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The management of urethral stricture remains a major therapeutic challenge in clinics. Herein, we explored the feasibility of
reconstructing a relatively long segment of the urethra by the cell-seeded acellular artery in a canine model. The acellular
arterial matrix was obtained from the excised carotid artery of donor dogs. Autologous adipose-derived stem cells (ADSCs)
from 6 male dogs were grown and seeded onto the premade acellular arterial matrix. A 3 cm long segment of the urethra
was resected in 12 male dogs. Urethroplasty was performed with the acellular arterial matrix seeded with ADSCs in 6
animals and without cells in 6. Serial urethrography was performed at 1 and 3 months postoperatively. Wide urethral
calibers without any signs of strictures were confirmed in all 6 animals in the experimental group. In contrast, urethral
stricture was demonstrated in 3 animals in the control group. The graft was highly epithelialized and smooth in the
experimental group, while graft contracture and scar formation were showed in the control group. Histologic analysis of
the cell-seeded arterial matrix at 1 month confirmed the presence of multilayered urothelium and muscle. The levels of
tissue formation developed over time with a progressive increase in muscle content. In contrast, extensive fibrosis and
sparse smooth muscle were seen in animals treated with matrix without ADSCs. This study provides preclinical evidence
that the ADSC-seeded arterial matrix can be used as a tubularized scaffold in the reconstruction of 3cm long urethral
defect in a male canine model. The ADSC-seeded arterial matrix remodels and regenerates normal-appearing urethral
tissue layers over time.

1. Introduction

The management of urethral stricture remains a major ther-
apeutic challenge in clinics. In men, iatrogenic injury is the
most common cause of urethral stricture followed by idiopa-
thy, trauma, and inflammation [1-4]. Systemic diseases, such
as lichen sclerosus, can also lead to urethral strictures [5, 6].
Scarring of the urethral tissue is the causative process leading
to the replacement of the vascular tissue of the corpus spon-
giosum, which leads to ischemic spongiofibrosis of the ure-
thra [7, 8]. Urethral strictures present a serious health

condition that significantly impairs quality of life and may
lead to the failure of vital organs if left untreated [9].

Repair of the anterior urethra is one of the most demand-
ing surgical problems in urology. Several autologous tissues
have been proposed for urethroplasty as free grafts or flaps,
with the success rates reported between 75 and 85%. Never-
theless, it is not without complications, such as donor site
morbidity and prolonged hospitalization [10-13]. Regenera-
tive medicine and tissue engineering studies have led to the
development of novel biomaterials for urethral repair [14-
17]. Choosing the right cell type together with a supporting
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matrix is a crucial step in urethral tissue engineering [18].
The development of an acellular matrix by tissue engineering
represents a remarkable stage in the field of reconstructive
surgery [19]. Several studies reported successful results when
acellular matrixes were used to replace partial urethral defect
in an on-lay fashion. Sievert et al. used a tubular acellular
matrix to replace a circumferentially excised segment of a
rabbit urethra with 0.8-1.1 cm long and reported satisfactory
results [20]. However, it is uncertain whether the acellular
artery could serve as a graft material for urethral stricture dis-
eases. In the present study, we investigated the feasibility of
using acellular arteries to engineer a long urethral segment
in canines.

2. Materials and Methods

This study was conducted with the approval of the Ethics
Committee of Beijing Jishuitan Hospital. All animal experi-
ments complied with the ARRIVE guidelines and were car-
ried out in accordance with the U.K. Animals (Scientific
Procedures) Act, 1986 and associated guidelines. A total of
12 male Beagle dogs with an average age of 1y and average
weight of 8.7 kg, purchased from Beijing Marshall Biotech-
nology Co. Ltd., were included in the study. The acellular
arterial matrix was obtained from the excised carotid artery
of male donor dogs that were not included in the study.
Autologous adipose-derived stem cells (ADSCs) from 6 male
dogs were grown and seeded onto a premade acellular arterial
matrix (3cm in length). The long urethral segment was
resected in the 12 male dogs. Urethroplasty was performed
with the acellular arterial matrix seeded with ADSCs in 6 ani-
mals and without cells in the other 6. Serial urethrography
was performed at 1 and 3 months postoperatively. The ani-
mals were sacrificed for analysis at predetermined time
points (three animals in each group at 1 month and 3
months, respectively).

