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Abstract
Rho GTPases are crucial signaling molecules that regulate a plethora of
biological functions. Traditional biochemical, cell biological, and genetic
approaches have founded the basis of Rho GTPase biology. The development
of biosensors then allowed measuring Rho GTPase activity with
unprecedented spatio-temporal resolution. This revealed that Rho GTPase
activity fluctuates on time and length scales of tens of seconds and
micrometers, respectively. In this review, we describe Rho GTPase activity
patterns observed in different cell systems. We then discuss the growing body
of evidence that upstream regulators such as guanine nucleotide exchange
factors and GTPase-activating proteins shape these patterns by precisely
controlling the spatio-temporal flux of Rho GTPase activity. Finally, we
comment on additional mechanisms that might feed into the regulation of these
signaling patterns and on novel technologies required to dissect this
spatio-temporal complexity.
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Introduction
Since the seminal articles from Allan Hall’s lab back in the 
early 1990s1–3, we have learned much about the biology of Rho  
GTPases4–9. The combination of experimental approaches, includ-
ing genetics in model organisms, cell biology, and biochemistry, 
was key to establish the basics of Rho GTPase signaling. These 
techniques revealed the principles of GTPase regulation by gua-
nine nucleotide exchange factors (GEFs), GTPase-activating pro-
teins (GAPs), and Rho guanine nucleotide dissociation inhibitors 
(RhoGDIs), and identified effectors that exert specific biological 
functions downstream of Rho GTPases. This uncovered a surpris-
ingly intertwined network of mutual regulatory protein complexes 
in which Rho GTPases are vastly outnumbered by GEFs, GAPs, 
and effectors10.

In the last 15 years, an additional layer of complexity was super-
imposed on Rho GTPase biology. Fluorescence resonance energy 
transfer (FRET)-based and other biosensors enabled investigators 
to capture the spatio-temporal dimensions of Rho GTPase signaling 
in living cells with unprecedented resolution10,11. Visualizing Rho 
GTPase activity drastically changed our perception of Rho GTPase 
signaling and implies a higher degree of complexity than the clas-
sic ON-OFF schemes typically depicted in feed-forward, linear  
signaling networks. This fresh view emphasizes the importance of 
analyzing Rho GTPase activity dynamics by microscopy instead 
of analyzing steady states of limited information content by  
biochemistry.

Understanding that Rho GTPase signaling is organized in spatio-
temporal patterns poses important novel questions: How are these 
signaling activity patterns generated? What forms their structural 
basis? And which technologies do we need to dissect the mecha-
nisms of pattern formation in the future? In this review, we will 
survey the spatio-temporal activity patterns that have been docu-
mented to date and highlight possible answers to these intriguing 
questions. Then we discuss important players that might feed into 
this spatio-temporal regulation, and we comment on novel technolo-
gies to analyze the latter.

Biosensors visualize Rho GTPase activity domains in 
time and space
The traditional model of Rho GTPase signaling during cell migra-
tion states that Rac and Cdc42, respectively, regulate membrane 
protrusion and filopodia formation at the leading edge, whereas 
RhoA controls contractility at the trailing edge12. However, the use 
of FRET biosensors proved this view to be too simplistic. Accord-
ingly, Rac1, Cdc42, RhoA, and RhoC activity has been found at the 
leading edge in randomly migrating fibroblasts (Figure 1A). While 
Rac1 forms a broad activity gradient that spans several micrometers 
into the cell interior13–18, Cdc4214,16,19,20, RhoA16,21–24, and RhoC24 
activity zones are somewhat narrower. Despite overlapping activity 
zones, the dynamics of all four Rho GTPases precisely correlate 
with cell edge protrusion/retraction dynamics16,24,25. RhoA is also 
activated at the trailing edge during retraction and this suggests that 
RhoA is regulated by different GEFs, GAPs, and couples to distinct 
effectors to regulate edge dynamics or tail retraction10.

