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Abstract

Understanding how people assimilate different types of information for food choices is inte-

gral to improving knowledge about diet and human health. This study evaluates the impact

that 10 information signals have on the perceived healthiness of gluten. Signals include

non-social signals such as personal eating experiences, scientific studies, and advice from

doctors, but also includes social signals such as recommendations from attractive people,

social media, the layout of a grocery store, and celebrities. An online survey of over 1,000

Americans is administered using indirect questioning where subjects are presented with a

hypothetical other person and asked how the various signals would impact that person’s

opinion of gluten-free diets. Results show that advice from an attractive person is thought to

have a slightly larger impact than reading about a new study regarding gluten, and seeing a

grocery store develop a new gluten-free section has a larger impact than learning a celebrity

consumes a gluten-free diet.

Introduction

It is increasingly clear that consumers rely on more than scientific publications and medical

advice to make decisions about food and health. For example, the growing popularity of glu-

ten-free foods is hard to explain solely based on recent scientific findings or new paradigms in

medical research. True, there was initially some evidence suggesting the existence of gluten-

sensitivity among the non-Celiac population [1]. However, more recent evidence is mixed [2–

5] and there is still no consensus on whether gluten sensitivity is a medical condition [6, 7].

While there is a protocol for diagnosing gluten sensitivity [8], people may self-diagnose or

infer that gluten is unhealthy in ways other than irritable bowels. If gluten sensitivity exists, it

is a condition in which little is understood, and affects only a small portion of the population.

Certainly, the medical profession does not consider foods containing gluten to be less healthy

for the general population than their gluten-free counterparts [7].

Yet, about 15% of people think they may be sensitive to gluten, and one in five think health

can be improved by keeping gluten off their plates, as shown in Fig 1 below [9]. The ubiquity

of ‘gluten-free’ food labels, even on foods that never contain gluten, can be seen in any grocery

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0248570 April 8, 2021 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Norwood FB (2021) Perceived impact of

information signals on opinions about gluten-free

diets. PLoS ONE 16(4): e0248570. https://doi.org/

10.1371/journal.pone.0248570

Editor: Camelia Delcea, Bucharest University of

Economic Studies, ROMANIA

Received: July 28, 2020

Accepted: March 1, 2021

Published: April 8, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0248570

Copyright: © 2021 Franklin Bailey Norwood. This is

an open access article distributed under the terms

of the Creative Commons Attribution License,

which permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data has been

submitted to DRYAD and is available at https://

datadryad.org/stash/dataset/doi:10.5061/dryad.

05qfttf12.

Funding: Funding was made possible by the Barry

Pollard MD / P&K Equipment Professorship in

https://orcid.org/0000-0002-6667-9998
https://doi.org/10.1371/journal.pone.0248570
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248570&domain=pdf&date_stamp=2021-04-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248570&domain=pdf&date_stamp=2021-04-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248570&domain=pdf&date_stamp=2021-04-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248570&domain=pdf&date_stamp=2021-04-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248570&domain=pdf&date_stamp=2021-04-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248570&domain=pdf&date_stamp=2021-04-08
https://doi.org/10.1371/journal.pone.0248570
https://doi.org/10.1371/journal.pone.0248570
https://doi.org/10.1371/journal.pone.0248570
http://creativecommons.org/licenses/by/4.0/
https://datadryad.org/stash/dataset/doi:10.5061/dryad.05qfttf12
https://datadryad.org/stash/dataset/doi:10.5061/dryad.05qfttf12
https://datadryad.org/stash/dataset/doi:10.5061/dryad.05qfttf12


store, attesting to industry reports [10] that the market for gluten-free foods has risen and will

continue to rise.

For a condition that is supposed to be medical in nature, gluten sensitivity has a rather

strange social aspect to it, at least from popular media. It is common for politicians, movies,

and television to depict gluten sensitivity as existing primarily among Americans on the politi-

cal-left, yet recent research suggests it is a popular eating behavior among Trump supporters

as well [9]. Survey evidence even suggests that some people consider a gluten-free diet to be a

successful weight-loss strategy [11].

