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Abstract: The cell plasma membrane is mainly composed of phospholipids, cholesterol and em-
bedded proteins, presenting a complex interface with the environment. It maintains a barrier to
control matter fluxes between the cell cytosol and its outer environment. Enveloped viruses are
also surrounded by a lipidic membrane derived from the host-cell membrane and acquired while
exiting the host cell during the assembly and budding steps of their viral cycle. Thus, model mem-
branes composed of selected lipid mixtures mimicking plasma membrane properties are the tools
of choice and were used to decipher the first step in the assembly of enveloped viruses. Amongst
these viruses, we choose to report the three most frequently studied viruses responsible for lethal
human diseases, i.e., Human Immunodeficiency Type 1 (HIV-1), Influenza A Virus (IAV) and Ebola
Virus (EBOV), which assemble at the host-cell plasma membrane. Here, we review how model
membranes such as Langmuir monolayers, bicelles, large and small unilamellar vesicles (LUVs
and SUVs), supported lipid bilayers (SLBs), tethered-bilayer lipid membranes (tBLM) and giant
unilamellar vesicles (GUVs) contribute to the understanding of viral assembly mechanisms and
dynamics using biophysical approaches.

Keywords: viral assembly; biomimetic membranes; membrane proteins; membrane dynamics

1. Introduction

The plasma membrane (PM) is a complex cellular interface separating the cytosol from
its environment while maintaining exchanges. The PM is mainly composed of phospho-
lipids, cholesterol, sphingo- and glyco-lipids and embedded proteins, sometimes decorated
by oligosaccharides and often structured by the underlying cell cytoskeleton [1]. The PM
acts as a barrier to control matter fluxes between the cell’s interior and its outer environ-
ment; it is a main actor in cell homeostasis. Amongst all the identified viruses, enveloped
viruses are surrounded by a lipid membrane derived from the host cell, acquired while
budding from the cell after viral particle assembly, i.e., during the late steps in their replica-
tion cycle. For example, well known human pathogens such as Human Immunodeficiency
Virus Type 1 (HIV-1), Influenza A Virus (IAV) and Ebola Virus (EBOV) assemble at the
cell plasma membrane. The molecular interplay occurring during the assembly of viral
proteins at the cell membranes is an important process to understand for developing inno-
vative broad-spectrum antiviral strategies. In order to tackle the viral-protein–cellular-lipid
interactions occurring during viral assembly, from the molecular to the atomic level, model
membranes, made of lipid mixtures mimicking the PM’s properties can be used. These
model membranes can be ranked in order of their similarity to the plasma membrane.
These include: Langmuir monolayers, bicelles and large and small unilamellar vesicles
(LUVs & SUVs), consisting of a first group, in which either one monolayer is absent or the
intrinsic curvature is too high; and supported lipid bilayers (SLBs), tethered-bilayer lipid
membranes (tBLM) and giant unilamellar vesicles (GUVs), which are better models for the
cell plasma membrane.
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Viral assembly, which is mainly driven by the self-assembly of viral structural proteins,
precedes new particle release from the host cell. In the case of HIV-1, for example, 5 min
are required for the viral particle to assemble, whereas budding and particle release occur,
on average, 15 min later, independently of the cell type [2,3]. Viral assembly can be
seen as a protein polymerization process involving three main steps, namely initiation,
elongation and termination. In the case of enveloped virus assembly, initiation is always
difficult to define. Here, we define initiation as the nucleation step, i.e., the generation
of a nucleus containing a small number of viral and host components, as follows: in the
case of HIV-1, structural group-specific antigen (Gag) proteins, the viral RNA genome and
host-cell membrane lipids; and, in the case of Influenza, the viral M1 and M2 proteins
and the host-cell plasma membrane phosphophatidylserine. Initiation/nucleation requires
an energetic barrier to be overcome [4]. From this perspective, the membrane can act
as a dimensional catalyzer, which increases the probability of viral protein/viral protein
and/or viral protein/genome complex encounters, as well as favoring assembly through
entropic effects. In the very first step in membrane assembly, viral proteins are recruited at
the membrane, generally via the interaction of the proteins with charged phospholipids.
For example, the Matrix (MA) domain of the HIV-1 Gag polyprotein interacts with the
phosphoinositol 4,5-bisphosphate, PI(4,5)P2 [5,6], (Figure 1A). At the same time, via its
nucleocapsid domain, Gag particles also interact with its viral RNA genome, and both
phenomena lead to the formation of the nucleus for subsequent Gag protein assembly [7,8].
In the case of IAV, the protein M1, and for EBOV, the protein VP40 are both known to mainly
interact with phosphatidylserine (PS) at the inner leaflet of the PM [9,10] (Figure 1B).
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Figure 1. Molecular steps of virus assembly at the plasma membrane. (A) HIV-1 Gag binds to
the membrane via its myristoyl segment insertion and interacts mainly with negatively charged
lipids PI(4,5)P2 via the HBR region of its MA domain to form lipid domains enriched in PI(4,5)P2

and cholesterol. (B) IAV M1 interacts with negatively charged PS and clusters cholesterol to form
lipid domains. The multimerization was also proposed to be initiated at the location of the M2
transmembrane ion channel. (C) EBOV VP40 dimers existing in solution either reorganize in octamers
to bind RNA or multimerize in hexamers, which elongate in filaments during assembly.