The RhoA activity pattern considerably changes if fibroblasts 
are stimulated with platelet-derived growth factor (PDGF). On  

timescales of 10 to 20 minutes, PDGF stimulation leads to increased 
edge protrusion that correlates with immediate decrease of RhoA 
activity23,25. On a timescale of hours, homogeneous application of 
PDGF locks fibroblasts in a permanent state of persistent migration 
in one direction26. This depends on the formation of podosome-like 
structures (PLSs), which broadly inhibits RhoA at the leading edge 
and simultaneously restricts RhoA activity to a sharp zone at the 
lamellipodium tip (Figure 1B). Here, the PLSs function as a spa-
tially organizing cytoskeletal module that defines the zones of high 
and low RhoA activity. This spatial organization of RhoA signal-
ing uncouples myosin-based, actin retrograde flow from the leading 
edge, which is essential to maintain a polarized state required for 
persistent migration. Importantly, RhoA activity remains present 
at the back of PDGF-treated cells during tail retraction, further  
underpinning the local nature of spatio-temporal Rho GTPase regu-
lation in different subcellular regions. Similarly, in epithelial cancer 
cells, epidermal growth factor (EGF) confines RhoA activity to the 
very edge of the cell and additionally shifts the diffuse RhoC activ-
ity pattern some micrometers back behind the edge in motile cells27 
(Figure 1C). This is thought to position distinct effector pathways  
to coordinate leading-edge dynamics. These examples illustrate 
that activity patterns of particular Rho GTPases are highly depend-
ent on the cellular context (that is, presence or absence of a growth 
factor, morphodynamic behavior such as edge protrusion and tail 
retraction, and cell type).

The plasticity of such spatio-temporal activity patterns was fur-
ther demonstrated in fibroblasts undergoing cell-cell collisions18.  
Colliding cells have two types of protrusions: contact protru-
sions, which touch the neighbor cell, and contact-free protrusions. 
The two protrusion types fundamentally differ in edge dynamics, 
which correlate with distinct Rac1 activity patterns. As observed  
earlier13–17, Rac1 activity forms a broad gradient in contact-free pro-
trusions. In marked contrast, Rac1 activity is constrained to a narrow 
band at the tip of contact protrusions (Figure 1D). This activity pat-
tern correlates with formation of a robust F-actin band that allows 
contact protrusions to efficiently squeeze below adjacent cells. 
Again, the precise cellular context (presence or absence of cell-cell 
contact) dictates the shape of the Rho GTPase activity zone.

Rho GTPase activity zones have also been reported in cellular proc-
esses different from cell migration. In growth cones of neuroblas-
toma cells, RhoA is activated either locally or globally depending 
on the morphodynamic process21. During growth cone protrusion, 
RhoA activity is detectable at the tip of F-actin bundles forming 
filopodia, where it most likely couples to the effector formin mDia 
to drive actin polymerization (Figure 1E). In contrast, the collaps-
ing growth cone displays bulk RhoA activity all over the retracting 
structure. Here, RhoA might interact with its effector Rho kinase to 
stimulate global actomyosin contractility.

The Xenopus oocyte wound repair process is another intriguing 
example of Rho GTPase activity patterning as it features two adja-
cent activity zones (Figure 1F). Wounding rapidly activates both 
RhoA and Cdc42 that form local mutual exclusive activity rings 
that encircle the wound. The RhoA and Cdc42 zones colocalize 
with ring-like arrays of myosin-2 and F-actin, respectively, and 
coordinate the spatial regulation of both cytoskeletal structures to 
close the actomyosin ring inward and to seal the wound28,29.

Page 3 of 12

F1000Research 2016, 5(F1000 Faculty Rev):749 Last updated: 26 APR 2016



Figure 1. Spatial Rho-GTPase patterns in various cell systems. (A) Rho GTPase activity gradients in randomly migrating fibroblasts. The 
activity is highest at the cell edge and declines toward the cell center. Color code is displayed to the right. (B, C) Reshaping of Rho GTPase 
activity zones in response to growth factor treatment in fibroblasts (B) or MTLN3 epithelial cells (C). (D) Rac1 activity in colliding fibroblasts. 
Rac1 is activated in a broad gradient in the contact-free protrusion (bottom) but restricted to a sharp band at the tip of the contact protrusion 
(top). (E) RhoA activity at the tip of filopodia during growth cone protrusion and in the entire growth cone during collapse. (F) Concentric 
Rho GTPase signaling zones during wound closure in Xenopus oocytes. (G) Distinct Rho GTPase signaling domains in macropinocytosis.  
(H) Rho GTPase activity domains during invadopodia assembly and disassembly. EGF, epidermal growth factor; PDGF, platelet-derived 
growth factor.
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Further concentric Rho GTPase activity zones were also found  
during macropinocytosis and the formation of invadopodia.  
In both cases, active RhoC surrounds macropinosomes24 and  
invadopodia30, and additional Rho GTPases are active in the core 
of these structures (Figure 1G, H). RhoC is active during the entire 
macropinocytotic process24, whereas Rac131 and RhoA23 activities 
peak before and after vesicle closure, respectively (Figure 1G). 
Similar activity separation can be observed in invadopodia. Here, 
concentric RhoC activity drives invadopodia assembly30, whereas 
Rac1 activity in the invadopodium’s core promotes its disassembly17 
(Figure 1H).