2.1. Preparation of the Arterial Matrix. Carotid arteries were
obtained by surgical resection from the donor animal. The
carotid arteries were rinsed with phosphate-buffered saline
at 4°C, followed by treatment with 0.03% trypsin for 2h at
room temperature. The matrix was then treated with a solu-
tion of Triton X-100 (0.5%) and ammonium hydroxide
(0.05%) in distilled water for 24h at 4°C to dehydrate the
cells. Finally, 10 mmol/L Tris-HCI washing solution contain-
ing 50 U/mL DNase I and 1 U/mL RNase A was added and
washed at room temperature for 24 hours with shaking to
digest the nucleus and remove the DNA and RNA compo-
nents in the carotid artery. The tissue was washed, frozen,
and lyophilized, and after sterilization with ethylene oxide,
it was sealed and stored at 4°C.

2.2. Cell Isolation and Expansion. The animals were sedated
with acepromazine (0.05mg/kg intramuscularly), and
anesthesia was induced using a combination of ketamine
(5mg/kg intravenous) and diazepam (0.25mg/kg intrave-
nous). The animals were intubated and maintained under
isoflurane (1-2%) anesthesia. Saline (10mL/kg/h) was
substituted through an intravenous catheter. The fur of
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the Beagles’ lower abdomen was removed, and disinfection
was performed using iodophor. A midline incision was
made in the abdomen followed by exposure of the subcu-
taneous fat tissue. Subcutaneous fat tissue was removed
with sterile forceps and reserved. The adipose tissue was
rinsed with PBS, minced into small pieces, with vigorous
shaking at 800 rpm, and then incubated in a solution con-
taining 0.2% collagenase type IA for 20 minutes at 37°C
with shaking at 200rpm. The suspension was filtered
through a 70 um cell strainer, and the top lipid layer was
removed and centrifuged at 1500 rpm for 8 min at room
temperature. The remaining cells were suspended in
10mL Dulbecco’s modified Eagle medium (DMEM) sup-
plemented with streptomycin, fungizone, penicillin, and
10% fetal bovine serum (FBS), plated at a density of 1 x
10° cells in a 10cm dish and cultured at 37°C in 5%
CO,. After 24 hours, the cells were rinsed with PBS.
Through the detection of specific surface antigens and
the ability of multidirectional differentiation of cells, we
determined that they were adipose-derived mesenchymal
stem cells.

2.3. Scaffold Preparation and Cell Seeding. The prepared
acellularized arterial matrix was incubated for 24h in
DMEM supplemented with 10% fetal bovine serum (FBS)
prior to implantation. Third-generation adipose-derived
mesenchymal stem cells were seeded onto the arterial
matrix at a concentration of 5x 10° cells/cm” and in a
15mL centrifuge tube filled with DMEM/10% FBS. There
was intermittent shaking in a 5% CO,, 37°C incubator
with a rotary shaker; the medium was stirred at 10rpm
to allow for uniform distribution of cells over a 24h
period. It was shaken for 30 minutes and then stood still
for 30 minutes. After repeating a total of 3 cycles, it was
cultured for 24 hours. The coculture of the cell-scaffold
complex was observed under a fluorescence microscope
and confocal microscope.

2.4. Surgical Procedures. A total of 12 animals were used in
this study, in which 6 animals received cell-seeded acellular
arterial matrix and the other 6 received unseeded. Under
anesthesia, a suprapubic bladder catheter was surgically
inserted into the bladder to ensure proper drainage of urine
during healing and indwelling 6F catheter in the urethra to
support the urethra for 2 wk. Subsequently, a median longitu-
dinal incision of the perineum was taken, and the skin and
subcutaneous tissue were separated to expose the urethra.
The entire length of the urethra is about 18cm, and a 3cm
long segment of the urethra (about 17% of the entire length
of the urethra) starting distal to the bulbous urethra was
transected and removed. The cell-seeded acellular arterial
matrix was interposed, and the ends were anastomosed with
the native ends of urethral tissues using 5-0 vicryl sutures in
the experimental group (Figure 1), while the acellular arterial
matrix was used to substitute the urethral defect in the con-
trol group. The wound was closed in layers in a routine fash-
ion. All animals were subcutaneously injected with
meloxicam for pain and subcutaneously injected with
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FIGURE 1: Surgical procedures of urethroplasty. A 3 cm long segment of the urethra (about 17% of the entire length of the urethra) starting
distal to the bulbous urethra was transected and removed (a—c). The cell-seeded acellular arterial matrix was used to substitute the

urethral defect (d).

enrofloxacin 0.1 mL/kg for anti-inflammatory symptomatic
until the catheter was removed.

