.2–3.4 are dealing with current radiolabeling approaches used for
peptides and showing corresponding complex structures.

3.1. Peptides as Target-Specific Molecules and Their Synthesis

Peptides can be simply synthesized by a solid phase peptide synthesis (SPPS) [31,32] and
modified to obtain optimized pharmacokinetic properties. The synthetic procedure can be
carried out manually [33], e.g., in syringes, or automatically in commercial synthesizers [34].
A general pattern for the solid-phase peptide synthesis is depicted in Figure 4.
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The advantages of peptides over proteins and antibodies can be seen in a preparation
method, a rapid blood clearance, and the ability to tolerate harsh reaction conditions. On
the other hand, a rapid enzymatic degradation by physiological peptidases is a significant
limitation of peptides. Anyway, there are several strategies how to avoid this drawback
including structural modifications of the C-/N-terminus, incorporation of a PEG linker or
D-/unnatural AA, and cyclization [35].

3.2. Conventional Radiolabeling Approaches of Peptides with Metallic Radionuclide

The choice of a radiolabeling approach depends on radionuclide nature and a bioactive
molecule. A direct labeling strategy is more difficult to be used for a metal attachment to
biomolecules (e.g., peptides, proteins). Since the direct approach provides low site-specific and
unstable products, and is applicable only to antibodies and their fragments, an indirect labeling
method with BFCA has become preferred for a metal-peptide linkage. The usage of BFCA
often requires multistep synthesis and involves non-specific interactions, thus a searching
for new strategies with more effective incorporation of BFCA into peptide biomolecules has
led to innovative approaches in the radiochemistry field such as click reactions (Section 3.3)
and radiolabeled nanoparticles (Section 3.4). Modified BFCA and linkers may improve phar-
macokinetic properties of a radiolabeled compound. Conventional radiolabeling approaches
and chemical structures of corresponding complexes with the most frequently used metal
diagnostic radionuclides are discussed in following Sections 3.2.1–3.2.5.

3.2.1. Radiolabeling of Peptide-Based Compounds with Technetium-99m

Technetium-99m has been the most frequently used radionuclide in nuclear medicine
since the 99Mo/99mTc generator development in 1957. Indirect labeling approaches, such as
pre-labeling (labeling before conjugation with biomolecule) or post-labeling (labeling after
conjugation with biomolecule), are of the routine for 99mTc-coordination. The pre-labeling
procedure (Figure 5) is very useful in research to prove the concept and define the chemistry,
contrary to a clinical use because of a long lasting radiosynthesis and hardly accomplished
kit formulation [3].
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The post-labeling procedure (Figure 6) is the most widely used for a synthesis of
target-specific peptide radiopharmaceuticals.
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Technetium chemistry, its cores and complexes, have been thoroughly reviewed in re-
cent years [4,6,36,37]. The most frequently studied BFCA for Tc-complexes are summarized
in Table 2. In past few years, [99mTc]Tc-HYNIC has been the most commonly used core
for the conventional radiolabeling of bioactive peptides for tumor imaging such as RGD
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peptides [38,39], α-MSH peptide analogues [40,41], bombesin analogues [42,43], substance
P analogues [44], or glucagon-like peptide analogues [45].

Table 2. The most common BFCA for 99mTc-labeled compounds.

BFCA Complex Structure References

DTPA
and its derivatives
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3.2.2. Radiolabeling of Peptide-Based Compounds with Gallium-68

Gallium is represented by the oxidation state III+ in aqueous solution and acts as a
hard Lewis acid. It binds to hard Lewis bases such as nitrogen and oxygen donor groups
of carboxylates, hydroxamates, amines [17]. It can be relatively easy hydrolyzed at pH
4–7 [49]. Gallium forms complexes with the maximum coordination number of 6 in a
pseudo octahedral geometry, but four- or five-coordinate complexes are also formed [17,49]
For a 68Ga-labeling procedure, well-known representatives and the most frequently used
BFCA are derived from 1,4,7-triazacyclononane and 1,4,7,10-tetraazacyclododecane, e.g.,
DOTA and NOTA, including their recently developed derivatives such as TRAP, PCTA,
NOTP, and THP and DATA, among others (see examples in Table 3).
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The 68Ga-labeled biomolecules have been studied for somatostatin receptor-positive
tumor imaging over a long period [58–60] with several highly potent agents in clinical
trials or one already approved. Current studies with gallium-68 have followed up various
malignancies with prostate-specific membrane antigen (PSMA) and fibroblast activation
protein (FAP) [55,61,62].

3.2.3. Radiolabeling of Peptide-Based Compounds with Indium-111

Indium-111 has several properties for coordination chemistry with gallium-68 in
common. The only stable oxidation state of indium-111 is III+ and acts as the Lewis acid,
but softer donor groups can be offered to create seven or eight-coordinated complexes [49].
The ionic radius of indium-111 (0.92 Å) is significantly larger than that of gallium-68
(0.65 Å) what results in different coordination in macrocycles. The DTPA- and DOTA-based
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chelators usually in t-butyl forms are generally the most employed for the 111In-labeling
(see Table 4) [63].

Table 4. The most common BFCA for 111In-labeled compounds.

BFCA Complex Structure References
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ing [66], glucagon-like peptide receptor [67,68], gastrin-releasing peptide receptor [69], or
integrins [70].

3.2.4. Radiolabeling of Peptide-Based Compounds with Copper-64

The most stable oxidation state of copper in aqueous solution is II+ creating complexes
with donor atoms such as amine-, imine- and pyridine-N, carboxylate-O, and thiol-S [17].
Although the copper chelation chemistry has been thoroughly reviewed [13,18,49,71], there
is still a challenge in the development of in vivo stable Cu-BFCA complexes due to la-
bile character of Cu(II). The design of copper radiopharmaceuticals has put emphasis
on polyaza-macrocycles derived BFCA (see Table 5). Due to only moderate stability of
[64Cu]Cu-DOTA-labeled biomolecules under in vivo conditions and high liver accumula-
tion, a number of cross-bridged cyclam derivatives were developed to form more stable
64Cu-complexes [25,26,72].

64Cu-labeled compounds have been included, mostly in the studies of tumors with
overexpressed gastrin-releasing peptide [73,74] and ανβ3 integrin receptors [75,76], and
prostate-specific membrane antigen [77].

Table 5. The most common BFCA for 64Cu-labeled compounds.
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3.2.5. Radiolabeling of Peptide-Based Compounds with Zirconium-89

Zirconium is a metal belonging to the group IV that exists primarily in +IV oxidation
state in aqueous media. This cation is relatively large, acts as the hard Lewis acid and prefers
anionic oxygen donor groups to create complexes with high coordination number [86].
Depending on pH, oxides and hydroxides of zirconium form polynuclear species upon
hydrolysis at very low pH and mononuclear hydrolysis species at pH between 0 and 2 [87].

In order to effectively utilize zirconium-89, various chelators have been employed such
as DOTA, DTPA, as well as the most successful desferrioxamine B and 3-hydroxypyridin-2-
one (2,3-HOPO) derivatives (see Table 6).

Zirconium-89 has been applied mostly in labeling of monoclonal antibodies for PET
imaging of immune-based strategies [88], but there has been a progress in the design of
89Zr-labeled small peptide PSMA-inhibitors for prostate cancer imaging lately [89].
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Table 6. The most common BFCA for 89Zr-labeled compounds.

BFCA Complex Structure References

DFO
and its derivatives
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3.3. Radiolabeling Approaches of Peptides with Metallic Radionuclide Based on Click-Chemistry

Since Kolb et al. described “click reactions” in 2001 [92], this new chemistry has be-
come rapidly growing in various chemical fields and, since 2006, also in the radiochemistry
field. There are two main characteristics making the click chemistry attractive, i.e., the
bioorthogonality of reactions and mild reaction conditions (usually at room temperature
and in aqueous media) [93]. Additional benefits include the selectivity, rapidity, and modu-
larity of click ligations. The most associated term with the “click chemistry“ is the Cu(I)-
catalyzed azide-alkyne cycloaddition (CuAAC) forming 1,4-disubstituted 1,2,3-triazoles
(see Figure 7A). Mindt et al. developed and extended the “click-to-chelate” methodology
for radiometallic ligation [94,95], in which 1,2,3-triazole is an integral part of the chelating
system. This approach has been successfully applied for Tc- and Re-tricarbonyl compounds,
when tridentate ligands are coordinated to M(CO)3 core resulting in better pharmacokinetic
properties [94,95].