Elongation relies on the self-assembly of these structural proteins. It consists in succes-
sive first-order processes of monomer addition to the existing nucleus [11,12]. For example,
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in the case of HIV-1, the Capsid (CA) domain of the Gag polyprotein is responsible for
Gag-Gag oligomerization, which corresponds to the elongation step. From this perspec-
tive, assembly on the membrane favors correct molecular orientations, helping CA-CA
interactions to occur faster [8,13,14]. For Influenza A, the Matrix protein M1 organizes
viral assembly at the PM. It was proposed that IAV M1 can only self-assemble at the
membrane thanks to its binding to the phosphatidylserine (PS) [15,16], while other studies
have proposed that viral proteins such as HA and NA are needed to fulfill assembly [9].
However, recent studies clearly show that the assembly elongation step occurs thanks to
the interaction of M1 with the cytoplasmic tail (CT) of the M2 protein, a transmembrane
protein ion channel, present at the PM, as the final step in the initiation/nucleation [17]
and that HA/NA is not required [16].

The elongation of the virus assembly in EBOV consists in the multimerization of
VP40 dimers into an array of dimer-dimer interactions through their C terminal domains
(Figure 1C). This elongation step has been shown to be stabilized by the interaction with
PI(4,5)P2 present in the inner leaflet of the cell plasma membrane [18]. The reader can refer
to [10] for more details on the initiation/nucleation and elongation steps of these virus
assembly processes.

For all these viruses, structural proteins must contain designated motifs of basic
amino acids for either interacting with negatively charged phospholipids to assemble on
membranes or recognizing the viral RNA genome for packaging into the particle. The
Nucleocapsid (NC) and Matrix (MA) domains of the HIV-1 Gag polyprotein, as well as
the Nucleoprotein (NP) of IAV and EBOV, have basic domains and the ability to interact
with the viral genomic RNA during packaging, initiating particle assembly. Consequently,
enveloped viruses exit host cells with a lipid bilayer pulled out from the PM during particle
budding. This viral envelope has two main biological purposes: first, it protects the ribo-
nucleocapsid-protein (RNP) complex containing the viral genome from its environment
and, second, it embeds enveloping proteins that favor viral entry/fusion thanks to specific
interactions with their different host-cell receptors (for a review, see [19,20]). During viral
entry, the fusogenic peptide of the viral envelope glycoprotein triggers the fusion of the
viral membrane with the cell PM. It liberates the viral genome inside the cell.

In this review, we will illustrate some of the advances in the understanding of the
molecular processes occurring during viral assembly (initiation and elongation) thanks
to the use of model membranes. The examples given hereafter are focused on the three
human lethal pathogens, namely, HIV-1, IAV and EBOV.

2. An Overview of the Main Types of Model Lipid Membrane

The mimicking lipid membranes’ behavior in order to better understand their prop-
erties has been attempted for a long time in membrane biology (for a history, see [21]).
These lipid-membrane mimics can either be divided into two main classes, i.e., membranes
in solution and membranes on surfaces, or, as stated in the introduction, they can be
classified with increasing complexity from single monolayers at the air–water interface to
micrometric (transversally asymmetric) bilayers in solution. Below, are briefly describe the
different types of model membrane through their advantages and disadvantages in terms
of mimicking biological lipid membranes (see also Figure 2).

2.1. Langmuir Films

Although originally studied by Franklin and Rayleigh, Langmuir showed that a lipid
monolayer can be formed at the air–water interface of a liquid surface. In this monolayer, the
lipids are arranged with the headgroups immersed in water and the alkyl chains exposed to
air (Figure 2A). Lipid monolayers are typically prepared in a Langmuir film by spreading a
lipid organic solvent solution on a water surface, followed by the spontaneous evaporation
of the organic solvent. Due to their amphiphilic nature, the lipids will spontaneously locate
at the air–water interface, thereby producing the monolayer. One of the main advantages
of Langmuir films is that they are easily controlled in terms of physical state (by controlling
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the surface pressure and area or temperature). They have been widely used to characterize
the lipid-phase transition of simple and complex compositions [22]. The possibility of
perfectly controlling the lateral pressure imposed on the monolayer invites the study the
structural arrangement of lipids by X-ray or neutron reflectivity. However, these types of
model membrane are far from the cellular types.
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Figure 2. The different types of model membrane. (A) Langmuir monolayer, which consists in a
thin monolayer of lipid at the air/water interface. (B) Bicelles are autoassembled droplets of lipids
in a polar solvent. Polar heads of lipids are exposed to solvent while apolar acyl chains face each
other. (C) Large and small unilamellar vesicles are single lipid bilayers separating two polar media
vesicles with a diameter of less than 500 nm. (D) Supported lipid bilayers (SLBs) are large, flat, single
bilayers facing a solid support on one side (mica, glass, etc.) and a liquid buffer on the other side.
(E) Tethered-bilayer lipid membranes are adaptations of SLBs, displacing the bilayer from the solid
support in order, for both faces of the bilayer, to be exposed to the same liquid buffer. (F) Giant
unilamellar vesicles are the most appropriate membrane model to mimic cell plasma membranes.
They consist in a single lipid bilayer separating two (identical or not) liquid media.