It only takes a moment of reflection to acknowledge that much of our beliefs about health

and food do not stem from carefully vetted research and advice from medical institutions,

although they obviously play an important role. Conceptual models of food choices con-

structed from interviews document social factors as playing an important role, and empirical

studies support this claim [12, 13].

Social information signals concerning gluten’s impact on health includes personal testimo-

nies. Such testimonies may come from friends, people we admire such as celebrities, or people

who seem to take good care of their bodies. These are signals provided by specific people we

encounter in our daily life. Other social signals emerge from the collective actions of many

people, most of whom we do not know. Consider the layout of a grocery store. The more other

people attempt to remove gluten from their diets, the more grocery stores will market towards

these individuals, perhaps creating new sections catering solely to gluten-free products. This

could just be stores attempting to profit from health fads, but it could also signal the fact that

many other people are learning that gluten is bad for their health. Or consider the fact that Jan-

uary 13 is the official gluten-free day. True, there is a ‘day’ for all types of trivial matters. On

July 14, you can celebrate Bastille Day, commemorating an historically important day for

Fig 1. Attitudes towards gluten as held by a representative sample of U.S. citizens. Source: original analysis of data reported in [9].

https://doi.org/10.1371/journal.pone.0248570.g001
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France. On that same day you can also celebrate National Nude Day. However silly National

Nude Day may be, the fact that it exists says something about people, and the fact that there is

a gluten-free day might suggest the anti-gluten movement is real and, thus, gluten may be bad

for health.

What type of social information signals have the largest impact on opinions about gluten-

free diets, and how does their impact compare to other signals such as a personal eating experi-

ence or a doctor’s recommendation? This is an exploratory analysis of how a variety of poten-

tial social signals may impact people’s opinions of gluten-free diets, meaning we did not

design the survey experiment to test any explicit hypothesis. Rather, we sought to explore how

a number of plausible signals about food and health might be interpreted. An internet survey

was conducted where respondents were presented with a variety of signals and asked to predict

the impact the signal would have on a hypothetical other person’s opinion of gluten-free foods.

For comparison, in addition to seven social signals, three non-social signals are included: doc-

tor recommendation, a personal eating experience, and reading about a new study concerning

gluten. The next section describes the subjects who took the survey and the survey instrument.

It is followed by a section on the statistical procedures employed. Then a section on the results

is provided, which is followed by a description of the study’s limitations, and then a general

discussion.

Materials and methods

The design and implementation of the study was evaluated and approved by the Institutional

Review Board at Oklahoma State University, application AG-19-36. Explicit consent was not

obtained, as consent to participate was implied if the participant chose to take the survey.

Below we describe the participants recruited and the survey design.

Participants

An internet survey of Americans was conducted in the fall of 2019 using a sample acquired by

the Qualtrics company, which uses an opt-in panel of respondents that ensures a representa-

tive sample of Americans in terms of key demographics like gender and ethnicity. These are

respondents who are recruited to take online surveys in exchange for compensation such as

gift cards, airline miles, and the like. The original sample contained 1,535 respondents. After

removing those with incomplete responses, a total of 1,317 respondents remained. Descriptive

statistics of the sample are shown in Table 1, as well as their counterpart statistic for the U.S.

population as determined by the 2010 Census and the American Community Survey.

A number of the demographic variables closely resemble the U.S. population and suggest a

representative sample. For example, the sample is 50.93% female, which closely matches the

U.S. population of 50.8% female. However, other sample demographics depart from the popu-

lation, like the 54% of respondents 25 years or older in the sample with a bachelor’s degree,

compared to 32% for the United States. Moreover, research has shown that samples from opt-

in panels can differ from the population in a number of other features, such as the percent of

households with an unemployed member looking for work [14]. Table 1 shows that 23% of the

households had at least one unemployed member where, according to the American Commu-

nity Survey, the percentage for a representative sample of the population during normal eco-

nomic years is around 8%.