In summary, multiple Rho GTPase activities can either overlap in 
time and space or form distinct zones, which are subject to modula-
tion by growth factors and cell-cell interactions. Thus, rather than 
the classic dogma in which one Rho GTPase regulates one specific 
cytoskeletal structure, multiple Rho GTPases collaborate to fine-
tune cytoskeletal dynamics at a specific subcellular location. The 
Rho GTPase activity zones then precisely position and coordinate 
multiple cytoskeletal regulating activities in time and space.

GEF/GAP-mediated Rho GTPase fluxes underlie spatio-
temporal signaling patterns
An important question that immediately comes up is how these 
sharp or diffuse Rho GTPase activity zones are created. A pos-
sible answer to this fundamental question comes from the Rho 
GTPase life cycle (Figure 2A). Rho GTPases are molecular 
switches that alternate between the active, GTP-loaded and inactive,  
GDP-loaded states. GEFs exchange GDP to GTP, whereas GAPs 
stimulate the hydrolysis of GTP to GDP. Additionally, active GTP-
loaded GTPases reside in the membrane compartment where they 
interact with effector proteins. Conversely, inactive, GDP-loaded 
Rho GTPases are sequestered in the cytoplasm by RhoGDI. It has 
been proposed that this Rho GTPase cycling enables the dynamic 
signaling fluxes that are required to build spatially restricted sign-
aling patterns. This has been mostly explored in the Xenopus egg 
wounding model system32. As described above, oocyte wounding 
induces RhoA and Cdc42 activation within 20 seconds. At first,  
RhoA and Cdc42 activities form shallow and overlapping gradients 
that become steeper and eventually establish distinct concentric 
zones 90 seconds after wounding28. Interestingly, both Rho GTPases 
cycle more rapidly between GTP- and GDP-loaded states inside 
activity zones than outside33. Moreover, RhoA becomes preferen-
tially inactivated at the trailing edge of the zone (that is, more distal 
with respect to the wound center), showing that a signaling treadmill 
generates a GTPase activity flux by proximal RhoA activation and 
distal RhoA inactivation within the zone (Figure 2B). Experimen-
tal work and mathematical modeling further showed that the RhoA  
and Cdc42 concentric zones are partially shaped by the dual GEF-
GAP Abr34,35. Abr is a GEF for RhoA, Rac, and Cdc42 and con-
comitantly a GAP for Rac and Cdc4236. Abr docks on active RhoA 
to generate a positive feedback loop that impinges on RhoA itself 
and simultaneously inhibits Cdc42 in the RhoA zone34,35. These 
data indicate that GEFs and GAPs regulate reaction-diffusion-based  
signaling fluxes that shape Rho GTPase activity zones during oocyte 
wound closure.

Similar mechanisms have been documented in mammalian cells. 
In the case of invadopodia formation, RhoC activity is spatially 

Figure 2. The Rho GTPase activation/deactivation cycle. (A) Rho 
GTPases are kept in the cytoplasm by RhoGDIs. Activation occurs 
through GEF-mediated GTP loading and insertion of the GTPase 
into the membrane, where it interacts with downstream effectors. 
GAPs stimulate GTP hydrolysis to inactivate the Rho GTPase, 
which is sequestered in the cytoplasm by RhoGDI. (B) RhoA 
signaling treadmill during oocyte wound closure. RhoA activation 
and inactivation occurs at opposite boundaries of the activity 
zone. RhoGDI is omitted for clarity. (C) Possible view of the Rho 
GTPase lifecycle as a reaction-diffusion system. Spatial subcellular  
separation of GEFs and GAPs may determine distinct activation/
deactivation zones, which maintain the Rho GTPase activity flux. 
GAP, GTPase-activating protein; GDP, guanosine diphosphate; 
GEF, guanosine nucleotide exchange factor; GTP, guanosine 
triphosphate.
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restricted in a concentric zone surrounding the invadopodium 
core through the interplay of p190RhoGEF and p190RhoGAP30. 
Outside the core, p190RhoGEF activates RhoC, while  
p190RhoGAP localizes to the inner of the core where it inhibits 
RhoC. Another example is the regulation of the exquisitely focused 
RhoA activity pattern at the tip of F-actin bundles that form neuro-
nal growth cone filopodia (Figure 1D). A recent study identified the 
RhoA-specific GAP DLC1 (deleted in liver cancer 1) to spatially 
regulate the filopodial RhoA activity pattern37. RNA interference 
(RNAi)-mediated DLC1 knockdown leads to widening of the RhoA 
activity domain, suggesting that DLC1 acts by shaping the focused 
RhoA activity zone at filopodial tips. Together, these data clearly 
suggest that fine spatial regulation of Rho GTPase activation/ 
deactivation cycles enables the formation of a signaling pattern.