2.2. Micelles and Bicelles

Micelles can be seen as the soluble version of Langmuir films. Amphiphilic molecules
immersed in a hydrophilic buffer have the spontaneous tendency to form micelles, ex-
posing their hydrophilic heads to the solvent while criss-crossing their hydrophobic tails.
Inverted micelles can also be spontaneously formed in a hydophobic solvent. While
micelles are of little interest for mimicking membranes, bicelles, which represent an in-
termediate morphology between lipid vesicles and micelles, combine some of the at-
tractive properties of both of these model membrane systems. Bicelles are stabilized at
their extremity (Figure 2B) thanks to detergent or detergent-like molecules, such as 3-([3-
Cholamidopropyl]dimethylammonio)-2-hydroxy-1-propanesulfonate (CHAPSO) or DiCy-
cloHexyl Phthalate (DCHP). Their ablity to mimick very small soluble bilayers (size <50 nm)
makes them the objects of choice for elucidating the structure, using NMR, of membrane-
binding proteins [23]. Moreover, they can be oriented in the magnetic field and they have
recently been shown to be made of complex mixtures such as SPM, Chol and PL, mimicking
the Lo-Ld phase encountered in the so-called “raft” domains [24].
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2.3. Unilamellar Vesicles

Unilamellar vesicles are small objects (diameter < 400 nm) made of a lipid bilayer (two
monolayers) separating two hydrophilic media (see Figure 2C). These types of membrane-
mimic, which are also called liposomes, were developed a long time ago and thought to
be useful for medical applications [25]. To make them, the solvent in which the lipids
are dissolved is first evaporated and the lipid film is gently rehydrated with an aqueous
buffer, spontaneously generating multi-lamellar vesicles in the supsension. A series of
alternative suspension-freezing/thawing processes is then performed. The next steps can
be performed by two different methods: sonication, or extrusion through membranes with
different pore sizes (from 30 to 400 nm). Depending on the duration and strength of the
sonication, the vesicle size will also vary from 30 to 400 nm. These vesicles are generally
named SUVs (small unilamellar vesicles) when their diameters (d) are less than 100 nm,
and LUVs (large unilamellar vesicles) when their diameters are >100 nm. They are very
simple to prepare and allow all the possible lipid mixtures to be prepared. Howeverer, their
small size, meaning a high radius curvature and high membrane tension, classify them
as better models for Golgi or Endoplasmic Reticulum (ER) or secretory vesicles than for
plasma membranes.

2.4. Supported Lipid Bilayers

One way to avoid this high tension and high radius curvature is to make planar
lipid membranes on a solid support. This is the aim of supported lipid bilayers (SLBs), in
which the head-groups of the lipids in one leaflet face the support surface, whereas the
headgroups of the lipids in the opposite leaflet are exposed to the bulk solvent (Figure 2D).
Lipid bilayers have to be deposited on a hydrophilic support surface, such as glass or mica.
These SLBs were originally designed by Tamm and McConnell [26]. Two different methods
can be applied. The first, Langmuir–Blodgett (LB) or Langmuir–Schaefer (LS) deposition,
consists in successively pulling the hydrophilic substrate from the water (buffer) phase of
a Langmuir film where the lipids have been deposited in the air phase in order to cover
the substrate with a first monolayer and then to dive from the air phase to the water phase
through the lipid film, in order to orient the second layer with the polar head exposed to
the solvent. The newly made SLB on the support must now stay hydrated. The second
method takes advantage of the high curvature radius and membrane tension of the SUVs.
A suspension of SUVs is deposited on the hydrophilic/charged surface in order to fully
cover its surface after the vesicle adsorption. Due to the high tension, the vesicles tend
to spontaneously fuse, leading to the formation of the SLB. This can be facilitated by the
addition of divalent cations. Although vesicle fusion is a simpler method than LB/LS, as
it only requires the preparation of a vesicle suspension, it typically produces symmetric
lipid bilayers, i.e., the two bilayer leaflets exhibit the same composition, whereas LB/LS
can be used to produce asymmetric lipid bilayers, since the two leaflets are deposited in
two separate steps and can have different lipid compositions. The use of SLBs is often
criticized as SLBs exhibit a monolayer in close proximity to the support, which alters the
physical properties of the monolayer. To circumvent this limitation, lipid bilayers can also
be produced on functionalized surfaces. These SLBs, usually named tethered bilayers, can
be produced by functionalizing the support surface with an anchor-lipid, i.e., a modified
lipid exhibiting a headgroup that can be chemically bound to the support surface with a
spacer (Figure 2E). In order to limit the influence of the support on the physical properties of
the lipid bilayer, lipid bilayers can also be produced on supports previously functionalized
with a polymer brush, another bilayer or DNA/RNA (for a review, see [27]).