In recent years, several catalyst-free site-specific reactions have been investigated for
effective radiolabeling of peptide biomolecules and nanomaterials including tetrazines and
trans-alkenes for the inverse electron-demand Diels–Alder reaction (IEDDA), azide and
cyclooctyne functionalities for the strain-promoted azide-alkyne cycloaddition (SPAAC),
and functionalized phosphanes for the Staudinger ligation (Figure 7B–D) [8,96,97]
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Staudinger ligation.

Within the “click-to-chelate” methodology, the development of new clickable chelators
is currently attracting a growing interest (see examples in Figure 8). New clickable chela-
tors have been designed for 99mTc-labeled peptides to obtain an increased hydrophilicity
and decreased hepatobiliary retention of ([99mTc]Tc(CO)3)-complexes. Novel dipicoly-
lamine derivatives, substituted with carboxylates on the pyridyl rings, were synthesized
and evaluated for fac-[Tc/ReI(CO)3]+ complexation with α-MSH peptide analogue [98]; a
propargyl-substituted thiocarbamoylbenzamidine acting as a tetradentate ligand for a con-
jugation with [Re/TcVO]3+ cores [99]; or 1,4-substituted pyridyl-1,2,3-triazole derivatives
with pendent phenyl isothiocyanate groups [100].

For 68Ga- and 64Cu-labeled probes, standard BFCA have been modified using various
prosthetic groups. The DOTA- and NOTA-based click chelators with aldehyde, alkyne,
aminooxy, azide, maleimide, monofluorocyclooctyne, and thiol functionalities were de-
veloped using CuAAC or RIKEN click reaction [101–104]; or with azide and tetrazine
prosthetic groups using SPAAC and IEDDA reactions [105]. The HBED-chelator was mod-
ified with two azide groups (HBED-NN) and both azide and carboxylic groups (HBED-
NC) [106]. Novel cyclic hydroxamate siderophore-based BFCA were reported as promising
BFCA for gallium-68 [107]. Baranyai et al. optimized a procedure for the conjugation
of 1,4,7-triazacyclononane-1,4,7-tris(methylene(2-carboxyethylphosphinic acid)) chelator
(TRAP) with peptides using CuAAC [108]. The TRAP conjugates showed kinetic inertness
and suitability for 64Cu- and 68Ga-coordination [109,110].
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direct method. The direct approach is based on a reduction in [99mTc]TcO4− with the 
acidic solution of stannous chloride followed by its direct binding and incorporation to a 
NP core. In the indirect method, BFCA is necessary to allow a stable linkage between ra-
dionuclide and NP [116]. The indirect method has been mostly used for the radiolabel-
ing of 99mTc-NPs conjugated with peptides, see an illustrative example in Figure 10. Gold 
NPs have been conjugated to peptides with [99mTc]Tc-HYNIC for integrin-positive glio-

Figure 8. Examples of attractive clickable chelators for radiolabeling of biomolecules with metal
radionuclides [106,108,111–113].

3.4. Radiolabeling Approaches of Peptides with Metallic Radionuclide Based on Nanoparticles

Nanomedicine has recently emerged as one of the most promising branches in
medicine including a development of novel probes with improved properties for the
site-specific detection or therapy of cancer. This rapidly growing trend is underlined
by numerous reviews in the radiochemistry field [114–117]. Over past 10 years, tens of
articles have been focused on the metal-labeled nanoparticles (NP) conjugated to various
peptides for SPECT and PET cancer imaging (see a representative image of radiolabeled
nanoparticles using electron microscopy in Figure 9).
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Figure 9. Representative image of PET-SERRS nanoparticles with non-optimized 68Ga-labeling (A)
with visible degradation of silica shells and after the optimization (B) with improved stability of the
silica shells [118].

Radiolabeling of NPs with technetium-99m can be carried out by a direct or an
indirect method. The direct approach is based on a reduction in [99mTc]TcO4

− with the
acidic solution of stannous chloride followed by its direct binding and incorporation to
a NP core. In the indirect method, BFCA is necessary to allow a stable linkage between
radionuclide and NP [116]. The indirect method has been mostly used for the radiolabeling
of 99mTc-NPs conjugated with peptides, see an illustrative example in Figure 10. Gold
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NPs have been conjugated to peptides with [99mTc]Tc-HYNIC for integrin-positive glioma
imaging [119], with [99mTc]Tc-DTPA for breast cancer imaging [120], for gastrin releasing
peptide receptor imaging [121,122] and somatostatin receptor-positive neuroendocrine
tumor imaging [123]. The NPs based on a polylactic acid polymer were conjugated to
99mTc-labeled octreotide for pancreatic polypeptide-secreting tumor imaging [124].
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Figure 10. Illustrative scheme of [99mTc]Tc-EDDA/HYNIC-GGC conjugated to RGD derivative and gold NP [119].

Several published papers dealt with 111In-labeled NPs conjugated to peptides such as
directly labeled gold NPs for human melanoma and glioblastoma imaging [125], liposo-
mal NPs conjugated to a RGD peptide analogue and the undecapeptide substance P for
glioblastoma and melanoma targeting [126].

Furthermore, 64Cu- and 68Ga-labeled NPs functionalized with a peptide were reported
in several papers too. The multifunctional gold nanorod nanocarriers were covalently
bound with doxorubicin and subsequently conjugated to [64Cu]Cu-NOTA-RGD [127];
[64Cu]Cu-sulphide NPs conjugated to the pegylated bombesin [128]; [68Ga]Ga-DOTA-
somatostatin and neurotensin analogues to gold NPs [129]; [68Ga]Ga-NODAGA-bombesin
to the polyethylene glycol-coated ultra-small superparamagnetic iron-oxide nanoparti-
cles [130]; and [68Ga]Ga-DOTA-bombesin analogue conjugated to the N,N,N-trimethyl
chitosan-coated magnetic nanoparticles for a breast cancer detection [131].

4. Onco-Receptors and Their Target-Specific Radiometal Labeled Peptide Molecules
for Tumor Imaging

In the following Sections 4.1–4.6, the most commonly studied onco-receptors are
summarized, briefly characterized (location and purpose in human body), and discussed
in relation to the development and improvements in their significant radiometal labeled
ligands and tumor imaging. In a similar way, radiometal labeled peptide inhibitors of
tumor-related proteins (Section 4.7) and sulfonamide-based analogues for tumor hypoxia
imaging (Section 4.8) are discussed. In the accompanied tables, examples of particular
radiolabeled analogues along with corresponding onco-receptors used in a positive tumor
imaging over past three years, advantages and limitations of the studied diagnostic systems
are critically evaluated. An illustrative example of a study of radiolabeled [68Ga]Ga-OPS202
and [68Ga]Ga-DOTATOC biomolecules for NET imaging is in Figure 11.
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(SSTR) belonging to a G-protein coupled receptors family. SST, its analogues and recep-
tors, have become increasingly popular and widely studied because of anti-tumor effects 
and mechanisms, including GEP-NETs [132], pituitary adenomas [133], breast cancer 
[134], small-cell lung cancer [135], melanoma [136], etc. The most commonly expressed 
receptor subtype in tumor cells is SSTR2, followed by SSTR1, SSTR5, SSTR3, and SSTR4 
as the least expressed subtype [137]. Due to short biological half-lives of the natural SST, 
various synthetic analogues have been designed and evaluated to obtain more stable 
compounds (see Table 7). It can be stated, based on the examined published papers, 
there is a great effort to modify the DOTA-octreotide structure in order to achieve novel 
SST analogues with even better pharmacokinetic properties and specificity to avoid an 
intense uptake in liver, spleen, and kidney. The SST analogues labeled with gallium-68 
and DOTA currently represent the best procedure for GEP-NET imaging. This statement 
is supported with a large number of research articles that include [68Ga]Ga-DOTANOC, 
DOTATATE, and DOTATOC, respectively, for imaging of various tumors, such as head 
and neck paraganglioma [138]; pituitary adenoma and meningioma [139]; thyroid [140] 
and lung [141] carcinoma; and tumors in gastrointestinal system [60] as well. According 
to available literature from 2010, new approaches for syntheses of the SSTR-ligands 
seem to be not so extent, but since then, many consecutive examinations and reports 

Figure 11. PET/CT images of a patient with ileal neuroendocrine tumors showing bilobar liver
metastases (marked with arrows) after application of [68Ga]Ga-OPS202 (A) and its transaxial fusion
image (B) and [68Ga]Ga-DOTATOC (C) and its transaxial fusion image (D) (adapted from [60]).