Taking into consideration the aforementioned examples, we pro-
pose a general mechanism of Rho GTPase pattern formation based 
on reaction-diffusion systems. Such a Rho GTPase activity pattern 
would be dynamically maintained by successive cycles of (1) local 
activation by a GEF, (2) slow plasma membrane (PM) diffusion 
(0.02 to 1.36 µm2 s−1)38,39 from a zone preferentially occupied by a 
GEF to a zone preferentially occupied by a GAP, (3) local inactiva-
tion by the GAP, and (4) membrane extraction by RhoGDI. Once 
in the cytoplasm, the Rho GTPase-RhoGDI complex can quickly  
diffuse (10 to 100 µm2 s−1)40 and reach an equilibrium within 
the cytosol before being used for subsequent activation cycles  
(Figure 2C). Such a constant reaction-diffusion system requires 
spatially regulated GEFs and GAPs. Additionally, regulation of 
membrane/cytosol partitioning by RhoGDI will most likely also 
feed into the shaping of spatio-temporal Rho GTPase activity pat-
terns. Membrane/cytosol partitioning is subject to modulation by 
multiple protein kinases, which determine the release of specific 
Rho GTPases from the cytosolic RhoGDI-bound pool or the affin-
ity of Rho GTPases for membranes (reviewed in 5). The impact of 
RhoGDI on Rho GTPase activity pattern formation is underpinned 
by the comparison of RhoGDI-responsive and non-responsive 
FRET sensors21. In the case of RhoA, a biosensor version that does 
not bind to RhoGDI and thus is constitutively targeted to the PM 
shows global activation in the neuronal growth cone. In contrast, 
a biosensor that retains the ability to bind to RhoGDI displays the 
highly focused filopodial RhoA activity pattern described above 
(Figure 1E).  It is therefore important to consider that constitutively 
membrane-bound Rho GTPase FRET biosensors might miss some 
aspects of spatio-temporal Rho GTPase signaling.

Only a few examples of spatio-temporal Rho GTPase regulation 
mechanisms by GEFs and GAPs have been studied up to now. 
An important question that emerges from the initial data we have  
discussed above is how GEFs and GAPs are themselves spatially 
regulated. Below, we review a large number of possible GEF/GAP 
interactions that might feed into this spatio-temporal regulation.  
This provides an idea of the players and mechanisms that will have to 
be studied to understand spatio-temporal Rho GTPase regulation.

Spatio-temporal regulation of GEFs and GAPs
Membrane composition and topology
Almost all GEFs bear a lipid-interaction domain37,39,40: a pleck-
strin homology (PH), a DOCK homology region 1 (DHR-1), or a  

Bin-Amphiphysin-Rvs (BAR) domain41–43. Many GAPs also contain 
a variety of lipid-binding domains44. Since PH and DHR-1 domains 
vary in their binding specificity and affinity for phospholipids such 
as phosphatidylinositol 4,5-bisphosphate (PIP