2.5. Giant Unilamellar Vesicles

While the sizes of LUVs and SUVs are measured in tenths to hundreds of nm, giant
unilamellar vesicles (GUVs) are measured in µm (from 1 to 100 µm) (Figure 2F). One of
the earliest attempts at forming GUVs was the natural swelling method introduced by
Reeves and Dowben in 1969 [28]. A lipid solution deposited on a surface is dried to form
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a lipid film that is then rehydrated and gently stirred to form vesicles. These vesicles
are mainly thought to form due to the osmotic pressure driving the aqueous solution in
between the stacked lipid bilayers. However, the proportion of GUVs that can be generated
using this method is small. A proposed method through which to overcome this drawback
involves the gel assisted-formation [29] of GUVs, which provides easy and rapid growth,
allowing high yields in the formation process. The second and most famous method is
the electroformation method initially proposed by Angelova and Dimitrov. It consists
in applying an external electric field during lipid swelling [30]. Platinum wires, indium
tin oxide (ITO) and, recently, stainless steel electrodes have been shown to be efficient in
producing GUVs by electroformation. GUVs are considered the best cell-plasma-membrane-
mimicking models. Their size makes them easy to observe under optical microscope. Recent
advances have provided a way to make them transversally asymmetric in order to provide
an even better model of the cell plasma membrane. Two main strategies were developed:
lipid exchange [31] and hemifusion with SLBs [32].

3. Artificial Lipid Membranes as Tools for Viral Assembly Research
3.1. Langmuir Monolayers: A Fine Tuning System

A Langmuir monolayer is composed of a single lipid layer at the interface between an
aqueous environment and the air. However, unlike cellular PMs, it is very easy to tune its
physical parameters, which makes this model system very useful to study protein–lipid
interactions that require controlled membrane physical properties (i.e., the lipids’ packing
density within the monolayer, or the surface pressure applied to the layer).

The assembly of HIV-1 is mainly driven by viral Gag protein oligomerization. Ac-
cessory proteins, such as the viral negative regulatory factor (Nef) protein, could play a
secondary role during HIV-1 particle formation, although this role is still debated. Nef
was described as promoting Gag membrane localization [33]. Pirrone et al. studied the
conformation dependence of myristoylated Nef (myrNef) with lipid and packing density
using hydrogen exchange mass spectrometry, or HX MS (see Lexicon for definition) on
Langmuir monolayers [34]. They showed that myrNef undergoes a conformational change
when the lipid density decreases, turning from a compact conformation adjacent to the
membrane into a form in which the N-terminal arm is inserted into the membrane, causing
Nef core displacement away from the membrane. This study suggested that, depending on
its structure and on the membrane properties, Nef could perform different functions.

It is firmly established that VP40, the major Ebola Matrix protein, regulates virus assem-
bly and egress at the inner leaflet of the host-cell plasma membrane by recognizing PS [10].
To identify the VP40 amino acids involved in membrane recognition, Adu-Gyamfi et al.
generated several VP40 protein mutants and monitored their capacity to penetrate Lang-
muir monolayers by measuring changes in the monolayers’ lateral pressure. These findings
exhibited the involvement of a particular region in the C-terminus domain of VP40 in PM
localization, but also in VP40 self-assembly and particle egress [35]. As such measures
require fine pressure control over the lipids, Langmuir monolayers are the most appropriate
model system to use.