To correct for differences in the sample relative to the population, a sample balancing algo-

rithm used by [15] is employed to calculate weights for each respondent, such that each

weighted statistic for the sample in Table 1 equals the statistic for the U.S. population. For
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example, using these sample-balancing weights, the weighted proportion of households with

three or more members equals 62.88%, equaling that of the population.

Materials

To measure the perceived impact various information signals have on people’s opinions of glu-

ten-free diets, the survey presented respondents with a number of these signals and hypotheti-

cal other people. Subjects were then asked to indicate the impact each signal will have on the

other person’s attitude towards gluten-free diets. This survey is presented in S1 Appendix. The

first part of the survey concerned the demographic questions shown in Table 1. The second

part contained 10 to 14 questions regarding opinions on voting, honesty, and foods that are

not related to this study and are used for a separate analysis. The third part of the survey then

concerned the relationship between information signals and opinions on gluten.

This third part begins by asking respondents if have heard of gluten, whether they can iden-

tify foods with gluten, and their general opinion regarding gluten. Only 4.10% of the sample

said they had never heard of “gluten-free” foods, and while they are retained in the sample, a

sensitivity analysis will show their inclusion has only minor impacts on the empirical results.

When given a list of five foods (bread, meat, honey, tomatoes, and lettuce), and asked which

are most likely to contain gluten, 82.71% of the sample correctly identified bread. When asked

to choose one of four options best reflecting their opinion about gluten, 8.71% said it was

unhealthy for everyone, 51.64% said it was unhealthy for some people, 11% said it was healthy

for everyone, and 28.65% were unsure.

Signals. Subjects were then told they would be presented with 10 questions with each one

containing a picture of a person and an event (referred to here as information signals) where

Table 1. Descriptive statistics of 1,317 survey respondents.

Variable Representation in Sample Representation in US Populationa

Female 50.93% 50.80%

Male 49.07% 49.20%

� 34 years of age 30.21% 27.38%

34 < years of age� 54 37.14% 33.67%

54 < years of age 32.64% 38.95%

White ethnicity only 74.71% 76.30%

Black ethnicity only 14.43% 13.40%

Other ethnicity 10.96% 10.30%

Hispanic 17.43% 15.30%

Household income� $35,000 28.07% 27.89%

$35,000 < Household income� $75,000 32.36% 29.21%

$75,000 < Household income 39.57% 42.91%

Northeast region 18.36% 17.10%

Midwest region 19.07% 20.80%

South region 42.57% 38.30%

West region 20.00% 23.90%

Household has at least one unemployed member looking for work 22.64% 8.30%

Households with three or more members 50.57% 62.88%

Respondents 25 years or older with a bachelors degree 54.00% 31.50%

a Statistics for U.S. population demographics are acquired from the U.S. Census Bureau, using statistics from the 2010 Census and the American Community Survey for

years 2014–2018.

https://doi.org/10.1371/journal.pone.0248570.t001
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the person is exposed to information regarding gluten-free diets. For each question subjects

were told they would be asked how large of an impact they believe the event will have on the

person’s opinion of a gluten-free diet. The type of signals, persons, and the question format is

illustrated in Fig 2 below.

The signals chosen in Fig 2 were selected to represent both non-social and social informa-

tion signals. The non-social signals were designed to reflect either personal experiences or

objective sources of information. One non-social signal is personal experience (labeled perso-
nexp in Fig 2), described as experiencing irritable bowels after consuming a meal containing

gluten. This is a documented reason for adopting a gluten-free diet [16]. Notice this refers to a

single meal, so it represents a single personal experience and not necessarily a series of bad

experiences with gluten. Objective sources of information can come from doctor recommen-

dations or scientific studies. The doctor signal says that the person’s doctor recommends

experimenting with a gluten-free diet to see if it improves health. This is not the same as a

Fig 2. Signals, persons, and experimental design of the survey.

https://doi.org/10.1371/journal.pone.0248570.g002
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doctor saying gluten-free diets are generally healthier, only that it might be for some people.