2.5. Postoperative Assessment. The animals (n=12) were
divided over two time points. Retrograde urethrograms
and graft harvest were performed at 1 and 3 months after
implantation. Animals were euthanized using the anes-
thetic drug, and the entire urethra was circumscribed with
sharp dissection. The nonabsorbable sutures were identi-
fied to demarcate the graft margins. Sections of the graft
were obtained for histological and immunohistochemical
analyses. All tissues were formalin-fixed, paraffin-embed-
ded, and sectioned (8 mm). Hematoxylin and eosin and
Masson’s trichrome staining was performed. Immu-

nohistochemical staining was performed using monoclonal
antibodies against the urothelial cell layer (pancytokeratins
AE1/AE3), smooth muscle cell layer (a-SMA), and CD34.

3. Results

3.1. Cell-Seeded Acellular Arterial Matrix. Cells obtained
from canine abdominal subcutaneous adipose tissue were
characterized by their ability to express stem cell markers
and to differentiate toward adipogenic and osteogenic line-
ages when cultured in media containing lineage-specific fac-
tors. The known MSC markers such as CD29 and CD90 were
highly expressed by the cells. Negative markers such as CD45
and HLA-DR were not expressed (Figure 2(e)). The
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F1GURE 2: Morphology and identification of ADSCs. (a) Morphology of ADSCs under a light microscope. (b) Oil Red O staining results on the
11th day of adipogenic differentiation. (c) ALP staining results on the 6th day of osteogenic differentiation. (d) Alizarin Red staining results on
the 12th day of osteogenic differentiation. (e) Identify its phenotype by flow cytometry.

multilineage plasticity of ADSCs was confirmed by specific
staining methods: Oil Red O staining and Alizarin Red S
staining, respectively (Figures 2(a)-2(d)).

Histological analyses of the in vitro processed carotid
arterial matrices confirmed their acellularity. After mechani-
cal and chemical treatments, the acellular arterial matrix
became translucent membranes and was milky white exhibit-
ing elasticity and toughness (Figure 3). The ADSCs were
cocultured with an acellular arterial matrix for 24 h, and then,

these cells were observed under a confocal microscope
(Figure 4).

3.2. Surgical Outcomes. Two animals in the control group
implanted with acellular matrices had early urine leakage
after removal of the urethral catheter, which was due to fis-
tula formation at the anastomotic site. The urethral stricture
was demonstrated in 3 animals in the control group after
3mo of implantation as shown via the urethrography
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FIGURE 3: Preparation of the acellular arterial matrix. Carotid arteries were obtained by surgical resection from donor animal and

decellularized.

FIGURE 4: The cell-scaffold complex was observed under a transmission electron microscope.

(Figure 5(a)). In contrast, serial urethrography confirmed
maintenance of a wide urethral caliber without any signs of
strictures in 6 animals implanted with cell-seeded tubular-
ized matrices (Figure 5(b)). The region of the grafts was
clearly delineated and identified by nonabsorbable sutures.
Gross examination of the cell-seeded arterial matrix showed
that the graft was highly epithelialized and smooth
(Figure 6(b)), while graft contracture and scar formation
were showed in the control group (Figure 6(a)). Histologic
analysis of the cell-seeded arterial matrix at 1 month con-
firmed the presence of multilayered urothelium and muscle.
The levels of tissue formation developed over time with a
progressive increase in muscle content (Figure 7(b)). In con-
trast, extensive fibrosis and sparse smooth muscle were seen
in animals treated with the matrix without cell
(Figure 7(a)). Using anti-CD-34 antibodies, angiogenesis
was noted on the cell-seeded scaffolds within the organizing
seromuscular layers (Figure 7(a)). However, the unseeded
grafts demonstrated a scarcity of vascular organization in
comparison to their seeded counterparts (Figure 7(a)).

4. Discussion

Extensive urethral reconstruction is often recommended in a
variety of urethral conditions, including inflammatory and
posttraumatic strictures, congenital defects, and malignancy
[21-23]. Most of the grafts used in urethral reconstruction
are derived from autologous tissues, such as genital and
extragenital skin flaps, bladder and buccal mucosa, tunica
vaginalis, and bowel mucosa [24-27]. Because of its high suc-
cess rate, buccal mucosa remains the most widely used source
of tissue for urethral replacement, especially in cases of com-
plex urethral reconstruction [28, 29]. However, donor site
complications have been reported associated with the buccal
mucosa harvesting, such as oral pain, swelling, salivary tube
injury, speaking disorders, oral tightness, dysgeusia, and scar
deformities. This limits the application of autologous tissues
in urethral repair [30].