3.2. Using Bicelles to Elucidate the Molecular Structures of Viral Proteins on Membranes

Bicelles represent a relatively small, minimal system of lipid bilayers, comprising flat
disks of lipids with both sides surrounded by the same aqueous environment. They are
widely used in structural/atomistic analyses of membrane binding proteins. On the other
hand, three main methods are currently used to study protein structure: X-ray crystallog-
raphy, cryo-electron microscopy and NMR (see Lexicon and Figure 3A). NMR is the only
method that enables the studies at the atomistic level to be conducted in the solid state
as well as in solution. NMR makes it possible to investigate protein dynamics, as well as
structure, which gives access to the more intimate biological mechanisms of proteins. To
gain an insight into the structure of the MA domain of HIV-1 Gag in interaction with the
membrane, NMR experiments were initially performed in solution with di-C4 and di-C8
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PI(4,5)P2 lipids complexed to MA [5]. From these experiments, a structure was proposed,
exhibiting a strong interaction of the highly basic region (HBR) of MA with the polar head
of the PI(4,5)P2, a switch of the myristoyl group of the MA from an hydrophobic pocket of
the protein towards the exterior, supposedly to the PM and, at the same time, a swap of the
2′ acyl chain of the diC8-PI(4,5)P2 into another hydrophobic pocket of the MA. However,
since the NMR was performed in solution, these structural rearrangements could be ques-
tioned [36]. Subsequently, Vlach and Saad complemented their structural characterization
by using diC8-PI(4,5)P2 in addition to different diC6 acylated lipids (PhosphatidylCholine
(PC), PhosphatidylEthanoamine (PE) and PhosphatidylSerine(PS)) [37]. They observed
that not only did the 2′acyl chain of the PI(4,5)P2 flip into an MA hydrophobic pocket but
that, moreover, in the case of PC, PS or PE, their 2′ acyl chains flipped into distinct MA
hydrophobic pockets. More recently, thanks to the use of bicelles, Mercredi et al. performed
NMR and revisited these previously established MA structures on membranes [38]. While
they observed a strong interaction of the MA HBR with the polar head of the PI(4,5)P2 and,
to a lesser extent, an interaction with the PS head at the MA position identified by [37],
they did not observe any flipping of the acyl chains of these lipids into any of the two
hydrophobic pockets. This was previously suggested by a coarse-grained molecular dy-
namic model of HIV-1 MA on PI(4,5)P2/PS membranes [39]. The added value of bicelles
for NMR structure elucidation is clearly shown by this example, in which, when isolated,
the phopholipid does not interact with the MA in the same way as when it is inserted into
its natural environment, i.e., an amphiphilic membrane.
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Figure 3. Methods and techniques for viral assembly study in several membrane model systems.
(A) Bicelles are widely used models for protein structural analysis by NMR. (B) Liposome flotation
unveils partition constant of a protein at a membrane’s surface using LUVs or SUVs. (C) Using the
SLB planar system, AFM gives topographic information at a molecular level, FCS enables study of
molecular dynamics and SPR is a way of studying binding properties. (D) GUVs are close in size and
shape to cells, and one can, for instance, image protein—lipid co-localizations at a cellular scale.
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Wang and Huong also used bicelles to investigate the membrane curvature induction
by IAV M2 protein (a transmembrane viral channel that is important for virus entry and
particle budding) using OMAS-NMR [40] (see Lexicon). They showed that the M2 amphi-
pathic helix (M2 AH), along with its transmembrane domain (M2 TM), induced strong
membrane curvature in the bicelles, which in turn favored and stabilized the localization
of the M2 in these strongly curved domains. These findings highlight the functional role of
M2 during IAV assembly and is involvement in membrane deformation to promote IAV
particle budding (reviewed in [9]).

3.3. Unilamellar Vesicles

As they are easy to make, and their composition is easy to tune, large unilamellar
vesicles (LUVs) have been widely used in the field of viral assembly.

Using LUVs, many different mechanisms of the HIV-1 Gag interaction with mem-
branes were determined (Figure 3B). The residues of the matrix were identified as specific
to the PI(4,5)P2 interactions [41,42]. Preferential lipid compositions were tested in order
to monitor the effect of the different lipids [43–45] and the main role of PI(4,5)P2 was con-
firmed [46]. The roles of myristoylation and the electrostatic nature of the interaction were
also identified and quantified using LUVs [42,47,48]. The binding equilibrium of the MA
domain of the Gag between the membrane lipids and the RNA was also investigated thanks
to LUVs. For example, Chukkapalli et al. highlighted the importance of five residues found
to bind RNA, which also restricts MA binding to membranes lacking PI(4,5)P2, supporting
the role of RNA in masking the non-specific binding of Gag to membranes [49] and the
regulation of membrane binding by t-RNA [50,51].

LUVs also help to understand the lipid organization/composition in the membrane
that rules the assembly. For example, self-assembling matrix lipid-phase partitioning
and lipid phase separation occurring during Gag self-assembly were investigated with
LUVs [44,52]. Recently, Urbančič et al. [53] determined that lipid composition but not
membrane curvature influenced HIV envelope-like lipid membrane fluidity by measur-
ing the lipid diffusion through line-scanning stimulated emission depletion-fluorescence
correlation spectroscopy (STED-FCS) (see Lexicon).

LUVs have heavily contributed to the understanding of HIV-1 Gag membrane interac-
tions initiating the generation of new viruses, but they are also key tools to decipher IAV
matrix protein/lipid membrane interactions.

Since the pioneering work of Gregoriades and Oxford [54,55], PS has been identified
as the main target for the membrane association of IAV M1 [16,56,57]. Recently, the effect
of lipid composition on the initiation of M1 self-assembly has been studied using SUVs
(small unilamellar vesicles) and proteoliposomes, showing the role of lipid ordering in the
association of M1 to PS in these liposomes [58]. Liposomes were also used to monitor the in-
teractions of virus proteins such as HA [55] and NA [59] with lipids and lipid redistribution;
however, this was essentially considered during membrane fusion [60], which is the entry
step (early phase of replication) of the virus, not the assembly step. A significant effort has
been directed at the understanding of the M2 protein’s interaction with lipids in the case of
IAV. This because M2 is a transmembrane protein and is described as playing a major role in
the budding of the Influenza virus by inducing membrane scission [61]. Virus assembly and
budding generate changes in the local curvatures of membranes. At the end of assembly, a
neck appears at the bud with a strong and unstable local curvature. In the case of IAV, M2,
thanks to its amphipatic helix (AH), has been proposed to both sense and stabilize this local
curvature [40]. This localization has been confirmed both by using liposomes of different
curvatures [62] and by using liposomes containing different cholesterol concentrations,
showing that cholesterol induces the reorientation of this amphipatic helix [63].