The signal referring to scientific studies (news) was described as a person reading about a new

study demonstrating how some people experience irritable bowels from consuming gluten. As

with the doctor signal, the news signal only says that a study shows some people might be glu-

ten-sensitive, not that gluten is unhealthy for everyone.

The social signals are intended to represent the beliefs of certain social groups that might

praise the health effects of a gluten-free diet. The signals friends, attractiveperson, and celebrity
refer to influences from specific people. Friends refers to an instance where a person “has a

number of friends that say good things about the gluten-free diet.” It makes sense that people

who are physically attractive take good care of their bodies, including eating a healthy meal.

The attractiveperson signal refers to a scenario where an attractive person met at the gym says

they feel better on a gluten-free diet. Given that celebrities are thought to possess great influ-

ence, the celebrity signal refers to learning that NFL quarterback Drew Brees and actor Gwy-

neth Paltrow consume a gluten-free diet. These two celebrities were chosen because at least

one of them should be appealing to most subjects.

The other social signals refer not to specific individuals but the collective actions of others

who are likely strangers. A person might be influenced by seeing social media posts describing

how people feel better on a gluten-free diet, and that is how the socialmedia signal is described.

A person seeing activists argue that all foods containing gluten should be labeled as such might

believe the activism is based on real health problems, so the activism signal is included as well.

Walking into one’s grocery store and seeing a new display devoted solely towards gluten-free

products might be viewed by some as a marketing gimmick, but others may infer from it that

many others are benefitting from a gluten-free diet, so this signal (store) is included. Finally,

the fact that January 13 is the official gluten-free day suggests that the diet is quite popular with

many, so the signal glutenfreeday is included as well.

Hypothetical other persons. Although the goal is to measure how each of the signals

would impact people’s opinions about a gluten-free diet, we deliberately avoid asking the sub-

ject how it would impact their own opinion. Instead, we ask how it would impact the opinion

of a hypothetical “other” person. This is done to avoid social desirability bias, whereby a person

misrepresents their true attitudes in order to appear more desirable to others. Research has

shown that when you ask a person about the behavior of other people you often obtain better

information about their own behavior, compared to when you directly ask them about their

own behavior. For example, if you want to know whether a person would vote for a Muslim

presidential candidate, you might obtain a more truthful response if you ask whether the aver-

age American would vote for one rather than if you ask if they, themselves, would. In regards

to gluten, a person might be embarrassed to admit that they allow social media to influence

their views, so even if social media has a larger impact on their views of gluten-free diets than

their doctor’s advice, they would be reticent to admit so in a survey. Respondents would not

experience the same hesitation to say so of others, however, so the indirect questioning is used

to provide a more realistic depiction of the subjects’ true beliefs than if they were asked directly

[17–19].

Indirect questioning often asks subjects to predict the behavior of the “average American,”

but it was suspected that doing so would cause the respondent to imagine a white female, as

that seems to be the demographic most commonly associated with such diets in popular

media. It thus seemed important to give the subject a picture of an individual to consider in

the question. Then, so that the survey results as a whole do not pertain to pictures of any one

particular demographic, the type of persons presented in the survey varied randomly across

signals and surveys. Fig 2 shows the 11 types of persons used in the survey.
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Of these persons, three are African American, four are white, two are Hispanic, one is

Asian, and one is a more ambiguous ethnicity. They reflect a wide array of ages, from young to

middle aged to elderly. By randomly varying the person associated with each signal, the survey

ensures that the average response is not reflective of any one particular demographic; instead

is a mix of the 11 persons. Subjects are asked about all 10 signals, but the order in which each

signal appears in the survey is randomized.

For each signal/person combination presented, the subject is asked, “What will be the

impact of this event on this person’s opinion of gluten-free diets?” The impact is measured on

a 0 to 100 scale where a larger value refers to a larger projected impact. Although the impact

should largely be in favor of gluten-free diets, the question does not require this; it only asks

about the size of the impact, not whether it causes the person to look upon gluten-free diets

more or less favorably.