4.1. Somatostatin and Its Analogues for Somatostatin Receptors (SSTR) Imaging

Somatostatin (SST) is a physiological hormone occurring in two biologically active
forms with the AA sequences illustrated in Figure 12. It regulates an endocrine and exocrine
secretion throughout a human body.
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The biological effects of SST are mediated via 5 types of somatostatin receptors (SSTR)
belonging to a G-protein coupled receptors family. SST, its analogues and receptors, have
become increasingly popular and widely studied because of anti-tumor effects and mecha-
nisms, including GEP-NETs [132], pituitary adenomas [133], breast cancer [134], small-cell
lung cancer [135], melanoma [136], etc. The most commonly expressed receptor subtype in
tumor cells is SSTR2, followed by SSTR1, SSTR5, SSTR3, and SSTR4 as the least expressed
subtype [137]. Due to short biological half-lives of the natural SST, various synthetic ana-
logues have been designed and evaluated to obtain more stable compounds (see Table 7).
It can be stated, based on the examined published papers, there is a great effort to modify
the DOTA-octreotide structure in order to achieve novel SST analogues with even better
pharmacokinetic properties and specificity to avoid an intense uptake in liver, spleen, and
kidney. The SST analogues labeled with gallium-68 and DOTA currently represent the
best procedure for GEP-NET imaging. This statement is supported with a large number
of research articles that include [68Ga]Ga-DOTANOC, DOTATATE, and DOTATOC, re-
spectively, for imaging of various tumors, such as head and neck paraganglioma [138];
pituitary adenoma and meningioma [139]; thyroid [140] and lung [141] carcinoma; and
tumors in gastrointestinal system [60] as well. According to available literature from 2010,
new approaches for syntheses of the SSTR-ligands seem to be not so extent, but since
then, many consecutive examinations and reports have already been comprised of proven
ligands for a variety of GEP-NET imaging in clinical trials.
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Table 7. Summary of radiolabeled somatostatin analogues for SSTR-positive tumor imaging over past 3 years.

Composition of Studied Compounds
- Metal Radionuclide

- BFCA
- Linker
- Peptide

Results and Findings
- Phase of Trials

- Cancer Type Studied
- Imaging Technique Used

- Benefits/Limitations/Conclusion

Reference

- 68Ga
- DOTA

- x
- TOC, TATE

- clinical, 10 patients
- metastatic NET
- PET, PET/CT

- reduced signal from the liver achieved; methodology
improvement needed for implementation of

parametric-based kinetic analysis

[142]

- 99mTc, 177Lu
- DOTA, HYNIC, EDDA

-6-carboxy-1,4,8,11-tetraazaundecane (N4)
-p-Cl-Phe-cyclo(D-Cys-Tyr-D-Trp-Lys-Thr-

Cys)D-Tyr-NH2

- preclinical in vitro, in vivo
- kidneys

- SPECT/CT
- more useful biodistribution results for a highly potent

[99mTc]Tc-N4-conjugate than with lutetium-177;
HYNIC-conjugate with complete loss of SSTR-2 affinity

[143]

- 68Ga
- DOTA, NODAGA

- x
- JR11, TOC

- clinical, 12 patients
- GEP-NET
- PET/CT

- very high TBR and image contrast of liver lesions for
[68Ga]Ga-NODAGA-JR11; studies in larger patient

group proven

[60]

- 68Ga
- DOTA, fluorescein isothiocyanate

- x
-PA1, TATE

- preclinical in vitro, in vivo
- lung, colorectal and gastric

- microPET
- effective tumor targeting and lower kidney

accumulation of [68Ga]Ga-DOTA-PA1; a potential for
PET/CT of SSTR-positive tumors (especially lung)

suggested

[144]

- 64Cu
- NODAGA, DOTA

- x
- JR11, TATE

- preclinical in vitro, in vivo
- kidneys

- microPET
- more favorable in vivo pharmacokinetics, low levels in

the liver, spleen and rapid blood clearance for
[64Cu]Cu-NODAGA-JR11 with further development for

clinical translation

[145]

- 99mTc
- HYNIC, EDDA, tricine

- x
- TATE

- preclinical in vitro, in vivo; clinical, 6 patients
- NET

- SPECT/CT
- reproducible kit with 2.96 GBq/6 mL formulated, but

some differences in tumor uptake occurred

[146]

- 68Ga
- DOTA

- x
- TOC

- clinical, 4 patients
- GEP-NET
- PET/MRI

- sensitive and accurate evaluation of the liver, but
limited accuracy of MRI related to lung and bone

diseases

[147]

- 68Ga
- DATA

- x
- TOC

- clinical, 53 patients
- GEP-NET
- PET/CT

- comparable imaging profile of [68Ga]Ga-DATA-TOC
with DOTA-NOC; DATA-conjugate useful for instant kit

labeling

[148]
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4.2. Bombesin and Its Analogues for Gastrin-Releasing Peptide Receptor (GRPR) Imaging

Bombesin (BBN) is a 14 AA peptide analogue (see the sequence in Figure 13) to the
gastrin-releasing peptide and it represents an interesting probe for targeting of gastrin-
releasing peptide receptors (GRPR) relevant in oncology.
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In total, four receptors belong to the family of GRPR, namely neuromendin B receptor
BBR1, gastrin-releasing peptide receptor BBR2, orphan receptor BBR3, and amphibious
receptor BBR4. Predominantly the BBR2 is upregulated in cancer cells such as breast, lung,
pancreas, colon, and prostate [149]. Research with radiolabeled BBN analogues has become
increasing since the development of [99mTc]Tc-Lys3-BBN in 1998 [150]. Since then, most of
these radiolabeled analogues have been designed as GRPR agonists with a favorable inter-
nalization in cancer cells. Meanwhile, several studies have demonstrated unwanted side
effects of agonists connected with their GRPR activation, thus a research field has shifted its
interest to antagonists [151]. Radiolabeled GRPR antagonists have shown superior value
to the agonists in terms of better pharmacokinetic properties, very good in vivo stability
and, by that, sufficient retention in cancer cells [152]. New GRPR antagonists have been
developed with a potential for the clinical translations (see summarized studies in Table 8).

Table 8. Summary of radiolabeled bombesin analogues for GRPR-positive tumor imaging over past 3 years.

Composition of Studied Compounds
- Metal Radionuclide

- BFCA
- Linker
- Peptide

Results and Findings
- Phase of Trials

- Cancer Type Studied
- Imaging Technique Used

- Benefits/Limitations/Conclusion

Reference

- 67Ga, 68Ga, 111In, 177Lu
- DOTA

- p-aminomethylaniline-diglycolic acid
- NeoBOMB1

- preclinical in vitro, in vivo; clinical, 4 patients
- prostate
- PET/CT

- [68Ga]Ga-NeoBOMB1 with preserved GRPR affinity, high
in vivo stability, and high contrast image in patients

[152]

- 55Co, 57Co
- NOTA
- PEG2
- RM26

- preclinical in vitro, in vivo
- prostate

- SPECT/CT, PET/CT
- favorable pharmacokinetics and 3-fold lower

internalization of 55Co-labeled peptide compared to
111In-labeled conjugate making it potential “next day”

high contrast PET imaging probe

[153]

- 64Cu
- DOTA with hydroxamic acid arms (DOTHA2),

NOTA
- PEG

- RM26

- preclinical in vitro, in vivo
- prostate

- microPET/CT
- fast elimination and slightly better in vivo imaging

properties for DOTHA2-conjugate than reference

[73]

- 64Cu
- DOTA, NODAGA

- [Pro-Gly]12 linker, PEG3
- RGD, BBN(7–14)

- preclinical in vitro, in vivo
- prostate

- microPET
- NODAGA-conjugate for dual αvβ3/GRPR targeting

with better pharmacokinetics than DOTA, but low tumor
uptake in vivo

[74]
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Table 8. Cont.