2
) and phosphatidyli-

nositol (3-5)-triphosphate42,45,46, GEFs and GAPs might be directed 
to specific PM subdomains (Figure 3A). Indeed, distinct lipid dis-
tributions were found in the RhoA and Cdc42 zones during oocyte 
wound closure47. Furthermore, specific sorting has been shown 
for the Rac GAP β2-chimaerin that localizes and inhibits Rac in 
the non-lipid raft zone48 and p190 RhoGAP, which translocates 
to lipid rafts to cease RhoA activity in response to growth factor 
treatment49. BAR domains recognize membrane curvature and thus  
target proteins to specific PM topologies50. One GEF and seven 
GAPs with different BAR domains have been identified to date51,52. 
The F-BAR domain of srGAP2 was recently shown to tether the 
Rac GAP exclusively to convex, protruding membranes where 
it limits the duration of Rac1 activity during cell-cell collision  
without affecting the shape of the Rac1 activity pattern per se18. 
Since srGAP2 integrates both membrane topology and Slit-
Robo repulsive signals, this mechanism ensures that srGAP2 
inactivates Rac1 at the right subcellular region and in a specific  
morphodynamic phase.

Besides mere targeting of GAPs, lipids also influence both GAP 
activity and the specificity toward particular Rho GTPases in vitro. 
The Rac- and Cdc42-specifc GAP n-Chimaerin is inhibited by 
phosphatidylserine and phosphatidic acid but activated by PIP

2
 and 

arachidonic acid53. Some phospholipids have also been reported to 
switch the specificity of p190RhoGAP by inhibiting its GAP activ-
ity for Rho and stimulating its activity for Rac154. Since lipid dis-
tribution can be highly ordered in the PM, these results strongly 
suggest that both lipid species and membrane topology can create 
Rho GTPase signaling microdomains.

Interaction with receptor tyrosine kinases and scaffold 
proteins
Receptor tyrosine kinases (RTKs) play a paramount role in Rho 
GTPase activation55 and are very likely to determine their spatio-
temporal activity in two ways. First, RTKs alter the lipid com-
position of the PM through activation of phosphatidylinositol-3  
kinase and phospholipase Cγ56 to influence GEF and GAP tar-
geting as described above. Second, RTKs recruit GEFs directly 
and activate them by phosphorylation (Figure 3B). For instance, 
Tiam157, LARG58, Vav1-359–62, Vsm63, Dbs64, RasGfr165, and  
Kalirin66 are found in complexes with various RTKs and some of 
them also become activated by phosphorylation59,60,62–65,67,68. Since 
RTKs themselves are capable of generating spatial signaling pat-
terns at the level of their phosphorylation69, this might serve as 
an additional way to spatio-temporally regulate Rho GTPases.  
G protein-coupled receptors have also been shown to feed into 
the regulation of Rho GTPase signaling70, but their contribution to  
spatio-temporal regulation has not yet been explored.

A striking feature in approximately 40% of GEFs is the pres-
ence of a PSD95-Dlg1-ZO1 (PDZ) domain-binding motif at the  
C-terminus. These GEFs interact with various scaffold proteins such 
as Shank and Scribble71. Shank positions β-Pix in the postsynaptic 
density region to locally control Rac1-dependent dendritic spine 
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Figure 3. Potential GEF/GAP positioning mechanisms to create local Rho GTPase activity zones. (A) Membrane composition and 
topology influence the recruitment of GEFs and GAPs to the PM. Lipid rafts and phospholipid-enriched zones attract GEFs and facilitate Rho 
GTPase activation. Certain GAPs can localize to protruding convex cell edges (white arrowheads), while concave cell edges can recruit both 
GEFs and GAPs (black arrowheads). The key to the left indicates the various symbols. RhoGDI is omitted for clarity. (B) Receptor tyrosine 
kinases (RTKs) and PDZ-domain scaffold proteins cluster GEFs and might create local Rho GTPase activation zones. (C) Focal adhesions 
(FAs) serve as GEF enrichment structures and locally activate Rho GTPase signaling. F-actin and microtubules sequester and inactivate 
GEFs and GAPs that become active upon release into the cytosol. GAP, GTPase-activating protein; GEF, guanosine nucleotide exchange 
factor; PDZ, PSD95-Dlg1-ZO1; PM, plasma membrane.

formation72,73, whereas Scribble recruits β-Pix to the PM to regulate 
thyrotropin receptor trafficking74,75. Interestingly, the Scribble/β-Pix 
interaction is modulated by TIP-1, which competes for β-Pix bind-
ing and affects its subcellular localization76.