Statistical procedures

Averages and sign tests

A number of different empirical procedures are used to analyze the survey results. The first

includes a simple average of the impact scores. A simple average is an unbiased estimator of

each signal’s importance because both the question order and the person matched with each

signal is randomized. Additionally, a weighted average is performed using the weights calcu-

lated from the sample balancing algorithm to better represent the views of the U.S. population

and not just the sample.

One problem with comparing average scores across signals is that different subjects may

use different mental scales when answering the survey questions, making it difficult to com-

pare a score from one person to the score of another. For example, one respondent may con-

sider an impact score of 60 to have more or less actual impact than another person who also

provides a score of 60. However, if the percentage of subjects who provide a higher score to sig-

nal A than signal B is statistically greater than 50%, one can say signal A is indeed thought to

have a larger impact. As such, nonparametric sign tests, as described by a 2015 study [20], are

used to determine if one signal is consistently assigned a larger impact than another signal

across individuals. The null hypothesis of this test is that the median of the difference between

impact scores of two signals is zero, and makes no assumption about the statistical distribu-

tions of the scores.

Regression 1

The signal impacts are also analyzed using regression analysis. The first regression models the

projected impact as conditional on the signal being evaluated, the demographic profile of the

respondent, and the hypothetical other person being matched with the signals. This regression

is stated as follows.

Impactij ¼ b1ðactivistijÞ þ b2ðcelebrityijÞ þ b3ðglutenfreedayijÞ þ b4ðdoctorijÞþ

b5ðfriendsijÞ þ b6ðnewsijÞ þ b7ðpersonalexpijÞ þ b8ðattractivepersonijÞþ

b9ðsocialmediaijÞ þ b10ðstoreijÞ þ aZij þ tPij þ eij

ð1Þ

In (1), Impactij is the projected impact of the signal for the ith person on the jth question,

where 0� Impactij� 100. The variables activistij . . . storeij are indicator variables for the type

of signal, and their description was given previously in Fig 2. For example, if the signal con-

cerns the person seeing “activists arguing that all foods containing gluten should be labeled as

such” then activistij = 1; otherwise activistij = 0. The vector Zij refers to indicator variables for
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the following demographics: (1) one indicator variable for female; (2) one variable for under

35 years of age and one variable for over 55; (3) one variable for white and one variable for

black ethnicity; (4) one variable for Hispanic; (5) one variable for pretax annual household

income below $30,000 and one for above $75,000; (6) one variable for northeast region, one

for midwest, and one for south; (7) one variable for households with three or more members;

and (8) one variable for respondents 25 years of age or older with a bachelor’s degree. As such,

the default demographic is a male, without a bachelor’s degree, 35 to 54 years old, other ethnic-

ity, non-Hispanic, in the western United States, making between $30,000 and $75,000 of

household income, and in a household with less than three members.

The vector Pij refers to the hypothetical other person randomly chosen for the ith person in

the jth question. Although these variables are not necessarily needed as they are randomly

matched with signals in the survey, including them provides information on what types of

hypothetical other people are thought to be more impacted by signals. This vector takes the

form Pij = [Person2ij . . . Person11ij], where the identity of Person1 through Person11 is given in

Fig 2, and Person2ij is an indicator variable that equals 1 if Person2 is matched with the signal

and zero otherwise. As Person1 is not included in the vector, it is the default category. No inter-

cept is included in the model so that all signal indicator variables activistij . . . storeij can be

included. This implies that the coefficient βk should be interpreted as the average impact score

for the kth signal provided by a person with the default demographic profile described previ-

ously and the default picture of Person1.
Each person answers 10 questions and, thus, the stochastic error eij should be correlated

across respondents: eijeiid Nð0; d
2

i Þ, meaning the errors are identically and independently dis-

tributed across questions for the same person, but the errors for each person have their own

fixed variance d
2

i . The model is estimated in STATA using ordinary least squares and the

Huber and White robust estimate of variance [21, 22]. Because this model uses demographic

variables as explanatory variables, sample balancing weights are not used in the estimation.