Composition of Studied Compounds
- Metal Radionuclide

- BFCA
- Linker
- Peptide

Results and Findings
- Phase of Trials

- Cancer Type Studied
- Imaging Technique Used

- Benefits/Limitations/Conclusion

Reference

- 68Ga
- DOTA

- N-(γ-maleimidobutyryloxy) succinimide ester
- PSMA, Lys3-BBN(1-14)

- preclinical in vitro, in vivo
- pulmonary and prostate

- microPET/CT
- higher cell uptake and internalization, greater affinity for

GRPR but lower for PSMA of dimer compared to single
[68Ga]Ga-BBN/-PSMA monomers

[154]

- 68Ga
- DOTA

-4-amino-1-carboxymethylpiperidine
- RM2

- clinical, 16 patients
- prostate

- PET/CT, multiparametric MRI
- fusion of MRI and PET/CT improved detection of a

primary disease, but expression of GRPR and PSMA was
not correlated

[155]

- 68Ga
- DOTA prepared from cyclen, DOTA-tris-(t-Bu)

ester
- x

- BBN derivatives

- preclinical in vitro, in vivo
- breast and prostate

- preclinical nanoPET/CT
- potency and efficiency of site-specific DOTA-cyclen

comparable to that of DOTA-ester

[156]

- 99mTc
- N4-chelator

- PEG2-4
-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NH-CH2-

CH3

- preclinical in vitro, in vivo
- prostate

- gamma counter
- PEG spacer length with only little effect on GRPR affinity,

tumor uptake and in vivo stability

[157]

- 44gSc, 68Ga
- DOTA

- aminovaleric acid
-Gln7-Trp8-Ala9-Val10-Sar11-His12-FA0101013-

Tle14-NH2

- preclinical in vitro, in vivo
- prostate and breast cancer

- PET/CT
- 44gSc-conjugate with low uptake in breast cancer cells,

but high tumor uptake and retention in prostate;
differences in in vitro GRPR binding properties, but no in

in vivo

[158]

4.3. Cholecystokinin and Its Analogues for Cholecystokinin Receptor (CCKR) Imaging

Cholecystokinin (CCK) is a peptide hormone, which regulates various actions pre-
dominantly in the gastrointestinal tract and central nervous system. CCK was initially
characterized with a 33 AA sequence, but later, the peptide was shown to be present in
more biologically active forms (e.g., CCK4, CCK8, CCK33, CCK39) derived from a 115 AA
precursor [159]. A total of three types of CCK receptors from the G-protein coupled recep-
tors family have been identified, CCK1 known as CCK A, CCK2 known as CCK B, and
CCK2i4sv receptor, respectively. The extensively studied receptors are CCK1, characterized
in pancreatic cells and mainly located in periphery, and CCK2 located in the brain, stomach,
pancreas, and gall bladder, and overexpressed in cancer types such as small cell lung
cancers and medullary thyroid carcinomas [159]. The cholecystokinin octapeptide CCK8
(see its AA sequence in Figure 14) and minigastrin are of the most evaluated molecules for
CCK2 receptors. All synthesized peptide analogues have the C-terminal receptor-binding
tetrapeptide sequence of Trp-Met-Asp-Phe-NH2 in common. Many of the CCK8 and mini-
gastrin analogues were developed and evaluated up to 2010, the studies over past 3 years
are summarized in Table 9.
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Table 9. Summary of radiolabeled CCK/minigastrin analogues for CCKR-positive tumor imaging over past 3 years.

Composition of Studied Compounds
- Metal Radionuclide

- BFCA
- Linker
- Peptide

Results and Findings
- Phase of Trials

- Cancer Type Studied
- Imaging Technique Used

- Benefits/Limitations/Conclusion

Reference

- 68Ga, 89Zr
- fusarinine C (FSC)

- x
-MG11

- preclinical in vitro, in vivo
- epidermoid

- microPET/CT
- decreased hydrophilicity, increased metabolic stability
and kidney retention for dimer and trimer, and reduced

TBR of 89Zr-monomer and dimers

[160]

- 111In
- DOTA

- x
- minigastrins MGS1, MGS2, MGS3, MGS4

- preclinical in vitro, in vivo
- epidermoid, pancreatic

- nanoSPECT/CT
- modified C-terminal of [111In]In-DOTA-MGS4 led to high
CCK2R affinity, an improved biodistribution profile and a

promising in vivo stability, tumor targeting, and TBR

[161]

- 99mTc
- HYNIC, EDDA

- x
-MGS5, MGS11

- preclinical in vitro, in vivo
- epidermoid

- gamma counter, autoradiography
- [99mTc]Tc-HYNIC-MGS11 with high resistance against

enzymatic degradation and useful targeting profile similar
to DOTA-analogue; a promising kit development of for

CCK2R-imaging and radioguided surgery

[162]

- 111In
- DOTA

- x
- (D-Glu1−6)minigastrin

- clinical, 16 patients
- advanced medullary thyroid

- SPECT/CT
- high uptake in lesions and favorable dosimetry

confirmed, but increased calcitonin concentrations in
blood; initiation of 177Lu-analogue assessment

[163]

4.4. Exendin Analogues for Glucagon-Like Peptide 1 (GLP-1) Receptor Imaging

Glucagon-like peptide 1 (GLP-1) is an intestinal peptide hormone with a 36 AA
sequence (see Figure 15), which stimulates insulin secretion. An action of the GLP-1
and its analogues is mediated through a glucagon-like peptide-1 receptor as a class B of
G-protein-coupled receptor. The GLP-1 receptor was identified by radioligand binding
experiments [164] and is expressed mainly in the stomach, pancreas, and brain. The GLP-1
receptor has been found predominantly in insulinomas, gastrinoma, pulmonary neuroen-
docrine tumors, and medullary thyroid cancer. GLP-1 analogues have been synthesized
for the GLP-1 receptor targeting, from which exendin-4 as an agonist and exendin-3 as an
antagonist have been widely studied (Table 10).
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Table 10. Summary of radiolabeled exendin analogues for GLP-1 receptor-positive tumor imaging over past 3 years.

Composition of Studied Compounds
- Metal Radionuclide

- BFCA
- Linker
- Peptide

Results and Findings
- Phase of Trials

- Cancer Type Studied
- Imaging Technique Used

- Benefits/Limitations/Conclusion

Reference

- 111In
- DTPA
- lysine

- exendin-3

- preclinical in vitro, in vivo
- insulinoma

- SPECT
- hexendin40–45 conjugate (with 6 Lys and 6 DTPA

residues) as the most useful due to the 7-fold higher
specific activity than simpler conjugates and improved

visualization of the pancreas

[67]

- 111In
- NODAGA

- albumin-binding moiety (ABM)
- exendin-4

- preclinical in vitro, in vivo
- insulinoma
- SPECT/CT

- significantly reduced kidney uptake and improved
GLP1R targeting, but a further assessment of whole-body

doses needed

[68]

- 68Ga
- NOTA

- methylaminolevulinate
- Cys39-exendin-4

- preclinical in vitro, in vivo
- pheochromocytoma (PCM)

- microPET
- specific GLP1R targeting in both poorly and highly
differentiated PCM cells, but high accumulation in

kidneys; more studies needed to establish association
between GLP-1R PET and a risk stratification of PCM

[165]

- 64Cu
- NODAGA

x
- Lys40-exendin-4

- preclinical in vivo
- insulinoma
- PET/MRI

- high background signal from the exocrine pancreas
observed during an early time points; the positive

correlation between [64Cu]Cu-Ex4, reflecting β-cell mass,
and Mn-retention demonstrated by a simultaneous

PET/MRI

[166]

4.5. RGD Analogues for Integrin Receptors Imaging

Nowadays, over 20 subtypes of integrin family receptors are known, from which αvβ3,
but also αvβ5 and αvβ6 are of well-studied subtypes recognizing the Arg-Gly-Asp (RGD)
peptide (Figure 16), and their expression correlates with metastasis.