Adhesion complexes and the cytoskeleton
Adhesion complexes are further important hubs for spatial regu-
lation of GEFs and GAPs (Figure 3C). β-Pix is directly recruited 
from the cytosol to focal adhesions (FAs) at the leading edge of 
migrating cells through the interaction with the Paxillin-GIT-PAK 
complex39,77. At adhesions, focal adhesion kinase (FAK) phospho-
rylates β-Pix to strengthen the β-Pix-Rac1 interaction and thus 
enhance Rac1 recruitment to adhesions78,79. Notably, the balance 
of β-Pix distribution between FAs and endosomes is regulated by 
the PDZ domain-containing sorting nexin 2780. Another GEF that 
activates Rac at FAs is DOCK180. Its polarized localization to the 

leading edge is mediated through interaction with the Paxillin- 
p130Cas-CrkII complex following integrin engagement81–83. Fur-
thermore, the Rac GEF Tiam1 was found to bind to talin in FAs 
and to activate Rac1 in a PAR complex-dependent manner84. There 
are also several Rho-specific GEFs enriched at FAs in a FAK- 
dependent manner. Net1 is present in FA complexes at the leading 
and the trailing edge85, whereas PDZ-RhoGEF localizes to the trail-
ing edge only86,87. LARG and p115RhoGEF also interact with FAK 
at adhesions86,88. These four Rho-specific GEFs seem to regulate 
similar processes, although it is not fully understood yet whether 
their functions are redundant or whether they depend on different 
upstream signals.

The cytoskeleton also tethers GEFs and GAPs. Active myosin II 
(MII), which generates actomyosin-based contractility, sequesters 
and inactivates β-Pix at actin fibers and thus confers an MII- and 
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β-Pix-dependent front-back polarity in migrating cells89,90. Thus, 
MII orchestrates adhesion formation and maturation by adsorption 
and release of β-Pix. Notably, MII sequesters and inhibits GEFs 
containing a Dbl homology domain such as FGD1, Kalirin, LARG, 
DOCK180, Tiam1, Trio, GEF-H1, and Dbl89. F-actin also traps 
GAPs as FilGAP, which binds to the F-actin cross-linker filamin A. 
After mechanical deformation of F-actin branches, FilGAP is 
released and translocates to the PM to inhibit Rac at the leading 
edge91. Finally, microtubules tie and inactivate GEF-H1, which is 
released after the depolymerization of microtubules to stimulate 
RhoA activity and contractility at the leading edge92,93.

In summary, growth factors, mechanosensation, membrane  
topology/composition, and the actomyosin and tubulin cytoskel-
etons regulate the spatio-temporal aspects of Rho GTPase activity 
patterns, which in turn feedback on these different organizational 
and signaling levels. It is now time to explore how this plethora 
of different GEF/GAP regulatory mechanisms impact on spatio- 
temporal Rho GTPase activation.

Conclusions
The technological progress in the last 15 years has empowered us 
with the ability to monitor Rho GTPase signaling with high spatio-
temporal resolution. With respect to initial models, this has revealed 
an unexpected spatio-temporal signaling complexity, which now 
needs to be systematically analyzed by perturbation of the dif-
ferent players we have discussed in this review. Because spatio- 
temporal Rho GTPase signaling patterns are constantly regulated 
on timescales of tens of seconds, novel technologies are required 
to perturb cell systems at that exact timescale. This can take advan-
tage of existing techniques such as optogenetics or small-molecule 
dimerizers to control GEF/GAP targeting and activity94–98. Dissec-
tion of the complexity of spatio-temporal Rho GTPase signaling 
patterns will also require obtaining biophysical parameters with 
subcellular resolution, which can for example be inferred from 
fluorescence correlation spectroscopy99. Ultimately, such multi-
disciplinary approaches will inform mathematical models that can 

describe the network properties required to generate robust spatial 
signaling patterns100. In addition to in vitro experiments, analyzing 
Rho GTPase activity by FRET reporters in vivo101 will guarantee 
new insights, provided that RhoGDI-responsive sensors are used. 
Beyond the goal of understanding how Rho GTPase signaling is 
spatio-temporally regulated, these approaches will also unveil how 
Rho GTPase coordinately regulate different cytoskeletal polymers 
to fine-tune the highly complex and dynamic processes required for 
cell morphogenesis. We foresee that a limited number of conserved 
spatio-temporal Rho GTPase networks will emerge from systematic 
perturbation approaches. Tuning of a limited number of parameters 
might then allow the cell to repurpose such networks to regulate 
edge protrusion, growth cone motility, macropinocytosis, sealing of 
a cell wound, or other morphodynamic processes.
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