Regression 2

The second regression is the same as Regression 1 except that the demographic variables in Zij
are omitted and a weighted regression is used to correct for differences in the sample and pop-

ulation demographics. The sample-balancing algorithm mentioned previously assigns a weight

Wi to each respondent, where the weights are calibrated such that weighted averages of the

sample demographics conform to the actual average of the population demographics shown in

Table 1. The ordinary least squares estimation is similar to Regression 1 except that, instead of

minimizing the sum of squared residuals ∑i∑j(eij)2, it minimizes the weighted sum of squared

residuals ∑iWi∑j(eij)2. As with Regression 1, the Huber and White robust estimate of variance

[21, 22] is used to account for the panel nature of the data.

Sensitivity analysis

Three additional analyses are performed to evaluate the robustness of the results. It was previ-

ously mentioned that some respondents are less familiar with gluten than others, but the statis-

tical analysis did not exclude anyone based on their knowledge of gluten. To investigate the

impact of this decision on the results, Regression 2 is repeated twice with modifications. First,

Regression 2 is estimated excluding those who say they have never heard of gluten-free foods.

Second, Regression 2 is estimated excluding those who do not correctly identify which of the

following foods contain gluten: bread, meat, honey, tomatoes or lettuce.

The empirical methods described previously use one number to describe the estimated

impact of each signal for all respondents; however, there might be heterogeneity in the
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responses across respondents. As such, while one signal may seem to have a larger impact than

another for the sample as a whole, this comparison may be reversed for a subset of the sample.

To allow for preference heterogeneity, a latent class model is estimated. This involves estimat-

ing a version of Regressions 1 and 2, but using only the signal explanatory variables. All

respondents are assumed to belong to one of two different classes, denoted c, where each class

has its own unique signal coefficients βj,c. The error term is assumed normally distributed with

a constant variance for each class of subjects and signal: ei;j;ceiid Nð0; s2
j;cÞ. Estimates are

acquired using maximum likelihood, and τc is the probability of subject i belonging to class c,
which has to be estimated along with the other coefficients subject to the constraint τ1 + τ2 = 1.

Impactij ¼ S2

c¼1
tcðb1;cðactivistijÞ þ b2;cðcelebrityijÞ þ b3;cðglutenfreedayijÞþ

b4;cðdoctorijÞ þ b5;cðfriendsijÞ þ b6;cðnewsijÞ þ b7;cðpersonalexpijÞþ

b8;cðattractivepersonijÞ þ b9;cðsocialmediaijÞ þ b10;cðstoreijÞ þ ei;j;c

ð2Þ

Results

Averages and sign tests: Results

Although 1,537 respondents took the survey, only the results of 1,317 are analyzed. Observa-

tions are discarded if the subject does not answer all the survey questions needed for the statis-

tical analyses. The average impact score across all 1,317 respondents for each of the 10 signals

is shown in Fig 3. A larger bar indicates a larger predicted impact. These are simple averages

without sample balancing, but results for weighted averages using sample balancing weights

provides virtually identical answers and, thus, are not shown. The figure also shows the results

of a two-sided sign test, where any two bars with the same letter are not statistically different,

meaning the null hypothesis that they possess the same median cannot be rejected at the 5%

level.

Not surprisingly, an unpleasant personal experience consuming gluten and a doctor’s rec-

ommendation are thought to have the largest impacts on opinions about gluten-free diets. The

average impact score for these two signals are in the upper 60s, meaning, on average, they are

thought to have an impact between “medium” and “large.” Sign tests also indicate the average

scores for these two signals are statistically different, so an unpleasant experience consuming

gluten is thought to indeed have the greatest impact on opinions on a gluten-free diet of all the

signals considered.