An enhanced αvβ3 expression is associated with angiogenesis, tumor growth, inva-
sion, and metastasis. The αvβ3 integrins expression has been demonstrated in various
endothelial and cancer cells such as breast, gastric, non-small cell lung, pancreatic, ovarian,
and prostate cancer, oral squamous cell carcinoma, melanoma, or glioma [167]. Over the
last decades, many radiolabeled bioactive molecules with the RGD motif have been syn-
thesized and evaluated for the integrin αvβ3-positive tumors targeting, providing useful
conjugates for clinical translation (see summary in Table 11). Since 2018, a number of
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traditional syntheses of novel BFCA-RGD conjugates has rapidly decreased due to the
utilization of RGD peptides for a nanoparticle coupling.
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Table 11. Summary of radiolabeled RGD analogues for αvβ3 receptor-positive tumor imaging over past 3 years.

Composition of Studied Compounds
- Metal Radionuclide

- BFCA
- Linker
- Peptide

Results and Findings
- Phase of Trials

- Cancer Type Studied
- Imaging Technique Used

- Benefits/Limitations/Conclusion

Reference

- 68Ga
- DOTA, TRAP, FSC, THP

- glutamic acid
- (RGD)3, [c(RGDfK)]2

- preclinical in vitro, in vivo
- renal, head and neck

- microPET/CT
- the highest tumor uptake for FSC- and THP-conjugates,

but further studies on binding behavior to
integrins needed

[168]

- 99mTc
- glucoheptonate, D-penicillamine

- Ahx
- c(RGDfK)

- preclinical in vitro, in vivo
- glioma

- microSPECT/CT
- [99mTc]Tc-[Pen-Ahx-c(RGDfK)]2 with the 10-fold higher

integrin affinity than the monovalent
(Pen-Ahx-c(RGDfK)), but high uptake in the liver,
intestine, and kidney calls for an improvement of

pharmacokinetics

[169]

- 99mTc
- IDA

- aspartic acid
- [c(RGDfK)]2

- clinical, 6 patients
- x

- gamma camera
- radiation doses of renal and biliary system comparable to

other 99mTc-labeled peptides, further dosimetry studies
needed for a risk-benefit assessment

[170]

- 68Ga
- NOTA-NHS

- 6-Ahx, cysteine
- c(RGDyK), GE11

- preclinical in vitro, in vivo
- lung

- PET/CT
- enhanced tumor accumulation of

[68Ga]Ga-NOTA-RGD-GE11 than monomeric
RGD-conjugate, but a modification of linkers needed for

an improvement of pharmacokinetics

[171]

- 68Ga
- NOTA

- PEG3, symmetric β-glutamate linker
- RGD2

- preclinical in vitro, in vivo
- prostate

- PET
- significant limitations due to high renal and bladder

accumulation, but low uptake in other organs

[172]
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Table 11. Cont.

Composition of Studied Compounds
- Metal Radionuclide

- BFCA
- Linker
- Peptide

Results and Findings
- Phase of Trials

- Cancer Type Studied
- Imaging Technique Used

- Benefits/Limitations/Conclusion

Reference

- 99mTc
- HYNIC, tricine, TPPTS

- x
- RGD2

- clinical, 20 patients
- breast

- gamma camera
- good uptake in breast lesions and also metastatic sites in
lymph nodes visible in 2 patients - useful easily available

kit for further clinical studies

[173]

- 68Ga
- DOTA

- glutamic acid
- (cRGDfK)2

- preclinical in vitro, in vivo
- lung

- PET/CT
- 68Ga-labeled conjugate with highly hydrophilic

properties, high tumor accumulation, moderate in vivo
uptake in kidneys and intestine, with a potential for early

detection of lung lesions

[174]

4.6. Other Radiometal Labeled Peptide Analogues for Imaging of Other Tumor Receptors

Neurotensin (NT), α-melanocyte stimulating hormone (α-MSH), substance P, and
vasoactive intestinal peptide (VIP) represent other important radiometal labeled peptide
analogues for imaging of various other significant tumor receptors (Figure 17).
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kit for further clinical studies 

[173] 

- 68Ga 
- DOTA 

- glutamic acid 
- (cRGDfK)2 

- preclinical in vitro, in vivo 
- lung 

- PET/CT 
- 68Ga-labeled conjugate with highly hydrophilic proper-

ties, high tumor accumulation, moderate in vivo uptake in 
kidneys and intestine, with a potential for early detection 

of lung lesions 

[174] 
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The NT is a neurotransmitter and hormone with a sequence of 13 AA, in which the
C-terminal NT(8–13) is responsible for affinity and activity to a NT receptor. There are three
types of the NT receptors: NTR1–NTR3, where NTR1 is an extensively studied receptor and
a promising target for cancer imaging. The NTR1 overexpression has been demonstrated
in a tumor progression, e.g., in pancreas and colon adenoma, but also in breast, lung,
or prostate cancer, while the expression of NTR2 has been reported in prostate cancer,
lymphatic leukemia, and glioma [175]. Several NT analogues have been developed as
effective targets for colorectal adenocarcinoma cells (Table 12).

The α-MSH is a neuropeptide with a sequence of 13 AA that is selectively bound to
a melanocortine-1 receptor (MC1) overexpressed in leukocytes, melanocytes, and trans-
formed melanoma cells, and is primarily responsible for a regulation of inflammatory
state and skin pigmentation [176]. Numerous α-MSH analogues have been developed as
attractive targets for melanoma radiodiagnosis or imaging (Table 12).

The substance P with a 11-AA sequence belongs to a family of tachykinins and exerts
its activity through the G protein-coupled neurokinin receptors (NKR), i.e., NK1R–NK3R,
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with the highest affinity of NK1R. The substance P has been found in various cell systems
bearing NK1R, such as immune cells, monocytes, macrophages, lymphocytes, microglia,
dendritic cells, bone marrow stem cells, and others. In the central nervous system, NK1R
are expressed in neurons, astrocytes, microglia, and cerebral endothelial cells [177]. Effects
of the substance P in human organism include: immune and secretion stimulation, smooth
muscle contraction (pulmonary, urinary, GIT, and vascular system), and is involved also
in a pain transmission, vasodilatation, connective-tissue cell proliferation, and neuroim-
mune modulation [177]. Thus, substance P analogues and NK1R antagonists have been
synthesized and used for the NK1R-positive tumor detection as shown in Table 12.

The VIP is a peptide with a 28 AA sequence that regulates various immune cells, pro-
motes vasodilatation, growth and function of tumor cells. Its biological action is mediated
through three classes of the G-protein-coupled receptors VPAC1, VPAC2, and PAC1. The
receptors for VIP occurs in numerous tumor cells including thyroid, breast, lung, liver,
pancreas, intestinal epithelial cells, colon, bladder, prostate, uterus, and neuroendocrine
tumors [178,179].

Table 12. Summary of radiolabeled NT, α-MSH, substance P, and VIP analogues for other important receptor-positive
tumor imaging over past 3 years.