Ebola virus assembly is poorly studied with membrane model systems. However,
20 years ago, VP40 structure and hexamerization were studied using liposomes [64,65].
The C-terminal truncation of the VP40 protein was shown to be responsible for its spon-
taneous hexamerization, suggesting its main role in the initiation step of EBOV assembly.
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Scianimanico et al. observed, using the membrane flotation technique (see Lexicon), that
VP40 membrane association triggered hexamerization [65]. Using combination of surface
plasmon resonance (SPR) (see Lexicon) and membrane flotation assays, the membrane
binding of VP40 was shown to be essentially mediated by its interaction with PS [35] and
PI(4,5)P2 [18]; this was also confirmed in living cells in the same studies.

3.4. Supported and Tethered Bilayers: Planar Membranes

SLBs are planar lipid membranes lying on the surfaces of glass coverslips. One
major advantage is that they offer a widely accessible environment in which to study
protein binding, diffusion and the lipid-induced reorganization occurring simultaneously.
A second advantage is the possibility of using a wide object only a few nm in height,
allowing its direct observation at the molecular level by using techniques such as atomic
force microscopy (AFM) (see Lexicon and Figure 3C). For these reasons, SLBs were used to
study viral protein assembly using AFM [66].

Using SLBs with a lipid composition mimicking the inner leaflet of the cell plasma
membrane, as well as measuring the self-quenching of fluorescent lipids, Yandrapalli et al.
showed that, upon self-assembly, HIV-1 Gag generated PI(4,5)P2/Cholesterol clusters [44].
This finding questioned the model suggesting that either HIV-1 Gag targeted the pre-
enriched lipid domains of the membrane to self-assemble or generated its own lipid bed.
Interestingly, in a subsequent study, this PI(4,5)P2/Cholesterol nano-clustering was also
shown to occur during the assembly of new HIV-1 viruses at the host plasma membrane of
HIV-1-infected T cells [67], revealing that HIV-1 Gag self-assembly is the driving force in
PI(4,5)P2/Cholesterol-enriched lipid nanodomain generation.

It is commonly accepted that Gag-Gag interactions are sufficient to produce the energy
required to initiate HIV-1 assembly. However, using atomic force microscopy (AFM) on
SLBs, Miles et al. observed that interactions between HIV-1 envelope glycoproteins Gp41
and Gp120 could also partially drive viral assembly [68]. The SLBs were processed by vesi-
cle fusion and Gp41 containing vesicles were fused to the SLBs. The Gp120 proteins were
then consecutively injected and formed wire-shaped structures at the bilayer surface. The
described interactions between these Gp proteins, although they were weaker and formed
abnormally shaped assembling particles, could, according to the authors, be considered as
a driving force in viral assembly.

S. Chiantia’s group intensively used SLBs to explore IAV assembly by monitoring
M1-M1 interactions with quantitative optical microscopy. Using RICS (see Lexicon) and
FCS, in addition to AFM (Figure 3C), Hilsch et al. described M1 self-assembly enhancement
in PS-containing membranes [15]. They proposed that M1 self-assembly was sufficient to
initiate the formation of new viral particles, even in the absence of other viral proteins.

These results were confirmed subsequently and the interplay between PS and M1, in
which M1 interacts mostly with PS-enriched domains within lipid bilayers and stabilizes
these PS domains during M1 self-assembly, was described in detail [69].

Finally, thanks to RICS, SPR and circular dichroism spectroscopy (see Lexicon), a
subsequent investigation of the precise mechanism of the interaction between IAV M1
protein and the PS-enriched bilayer was published by Höfer et al. in 2019 [70]. A specific
conformational change was found to occur upon the M1’s binding to the negatively charged
PS. From the structures in the protein data bank (PDB) and simulations, N-terminal domains
of M1 was shown to be involved in membrane binding, stabilizing C-terminal domain to
favor self-assembly.

SLBs are standard models for lipid diffusion measurements. However, a two-to-
threefold decrease in lipid diffusion coefficients is usually measured between SLBs and
liposomes or GUVs. Indeed, Van der Waals interactions between the glass substrate and
the lipids monolayer in contact with it led to an overall decrease in diffusion [71]. This
decrease in lipid mobility in one monolayer could impede the lateral organization of lipids
and therefore play an artificial role in viral protein membrane binding. To remove these
Van der Waals interactions, a sparsely tethered bilayer lipid membrane (stBLM) system
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was used by Barros et al. to quantify, using SPR, HIV-1 Gag MA binding to the membrane.
They showed that MA was attracted to the membrane by charged lipids, while the MA
myristate exposure increased the membrane affinity 100-fold. They also highlighted that
cholesterol facilitated myristate insertion and PI(4,5)P2 binding without interacting with
the MA. Interestingly, the concomitant role of cholesterol and PI(4,5)P2 was also observed
in [44] using classical SLBs, suggesting again that the lipid organization for correct binding
and virus formation is mainly driven by Gag-Gag self-assembly and not by pre-existing
lipid domains.