Hearing a friend or an attractive person say good things about a gluten-free diet has the

third largest impact, and the average scores from these two signals are not statistically different.

Both are given statistically greater scores than reading about a new study saying gluten can

cause irritable bowels. Social media has the sixth largest score and is followed by a grocery

store creating a new gluten-free section. The influence of activists and celebrities are not statis-

tically different and have the least impact of any signal except for learning that January 13 is

the official gluten-free day. Note that while the sign tests do detect statistical differences

between most signals, the average ratings all reside in the upper- to mid-moderate range. Even

the least impactful signal is thought to have a moderate impact.

Regression 1: Results

Table 2 shows the regression results from the model in (1) where impact scores are explained

by the type of information signal, demographic profile of the respondent, and the hypothetical

other person used. First consider the coefficients for the information signals activist . . . store.
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Each coefficient should be interpreted as the average impact score for that signal, assuming the

default demographic. Each of these coefficients is roughly 4.37 units less than their respective

average reported in Fig 3, so the overall results for the impact of the 10 signals are similar to

the results in Fig 3.

The statistical significance of the signal coefficients does not provide meaningful informa-

tion because it only says the impact scores are different from zero. What is more interesting

is whether the coefficients for different signals are statistically different from each other.

Wald tests are used to test the null hypothesis that the coefficient for any one signal is equal

to the coefficient of another signal, and this test is performed for every combination of two

signals. The null is rejected at the 5% level for every pair of signals except for attractiverper-
son and friends, so as with Fig 3, hearing good things about a gluten-free diet from an attrac-

tive person or one’s friends has the same impact. All other signals have statistically different

impacts.

The only statistically significant demographic variables are female and household size.

From these coefficients we learn that female respondents tend to give slightly lower impact

scores and households with three or more members tend to give slightly higher scores. The

average differences for the impact scores between males and females, and between smaller and

larger household sizes, are less than 8%, so the demographic effects are not remarkable. None

of the variables referring to the hypothetical other persons are statistically significant, so while

it was a priori deemed important to provide a visual description of the “other” person used in

indirect questioning, a posteriori it does not appear necessary.

Fig 3. Average impact score for information signals for 1,317 survey respondents.

https://doi.org/10.1371/journal.pone.0248570.g003
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Regression 2: Results

The results of the weighted regression are shown below in Table 3. The second regression is

similar to Regression 1 except that demographic variables are not used as demographic vari-

ables but are used instead for sample balancing. Because Regression 2 uses sample balancing

weights, the regression coefficients should better reflect the beliefs of the average American as

opposed to the beliefs of the average sample respondent. The interpretation of the coefficients

is similar to that in Regression 1, except that the coefficients refer to the beliefs of the average

American and not one particular demographic.

Table 2. OLS regression using impact scores of information signals as dependent variable.

Variable Coefficient estimate Robust standard error

personalexp 70.92�� 2.97

doctor 68.42�� 2.96

attractiveperson 62.08�� 2.95

friends 61.31�� 2.96

news 60.15�� 2.95

socialmedia 57.45�� 2.98

store 55.98�� 2.98

activist 52.73�� 2.97

celebrity 50.22�� 2.97

glutenfreeday 41.50�� 3.01

female -3.11�� 1.16

Less than 35 years of age -0.88 1.42

More than 54 years of age -2.49 1.43

White ethnicity -2.91 1.69

Black ethnicity 3.08 2.05

Hispanic 2.69 1.56

Household income> $75,000 2.67 1.41

Household income< $35,000 0.30 1.36

Northeast -0.27 1.79

Midwest 1.13 1.76

South 1.53 1.53

Household 3 or more members 3.17� 1.28

Bachelors degree -0.50 1.21

person2 1.44 2.34

person3 -0.91 2.53

person4 0.87 2.35

person5 0.17 2.57

person6 0.50 2.42

person7 -2.69 2.65

person8 -2.90 2.61

person9 1.19 2.29

person10 -1.74 2.68

person11 0.69 2.55

N = 1,317 respondents and 13,170 observations.