Composition of Studied Compounds
- Metal Radionuclide

- BFCA
- Linker
- Peptide

Results and Findings
- Phase of Trials

- Cancer Type Studied
- Imaging Technique Used

- Benefits/Limitations/Conclusion

Reference

- 99mTc
- HYNIC, EDDA, tricine

- x
- [Ac-Lys5, Pro6, βAla7, Tle12]NT(5–13)

- preclinical in vitro, in vivo
- colorectal

- gamma camera
- useful for early tumor SPECT staging due to appropriate tumor

accumulation, high stability, low liver accumulation, and high
kidney excretion

[180]

- 68Ga
- DOTA(tBu)3

- 4- amino piperidin-1-yl-acetic acid
- Lys8-Lys9-Pro10-Tyr11-Ile12-Leu13-OH

modified with TMSAla12/13

- preclinical in vitro, in vivo
- colorectal

- microPET/CT
- good NTR1 selectivity and prolonged plasmatic half-life of

[68Ga]Ga-(TMSAla13)-conjugate; further in vivo uptake and impact
of other metals (111In, 177Lu, 161Tb) under investigation

[181]

- 99mTc
- DPA

- Ahx-βAla, ethylene glycol (EG) based
linker

-Nle-Asp-His-D-Phe-Arg-Trp-Gly-NH2

- preclinical in vitro, initial in vivo
- melanoma

- x
- high in vitro stability of [99mTc]Tc-tricarbonyl-DPA base;

EG linker more useful than Ahx

[182]

- 111In
- NHS-DOTA (3-arm), SCN-Bn-DOTA

(4-arm)
- x

- α-MSH

- preclinical in vitro, in vivo
- melanoma

- SPECT
- higher lipophilicity, higher MC1-R affinity, and relatively higher

stability of 4-arm DOTA-conjugates than 3-arm

[183]

- 64Cu
-SCN-NOTA, bispidine carbonate,

SCN-dipyridylmethyl-TACN
- Ahx-β-Ala

-Nle-Asp-His-D-Phe-Arg-Trp-Gly-NH2

- preclinical in vitro, initial in vivo
- melanoma

- gamma counter
- high hydrophilicity and sufficient MC1R-affinity of

64Cu-conjugate, but lower than that of [125I]I-NDP-MSH

[184]

- 99mTc
- NOTA, NODAGA

- Gly-Gly-Nle
-c[Asp-His-DPhe-Arg-Trp-Lys]-NH2

- preclinical in vitro, in vivo
- melanoma

- nanoSPECT/CT
- NOTA-conjugate with better tumor targeting and biodistribution

properties; study with rhenium-188 suggested

[185]
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Table 12. Cont.

Composition of Studied Compounds
- Metal Radionuclide

- BFCA
- Linker
- Peptide

Results and Findings
- Phase of Trials

- Cancer Type Studied
- Imaging Technique Used

- Benefits/Limitations/Conclusion

Reference

- 99mTc, 177Lu
-tris(2-mercaptoethyl)-amine,

isocyanobutyric acid succinimidyl ester,
DOTA

- x
- various SP analogues

- preclinical in vitro
- glioblastoma

- x
- lipophilic conjugates with specific tumor binding, high stability in

buffer solutions, but lower stability in human serum

[186]

- 64Cu, 67Ga
- NOTA

- x
- NK1R antagonist

- preclinical in vitro, in vivo
- kidney

- PET/CT
- high in vivo stability, tumor uptake and good liver and renal

clearance of [64Cu]Cu-NOTA-conjugate

[187]

- 68Ga
- NODAGA

- PEGx
- BBN(7-14), PACAP-27

- preclinical in vitro
- x

- improved stability of heterobivalent conjugates and comparable
uptakes in tumor cells to those of monomers, further evaluation for

in vivo PET/CT in progress

[188]

- 68Ga
- NODAGA, DOTA

- x
- PACAP-27

- preclinical in vitro, in vivo
- breast

- PET/CT
- low in vivo stability, but greater VPAC-affinity and tumor

delineation only for NODAGA-conjugate

[189]

- 64Cu
- N2S2 chelator

- x
- TP3805

- preclinical in vitro, in vivo
- brain

- microPET/CT
- more specific brain tumor delineation than [18F]FDG, further

investigation for clinical translation warranted

[190]

4.7. Small Peptide Inhibitors of Proteins for Protein-Positive Tumor Imaging

Many protein interactions in a biological system are responsible for an origination
or progression of various diseases including cancer. In recent years, inhibitors of such
proteins based on small peptide biomolecules are widely developed and investigated.
This subsection covers the latest radiolabeled peptide inhibitors of the prostate-specific
membrane antigen (PSMA) and fibroblast activation protein (FAP) for imaging of related
tumors (see summarized studies in Table 13).

The PSMA is a membrane-bound folate gamma glutamyl-carboxypeptidase II, which
is physiologically present in various tissues, e.g., salivary glands, ovary, prostate epithelium,
and astrocytes [191]. From the cancerous cells, it is primarily expressed in benign and
malignant prostatic tissue [192]. However, studies on the PSMA-expression in also other
tumor types are available, including breast, gastric, and colorectal cancer, lung and renal
carcinoma, and brain tumors [193–198]. Thus, PSMA has become one of the most promising
and extensively evaluated molecular targets in nuclear medicine. Research was mainly
focused on monoclonal antibodies, but various radiolabeled small peptide-based inhibitors
containing Glu-C(O)-Lys (EuK) sequence (see Figure 18A) have been recently developed to
effectively localize and treat related tumors. Other two functionalities, i.e., phosphonates
and thiols, with affinity to PSMA have been identified. The most widely used example
of such inhibitor is the [68Ga]Ga-PSMA-11 (i.e., 68Ga-labeled Glu-NH-CO-NH-Lys(Ahx)-
HBED-CC) [199]. At present, it is included in many clinical trials that monitor various
conditions in a prostate cancer management.
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Another extensively studied protein with selective expression in several tumor types
is FAP, a serine protease. The FAP protein has been associated with fibrosis, inflammation
and cancer, and is undetectable in a majority of normal adult tissues [200]. Several works
revealed its localization not only in activated fibroblasts [201], but also in endothelial cells
and macrophages [202,203]. The participation of FAP in a cell invasiveness, proliferation,
migration and tumor vascularization has been described [204]. The FAP overexpression and
activation has been observed in various malignancies, e.g., pancreatic, hepatocellular, lung,
breast, colorectal, or ovarian [205–210]. Different strategies are investigated to target FAP
activity such as (i) probes with fluorescent moiety, (ii) prodrug delivery systems, (iii) FAP
inhibitors (FAPI), and (iv) immune-based pathways [211]. Radiolabeled peptide FAPI based
on 2-cyanopyrrolidin-quinoline carboxamide structure (Figure 18B) were developed [212]
and then FAPI linkers have been modified to improve pharmacokinetic properties, tumor
binding, and PET images [213]. Further structural modifications and clinical studies are
underway and thus FAPI represent new attractive imaging and therapeutic options for
oncological diseases.
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Table 13. Summary of radiolabeled small peptide inhibitors for PSMA- and FAP-positive tumor imaging over past 3 years.

Composition of Studied Compounds
- Metal Radionuclide

- BFCA
- Linker
- Peptide

Results and Findings
- Phase of Trials

- Cancer Type Studied
- Imaging Technique Used

- Benefits/Limitations/Conclusion

Reference

- 68Ga
- THP
- Ahx

- EuK motif (PSMA)

- clinical, 118 patients
- prostate
- PET/CT

- PET/CT impacts on management decisions in high-risk
prostate cancer prior to radical therapy and biochemical

recurrence

[214]

- 99mTc
- HYNIC

- Gly-Ala-Asp-NaphthylAla
- PSMA

- preclinical in vitro, in vivo
- prostate

- SPECT/CT
- [99mTc]Tc-HYNIC-conjugate with approximately similar

pharmacokinetic and binding properties to
[68Ga]Ga-PSMA-11, and great SPECT/CT visualization of

tumor

[215]

- 64Cu
- cyclam derivatives

- naphtylAla, cyclohexane-carboxylic acid
- PSMA

- preclinical in vitro, in vivo; first patient
- prostate

- PET
- [64Cu]Cu-CA003 applied to first patient due to the best

pharmacokinetic and imaging properties

[216]



Pharmaceuticals 2021, 14, 167 26 of 40

Table 13. Cont.