3.5. Giant Unilamellar Vesicles: The Closest Model to Cell Plasma Membranes

Amongst all the models used to mimic cellular membranes, GUVs have the closest
properties to the cell plasma membrane. They are spherical lipid bilayers with a diameter
range equivalent to that of a eukaryotic cell (~10 µm) enclosing and surrounded by an
aqueous medium. Their similarities with eukaryotic cells make it possible to study, in
GUVs, several molecular properties of membrane lipids and their interactions with viral
proteins, such as lipid ordering, lipid–protein interaction localization, and curvature or
tubular structure induction.

GUVs were used models to directly visualize HIV-1 Gag proteins’ binding properties
and localization in membranes with complex lipid compositions. When preparing GUVs
with two separate phases, i.e., liquid-ordered and liquid-disordered, it was possible to show
that the Gag, as well as a the multimerizing MA domain of the Gag, mainly partitioned
into liquid-disordered phase where PI(4,5)P2 was present and that this partitioning did not
change upon Gag self-assembly [44,52] (Figure 3D). These results were confirmed recently
using the same approach [72].

Another interesting point regarding GUVs is that their wide, flat lipid surfaces make
it possible to study not only protein assembly initiation but also aspects of its termination,
such as viral budding. Gui et al. developed a protocol using a GUV model without cellular
proteins that makes it possible to infer that Gag proteins’ self-aggregation alone leads to
vesicle formation budding from the GUV membrane (an indirect observation based on
GUV size-reduction measurements) [73]. However, in the late steps of retroviral assembly,
the cellular endosomal sorting complex (ESCRT) machinery is recruited by Gag-p6 domain
interacting with tumor susceptibility gene 101 (Tsg101) at HIV-1 lattices in order to facilitate
virus budding [74]. Subsequently, using GUVs, Carlson and Hurley reconstituted an
in vitro minimal system to monitor the dynamics of ESCRT machinery recruitment at HIV-1
Gag budding sites [75].

GUVs have also been extensively used to decipher Influenza virus assembly. Dahmani
et al. observed, using confocal microscopy, that M1 binding to PS loaded GUVs induced
the local deformation of the lipidic membrane [76]. By monitoring spatial changes in M1
dynamics through scanning FCS, they measured a decrease in M1 mobility at the location
where membrane curvature was modified and concluded that solely M1-M1 interactions
are sufficient to generate lipid membrane curvature. Similar behavior was observed with
another strain of Influenza virus (namely, Influenza C Virus), where M1 proteins were able
to induce tubular structures on GUVs [77].

In the case of Ebola virus, GUVs were also used to elucidate the interaction of
EBOV matrix VP40 with lipids, showing the capacity of VP40 to penetrate into the lipid
membrane [78] and to selectively induce vesicles after self-assembly on PS-enriched do-
mains [79].

4. Conclusions

This review reveals the important role played by model membranes during the last
30 years in deciphering the initiation and elongation of the viral assembly of enveloped
viruses on membranes. Several molecular mechanisms were made possible to assess by
biomimetic membranes reconstituted in vitro. These results suggest that viral matrix pro-
teins’ induction of membrane deformation upon the recognition of charged phospholipids
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on membranes is a common feature in the assembly of enveloped viruses. Our review
focused on lethal human viruses assembling and budding from the plasma membrane of
their host cells. Overall, we showed that biomimetic lipid membranes are very convenient
models with which to study viral proteins’ surface oligomerization. Nevertheless, different
limitations can be reported. Although these are very basic, difficulties occur when studying
the transmembrane proteins involved in the assembly process simply because it is always
difficult to correctly insert transmembrane proteins inside the lipid bilayer (while keeping
the orientation, structure and functionality of the protein), especially when these form
channels made of several subunits (such as Influenza’s M2 ionic channel). Limitations
are also inherent in their own definitions. Model membranes cannot capture all the com-
plexity of natural cellular membranes, not only in terms of protein and lipid composition
diversity, but also because structural components tightly linked to the membrane functions
and mechanical properties, such as glycocalyx and the inner cortical actin cytoskeleton,
are absent. To overcome this, recently, methods have been developed to generate giant
plasma membrane vesicles (GPMVs) derived from host-cell PMs, which conserve cell PM
complexity and organization, but without the inner cytoskeleton [80–82]. However, it will
certainly be helpful to shed light on the interplay between viral and host-cell molecular
membrane components during viral assembly.