Tissue engineering and regenerative medicine studies
have led to the development of various biomaterial scaf-
folds that can be used for urethral repair, such as synthetic



6 Stem Cells International

(b)

FIGURE 5: Postoperative urethrography. (a) Urethral stricture and urine leakage were confirmed in the control group. (b) Wide urethral
calibers were demonstrated in the experimental group.

(b)

FIGURE 6: Gross examination of the reconstructed urethra. Graft contracture and scar formation were showed in the control group (a). The
graft was highly epithelialized and smooth in the experimental group (b).
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F1GURE 7: Histological analysis of reconstructed urethra: (a) the control group; (b) the experimental group; (c) normal urethral tissue (HE

%100, immunohistochemistry x400).

materials, collagen, and acellular matrix [15, 17, 31, 32].
Dorin et al. proved that acellular matrices can be success-
fully used in tubularized urethral reconstruction, but the
maximum potential distance of normal native tissue regen-
eration was limited when using tubularized unseeded
matrices [33]. Results from the study of De Filippo et al.
and Orabi et al. demonstrated that collagen scaffolds
seeded with cells can be used for long tubularized urethral
replacement, whereas scaffolds without cells lead to poor
tissue development and strictures. These results confirmed
the importance of seeded cells in urethral tissue engineer-
ing [34, 35].

Experimental results in this study show that tissue-
engineered acellular arterial matrix seeded with ADSCs can
be successfully used for urethral replacement. From the sub-
cutaneous fat tissue, we were able to isolate ADSCs, which
were characterized by flow cytometry analysis for positive
expression of CD29, CD90, and CD44 and negative expres-
sion of CD45. Then, we expanded ADSCs until sufficient
numbers were reached and labeled them with a fluorescent
marker before scaffold seeding. After discontinuous shaking
coculture, the ADSCs lived well and presented a good cell
adhesion in the ADSC-scaffold complex, which were con-
firmed by the fluorescence microscope and confocal
microscope.

The ADSC-seeded arterial matrix appears to function
as a scaffold to remodel and regenerate a near-normal
dog urethra. The animals receiving the ADSC-seeded arte-
rial matrix showed improvement over the control group in
all histologic and functional aspects. We demonstrate that
a multilayered columnar epithelium was regenerated on
the luminal side of the scaffold while a complete muscle
layer was formed on the corresponding outer surface. All
animals had a wide urethral caliber without any signs of
strictures in the experimental group. In comparison, the
control animals developed at most a single layer of strati-
fied epithelium postoperatively and 3 animals had urethral
strictures. In addition, fistula formation and early urine
leakage were noted in 2 animals in the control group.

The reasons why ADSCs can reduce the occurrence of
urethral stricture are as follows: (1) rapid development of
the epithelium along the luminal surface of the urethra
serves as a barrier that may prevent urine leakage into
the suburothelial tissue and associated fibrosis, (2) the rap-
idly developing muscle cells differentiated from the ADSCs
give the support for the urethral regeneration and keep the
urethra from collapsing [36, 37], (3) ADSCs also provoke
paracrine iNOS expression to exert antioxidative effects
and to augment microhemodynamics that contributes to
tissue repair and antifibrotic actions [38, 39], and (4)



ADSCs may decrease the expression of fibrosis-associated
genes and counteract urethral stricture formation [40,
41]. However, these mechanisms would not be present in
the unseeded arterial matrix.

This study provides evidence that the ADSC-seeded
tubularized arterial matrix can be used in the reconstruction
of long urethral defects. However, there were still several lim-
itations to this study. First, the current study was performed
in the model with a normal healthy urethra, which could not
fully simulate the fibrotic urethra bed in the clinical situation.
Second, the number of experimental animals that were eval-
uated per time point is small. Larger sample sizes are needed
to verify these results. Finally, the follow-up duration is only
3 months, which may not be able to catch all graft failures or
developments of strictures. Therefore, further investigation
in a larger series with a longer follow-up is required before
introducing this technology into clinical practice.

5. Conclusions

This study provides preclinical evidence that the ADSC-
seeded arterial matrix can be used as a tubularized scaffold
in the reconstruction of a 3 cm long urethral defect in a male
canine model. The ADSC-seeded arterial matrix remodels
and regenerates normal-appearing urethral tissue layers over
time. However, its clinical application will always be very
limited, and more studies are required before introducing
this technology into clinical practice.
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