Composition of Studied Compounds
- Metal Radionuclide

- BFCA
- Linker
- Peptide

Results and Findings
- Phase of Trials

- Cancer Type Studied
- Imaging Technique Used

- Benefits/Limitations/Conclusion

Reference

- 68Ga
- HBED-CC

- Ahx
- PSMA

- clinical
- glioblastoma multiforme (GBM)

- PET/CT
- [68Ga]Ga-PSMA-11 as a highly promising agent for

diagnosis of recurrent disease in patients with GBM due
to low tumor-to-liver ratio and increased accumulation in

recurrent lesions

[217]

- 64Cu, 67Cu
- MeCoSar derivative

- iodophenyl-1,2,3-triazolyl derivative
- PSMA

- preclinical in vitro, in vivo
- prostate

- microPET/CT
- Cu-labeled agents as promising alternatives to

68Ga-/177Lu-analogues in centers with limited access to
these ligands

[77]

- 68Ga, 89Zr
- DFO squaramide

- p-aminomethylbenzoic acid
- PSMA

- preclinical in vitro, in vivo
- prostate
- PET/CT

- improved tumor uptake of bivalent inhibitors with 2 EuK
motifs, 89Zr-complex as a promising alternative to

68Ga-analogue

[89]

- 44Sc
- AAZTA derivatives

- naphtylAla
- PSMA

- preclinical in vitro, in vivo
- prostate

- PET/MRI
- dynamic PET images showed high tumor uptake, rapid
clearance from investigated tissue, very low accumulation
at 150 min post-injection in the abdominal organs, lung,

heart and brain, but higher in bladder

[218]

- 68Ga, 177Lu
- DOTA

- piperazine
- FAPI-02,-04

- clinical, 23 patients together
- fibrosarcoma, pancreatic, breast, lung, colon, thyroid,

head and neck
- microPET, PET/CT

- [68Ga]Ga-FAPI-02 with TBR equal to or even better than
[18F]FDG, PET/CT with 68Ga-probes can be performed

without fasting and resting time

[219–221]

- 68Ga
- DOTA

- piperazine
- FAPI-04

- clinical, 80 patients
- 28 different tumor entities

- PET/CT
- the highest uptake in breast, esophagus, lung, pancreatic,
head-neck, and colorectal cancer; FAPI limitations similar

to those of FDG for renal and thyroid cancer

[222]

- 68Ga
- DOTA

- piperazine
- FAPI-02/-04

- preclinical in vitro, in vivo; clinical, 18 patients
- glioma

- microPET, PET/CT
- IDH-wildtype glioblastomas and grade III/IV, but not

grade II IDH-mutant gliomas showed elevated tracer
uptake

[223]

- 64Cu
- DOTA

- piperazine
- FAPI-04

- preclinical in vitro, in vivo
- pancreatic

- microPET/CT
- in vivo accumulation in tumor or normal organs

significantly higher for [64Cu]Cu-FAPI-04 than
[68Ga]Ga-FAPI-04, except in the heart

[224]
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Table 13. Cont.

Composition of Studied Compounds
- Metal Radionuclide

- BFCA
- Linker
- Peptide

Results and Findings
- Phase of Trials

- Cancer Type Studied
- Imaging Technique Used

- Benefits/Limitations/Conclusion

Reference

- 68Ga
- DOTA

- piperazine
- FAPI-04

- clinical, 17 patients
- hepatic

- PET/CT
- high sensitivity in poorly differentiated hepatic tumors

[225]

- 68Ga
- DOTA

- diazabicyclo[2.2.1]heptan containing linker
- FAPI-46

- clinical, 6 patients
- different tumor types

- PET/CT
- high TBR increasing over time and favorable dosimetry

profile (highest effective doses were in bladder wall,
ovaries, red marrow)

[226]

- 68Ga
- DOTA

- piperazine
- FAPI-02/-04

- clinical, 13 patients
- glioblastoma

- PET/MRI
- MRI- and FAP-specific gross tumor volumes were not

congruent

[227]

- 68Ga
- DOTA

- piperazine
- FAPI-04

- clinical, 68/75 patients
- different tumor types

- PET/CT
- higher TBR of FAPI compared to FDG for brain

metastases, FAPI identified more lesions for hepatic and
peritoneal tumor manifestations, and had higher

sensitivity in a detection of lymphonodal, osseous and
visceral metastases

[228,229]

- 99mTc
- OtBu-imidazol containing BFCA

- piperazine
- FAPI-19/-34

- preclinical in vitro, in vivo; clinical, 2 patients
- pancreatic, ovarian

- SPECT
- [99mTc]Tc-FAPI-34 accumulation in tumor lesions similar

to [68Ga]Ga-FAPI-46

[230]

4.8. Radiometal Labeled Sulfonamide-Based Analogues for Tumor Hypoxia Imaging

Hypoxia, a phenomenon when a level of oxygen is below its demands, is a common
feature for tumor development and progression. Many solid tumors have regions perma-
nently or transiently exposed to hypoxia because of aberrant vascularization and a poor
blood supply [231]. Since hypoxia is a key component in cellular expression, tumor blood
vessel formation, cancer progression, metastasis, often leading to cell death, a current re-
search in this area is focused to an early detection and selective monitoring or suppression
of hypoxic tissues to effectively minimize all possible complications associated with this
phenomenon. Many studies have been comprised of radiolabeled small nitroimidazole
derivatives [232–235], and monoclonal antibodies [236,237], resulting in a development
of new agents capable of accessing to overexpressed proteins under hypoxic state (i.e.,
hypoxia inducible factor HIF-1 regulated genes for carbonic anhydrase CA IX, vascular
endothelial growth factor, angiopoietin-2, etc. [238]). Nevertheless, small sulfonamide-
and peptide-based biomolecules labeled with metal radionuclides have been studied for
imaging of various hypoxic tumor cells overexpressing CA IX as one of the prominent
gene in the HIF-induced processes (see summary in Table 14). A highly specific binding of
various sulfonamide derivatives with amino-acid substituents has been demonstrated in
our several recent works. For example, an illustrative superposition and intermolecular
interaction diagram of potential 1,3,5-triazinyl-sulfonamide inhibitor docked into the active
site of human CA IX are in Figure 19A,B.
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Table 14. Summary of radiolabeled small ligands for CA IX-positive tumor hypoxia imaging over past 3 years.

Composition of Studied Compounds
- Metal Radionuclide

- BFCA
- Linker

- Biomolecule

Results and Findings
- Phase of Trials

- Cancer Type Studied
- Imaging Technique Used

- Benefits/Limitations/Conclusion

Reference

- 111In
- DOTA-ester

- x
- bis-ureidosulfonamide derivative

- preclinical in vitro, in vivo
- breast, colorectal

- SPECT/CT
- rapid clearance from blood and muscle, and selective

accumulation within CAIX expressing colon cancer cells

[240]

- 99mTc
- dipyridylamine, IDA

- x
- sulfonamide, sulfocoumarin

- preclinical in vitro, initial in vivo
- colorectal

- x
- significant limitations in very low tumor uptake and

much higher liver uptake

[241]

- 68Ga
- CBT, NODA, pyridine, DOTA-NHS,

NODAGA-NHS
- Asp-Arg-Asp, PEG2 linker

- acetazolamide

- synthesis, initial in vitro
- x

- useful CBT/1,2-aminothiol click reaction for CAIX
ligands with in vitro stability developed

[113]

- 99mTc
- hydroxamamide (Ham),

methyl-substituted-Ham (MHam)
- x

- sulfonamide, ureidosulfonamide

- synthesis, initial in vitro, in vivo
- renal and colorectal

- gamma counter
- [99mTc]Tc-MHam-bivalent conjugate with the highest

tumor specificity useful for further studies

[242]

- 111In
-DOTA-bis(tBu)ester

- x
- imidazothiadiazole sulfonamide

- preclinical in vitro, in vivo
- breast and colorectal

- SPECT/CT
- favorable in vivo properties of [111In]In-DO3A-IS1 with
selective binding and accumulation in CAIX-expressing

colon cancer

[243]
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5. Concluding Remarks and Future Perspectives

Various chemical types of metallic radiopharmaceuticals for use in oncology are
approved by the European Medicines Agency or U.S. Food and Drug Administration.
Apart from these registered radioactive medicines, a much larger scale of radiolabeled
bioactive ligands is under investigation in nuclear research or clinical trials. In this review,
recent advances in the radiolabeling process of amino-acid based biomolecules, the most
commonly used metal radionuclides, their chemistry and BFCA, as well as the most
important peptide receptor families (including currently the most perspective field of
PSMA and FAP ligands), were critically discussed. Continual efforts in proposing new
structures with improved pharmacokinetic properties for selective targeting of cancer
cells and effective utilization in imaging techniques should be guaranteed. The disease
imaging on a molecular level, as well as radionuclide availability on-site, lower radiation
burden, detection of early stage problem, and monitoring of a response to treatment in the
combination with targeted therapy for a personalized approach to a patient, have a great
potential to bring additional valuable outputs in the field of nuclear medicine in future.