Since the emergence of new viruses is predicted to increase due to global warming,
there is no doubt that, in the near future, model membranes will continue to play a role in
deciphering the molecular mechanisms of virus assemblies and will certainly be useful for
the in vitro testing of new antiviral drugs targeting viral protein assembly on membranes.
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Glossary

Biophysical Techniques Lexicon

HX MS Hydrogen Exchange
Mass Spectrometry

This technique exploits proteins’ fundamental ability to exchange hydrogens with
their environment. Studied proteins are incorporated in deuterated water (D2O)
and exchange hydrogens bonded to the backbone nitrogen with deuterium from
D2O solvent over time. Incorporated deuterium atoms are consecutively used to
probe protein conformation using mass spectrometry [83].

X-ray Crystallography The diffraction of incident X-rays by electrons in a sample is used to calculate the
positions of atoms in molecules. Due to the fact that the signal of each individual
atom is weak, this technique requires sample crystallization (all the molecules are
immobilized in the same conformation in a 3D lattice) [84].

Cryo-EM Cryo-electron
microscopy

This process involves freezing samples at cryogenic temperatures so quickly that
water molecules do not crystallize, which preserves the samples’ native structure.
This sample processing technique is generally associated with transmission electron
microscopy for structural analyses at an atomic level [85].
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NMR Nuclear Magnetic
Resonance

NMR is based on the spin properties of atomic nuclei, which are aligned when
submitted to a magnetic field. Only a few isotopes that have a magnetic spin are
used for NMR purposes (the most common is 1H, but 13C, 15N and 31P are also
often used), and the analysis either relies on the natural isotopic proportion in the
sample or is performed on enriched samples. Once irradiated, each non-equivalent
nucleus resonates at a specific frequency, making peaks in the NMR signal, called
chemical shifts. The peaks’ intensity and multiplicity are used to determine the
atoms’ spatial proximity [86].

OMAS-NMR Off-Magic-Angle
Spinning NMR

This is a variant of the magic-angle-pinning solid-state NMR developed to narrow
the quadrupolar resonances and increase the frequency resolution/attribution.
Resonance widening occurs in anisotropic systems, such as proteins bound to lipid
membranes. OMAS is based on a slight deviation from the magic angle
(angle < 0.01◦). This significantly improves the precision and accuracy of derived
rate parameters, especially for slow motion on the kilohertz time scale [87].

FCS Fluorescence
Correlation
Spectroscopy (STED,
scanning,
Spot Variation)

This microscopy technique relies on the use of fluorescently labelled particles and
makes it possible to quantify their dynamics (including their concentration,
diffusion coefficient and interactions) by recording and correlating the fluorescence
intensity’s fluctuation over time in a given zone [88]. Using an optical microscope, a
scanning mode can be added to perform scanning-FCS. An adjustable pinhole
enables spot-variation-FCS. Coupled with a STED microscope, the reduced volume
of detection makes it possible to study diffusion in nanoscale regions [89–91].

STED Stimulated
Emission Depletion

This is a super-resolution fluorescence microscopy technique based on the
possibility to deplete the excited fluorophore before it emits. For this, a depletion
laser (emitting at a higher wavelength than the excitation wavelength) is focused on
the object plane, as a a donut shape surrounding the excitation laser beam. The
fluorophore exposed to this donut shape laser returns to the ground state before
emitting a fluorescence photon. This result in a continuous decreasing size of the
emission spot below the diffraction limit (<200 nm)with increasing depletion laser
power [92].

Liposome
flotation assay

This method is used to characterize the interactions between proteins and
membrane-mimicking liposomes (LUV). This assay is based on bound/free
proteins’ separation by centrifuging the complex through a sucrose gradient. At the
appropriate centrifugation speed, proteins bound to liposomes float up to the
low-sucrose fraction, whereas denser free proteins remain at the bottom at high
sucrose-density levels. Due to protein–LUV interactions, an apparent KD value for
the liposome–protein interaction can be estimated by varying the amount of LUV at
a constant protein concentration [93,94].

SPR Surface
Plasmon Resonance

SPR describes a propagation phenomenon of electrons parallel to a metal layer
when excited by an incident laser at a certain angle (with the angle depending on
the refractive index of the material near the metal surface). An SPR assay is based
on the lowered SPR occurrence due to an analyte interaction with its target, coated
at the surface of the metal layer. The amount of interacting analytes and the
interaction kinetics are unveiled either by measuring the reflected light intensity or
by tracking the resonance angle shift [95].

RICS Raster Image
Correlation
Spectroscopy

Raster image correlation spectroscopy (RICS) is a fluorescent-image-analysis
method for extracting the mobility, concentration and stoichiometry of diffusing
fluorescent molecules from confocal image stacks. The method works by calculating
a spatial correlation function for each image and analysing their average by model
fitting [96].

CD Spectroscopy Circular Dichroism
Spectroscopy

Polarized absorption spectroscopy method. When illuminated by an elliptical
polarized light, the absorption of the incident light will depend on chirality, but also
on the folding of the structures in the case of complex macromolecules. It is
generally used to characterize the conformation of a protein’s secondary structure
and, in some cases, of its tertiary structure environment. It also enables access to
dynamic conformational changes in proteins in or at membranes [97].
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