Over the past years, great progress in a radiolabeling with metallic radionuclides has
been demonstrated, owing to a development of many new chelators (or new derivatives of
well-known traditional chelators) and linkers for an effective connection between metals
and biomolecules. Modern chelators such as TRAP, THP, and FSC for gallium-68, DFO
for zirconium-89, sarcophagines for copper-64, tricarbonyl and [N,S,X]-type chelators for
technetium-99m and their modifications have been designed to improve binding affinity
and pharmacokinetic properties of a radiolabeled probe for its molecular target. In spite of
remarkable progress, there is still an enormous need to develop target specific compounds
with improved pharmacokinetics and selectivity to a desired in vivo target, because many
studies have confirmed various complications in the development. These are mainly
lower stability, higher toxicity, adverse pharmacokinetic behavior, and higher retention of
radioactivity in studied material in vivo and in vitro. In this context, amino acid moieties
proved to be ones of the most suitable linkers to complete a target-specific structure.
Optimized structures of some of the newly developed radiolabeled biomolecules should
provide enhanced affinity and selectivity to the onco-receptors, lower radiation dosage
for patient, decreased interactions with other drugs or physiological proteins, without
misrepresenting results, and, by that, a more favorable utilization in diagnostic nuclear
medicine over other imaging techniques (e.g., MRI, CT).

Peptides, as amino acid based biomolecules, represent current and future important
tools in a development of target-specific radiolabeled compounds. It is due to a high degree
of their compatibility with many protein structures overexpressed in various diseases,
including cancer, as the second leading cause of death globally. Current research, with a
promising perspective, is directed mainly towards peptide radiolabeled agents that are
aimed at proteins overexpressed in pancreatic, colorectal, prostate, and brain tumors. These
types belong to the most frequently diagnosed and the most severe cancers. The integrin
αvβ3 receptors from traditional receptor families and PSMA, as well as FAP ligands are
very attractive and perspective probes due to their intense association and overexpression
within a variety of cancer cells and new vasculature in general, and so tumor growth,
proliferation, and metastasis.

As emerged from the reviewed studies dealing with an implementation of imaging
methods (PET, SPECT, etc.), in nuclear medicine research, gallium-68, DOTA-based chela-
tors, and amino acid linkers are currently dominating in the research of new potential
diagnostic and imaging agents. In centers, where 68Ga-compounds cannot be used due to
gallium unavailability, alternative PET labels were introduced. For example, yttrium-86
or zirconium-89 could be employed since a remarkable development in small medical
cyclotrons has been achieved over past years. However, there are still new 99mTc-labeled
analogues for SPECT imaging as an alternative method of PET tracers. Other interesting
non-standard radionuclides such as cobalt-55, scandium-44, titanium-45, and manganese-
52 are increasingly utilized in preclinical studies and could be a merit of future investi-
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gations in clinical field. These non-standard metal radionuclides with their therapeutic
pairs represent the highly attractive labels for development of theranostic approaches as
precise predictive biomarkers of a response to therapy strategies. The inherent part of a
diagnostic or imaging process is an applied imaging technique. It is evident that hybrid
methods of SPECT and PET combined with CT is of routine. The ongoing studies could
be focused on a development of probes and methodologies with high anatomical and
functional sensitivity, spatial resolution, as well as mentioned superior pharmacokinetic
profile for a better disease management using SPECT and PET with MRI as an important
tool to improve the diagnostics, staging and planning of treatment strategy.
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Abbreviations

AA amino acid
AAZTA 6-amino-6-methylperhydro-1,4-diazepinetetraacetic acid
AHDA amino-hexanedioic-1-acid
AHX 6-aminohexanoic acid
APCA 2-aminoethyl-piperazine-1-carboxylic acid
BBN bombesin
BFCA bifunctional chelating agent
hCA human carbonic anhydrase
CBT 2-cyanobenzothiazole
CCK(R) cholecystokinin (receptor)
c(RGDfK) cyclo(-Arg-Gly-Asp-D-Phe-Lys)
CT computed tomography
CuAAC Cu(I)-catalyzed azide-alkyne cycloaddition
DATA 6-amino-1,4-diazepine-triacetate
DOTA 2,2′,2”,2′′′-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid
DOTANOC DOTA-Nal3-octreotide
DOTATATE DOTA-Tyr3-octreotate
DOTATOC DOTA-Tyr3-octreotide
DPA 5-(bis(pyridin-2-yl)methyl)amino)pentanoic acid
DTPA diethylenetriamine pentaacetic acid
EDDA ethylenediamine diacetic acid
EDTA ethylenediamine tetraacetic acid
FAP fibroblast activation protein
GE11 Tyr-His-Trp-Tyr-Gly-Tyr-Thr-Pro-Gln-Asn-Val-Ile
GEP NET gastroenteropancreatic neuroendocrine tumors
GLP glucagon-like peptide
GRPR gastrin-releasing peptide receptor
HBED-CC N,N′-bis-[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N′-diacetic acid
HIF hypoxia inducible factor
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HPLC-DAD high performance liquid chromatography-diode array detection
HYNIC 6-hydrazinopyridin-3-carboxylic acid
IDA iminodiacetic acid
IEDDA inverse electron-demand Diels-Alder reaction
JR11 p-Cl-Phe-cyclo(D-Cys-Aph(Hor)-D-Aph(cbm)-Lys-Thr-Cys)D-Tyr-NH2
MAG3 mercaptoacetylglycylglycylglycine
MC melanocortin (receptor)
MG11 [3-MP0-D-Glu1,desGlu2−6]-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2
MRI magnetic resonance imaging
NeoBOMB1 D-Phe-Gln-Trp-Ala-Val-Gly-His-NH-CH[CH2-CH(CH3)2]2
NET neuroendocrine tumors
NHS N-hydroxysuccinimidyl-ester
NKR neurokinin receptor
NODAGA 1,4,7-triazacyclononane-1-glutaric acid-4,7-diacetic acid
NODAPA 1,4,7-triazacyclononane-1,4-diacetic acid-7-p-phenylacetic acid
NODASA 1,4,7-triazacyclononane-1-succinic acid-4,7-diacetic acid
NOTA 2,2′,2”-(1,4,7-triazanonane-1,4,7-triyl)triacetic acid
NOTP 1,4,7-Triazacyclononane-1,4,7-tri(methylene phosphonic acid)
NP nanoparticle
NSCLC non-small cell lung cancer
NT(R) neurotensin receptor
PA1 cyclo[HyPro-Phe-d-Trp-Lys-Tyr(Bzl)-Phe]
PAC-1 procaspase-activating compound receptor
PACAP pituitary adenylate cyclase-activating peptide
PCTA 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid
PEG polyethylene glycol
PET positron emission tomography
PC prostate cancer
PSMA prostate-specific membrane antigen
RGD arginine-glycine-aspartic acid
RM26 1,4,7-triazacyclononane-N,N,N-triacetic acid-D-Phe-Gln-Trp-Ala-Val-Gly-His-

Sta-Leu-NH2
RM2 DOTA-4-amino-1-carboxymethylpiperidine-D-Phe-Gln-Trp-Ala-Val-Gly-His-

Sta-Leu-NH2
SERRS surface-enhanced resonance Raman scattering
SPAAC strain-promoted azide-alkyne cycloaddition
SPECT single-photon emission computed tomography
SPPS solid phase peptide synthesis
SST(R) somatostatin (receptor)
TBR tumor-to-background ratio
TETA 2,2′,2”,2′′′-(1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetrayl)tetraacetic acid
THP tris(hydroxypyridinone)
TMSAla (L)-trimethylsilylalanine
TOC Tyr3-octreotide
TPPTS trisodium triphenylphosphine-3,3′,3”-trisulfonate
TRAP 1,4,7-triazacyclononane-1,4,7-tris(methylene(2-carboxyethylphosphinic acid))
UV ultraviolet (detection)
VIP vasoactive intestinal peptide
VPAC receptor for vasoactive intestinal peptide
α-MSH α-melanocyte stimulating hormone
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