� Denotes statistical significance at the 5% level.

�� Denotes statistical significance at the 1% level.

https://doi.org/10.1371/journal.pone.0248570.t002
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While the coefficients for each signal differ in Regression 2 relative to Regression 1 (the

average percentage difference is 13%), the overall results are similar. For example, the ranking

of the signals with the highest and lowest scores are the same. The range of the signal coeffi-

cients is virtually identical as well. Wald tests (for the null hypothesis that the coefficients for

any pair of signal coefficients are equal) are also identical to Regression 1, in that the only sig-

nals where the null is not rejected is for attractiveperson and friends. One difference from

Regression 1 is that one of the persons variables is statistically significant. The coefficient for

Person8 (see Fig 2) has a lower value than the other persons, meaning that respondents felt this

young man would be less influenced by any one signal than person. All the other person vari-

ables are not statistically different from zero.

Sensitivity analysis: Results

Recall that 4.10% of the sample had never heard of gluten-free foods, so perhaps they should

not be included in the analysis? To test the impact of including them, Regression 2 is estimated

without these subjects, but this has virtually no impact on the results. The coefficients for any

one signal changes by less than 1%, the ranking of the signal coefficients is unchanged, and the

Wald tests for statistical differences between the signal coefficients are unchanged.

Another test for familiarity with gluten concerns subjects’ abilities to pick the one food con-

taining gluten from the list: bread, meat, honey, tomato, and lettuce. If Regression 2 is esti-

mated using only those who correctly identified “bread” as having gluten, there are some

changes in the magnitude of the coefficients for the 10 signals. Most change by less than 6%

Table 3. OLS weighted regression using impact scores of information signals as dependent variable.

Variable Coefficient estimate Robust standard error

personalexp 71.92�� 2.01

doctor 69.70�� 2.01

attractiveperson 62.35�� 2.01

friends 62.21�� 2.01

news 60.65�� 2.00

socialmedia 58.78�� 2.03

store 57.21�� 2.05

activist 53.04�� 2.05

celebrity 51.11�� 2.06

glutenfreeday 41.77�� 2.13

person2 1.33 2.83

person3 -4.06 3.00

person4 -1.64 2.58

person5 -4.32 3.25

person6 -0.76 3.05

person7 -4.58 3.37

person8 -6.77� 3.28

person9 -0.61 2.72

person10 -4.73 3.65

person11 -0.07 3.08

N = 1,317 respondents and 13,170 observations.

� Denotes statistical significance at the 5% level.

�� Denotes statistical significance at the 1% level.

https://doi.org/10.1371/journal.pone.0248570.t003
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but one (glutenfreeday) increases 12%. However, the ranking of the most to least influential

signals is unchanged, as are the Wald tests for statistical differences between signal coefficients.

Finally, a latent class model with two classes is estimated to help detect heterogeneity in

beliefs about the impacts of the information signals. This model employs an OLS regression

similar to Regressions 1 and 2 except (1) no sample balancing weights are used; (2) no explana-

tory variables are used other than the type of signal (no demographic variables or variables

describing the hypothetical other); and (3) no robust standard errors to account for the panel

nature in the data, but (4) two different sets of signal coefficients for two different classes of

respondents who provide different patterns of responses. As such, the signal coefficients can

be interpreted as the average impact scores for each class of respondents.

The model estimates suggest that, of all the respondents, 59% belong to Class 1 and 41%

belong to Class 2. The OLS signal coefficients/average impact scores for each class are shown

in Fig 4. The classes differ in two distinct ways. First, Class 1 provides lower impact scores for

every signal, indicating they believe each of the 10 signals will have less of an impact on other

people’s opinions than Class 2. Second, Class 2 believes there will be greater heterogeneity of

impacts across signals than Class 1. Except for glutenfreeday, Class 2 provides scores for all sig-

nals in the 70–80 range, whereas the range of scores for Class 1 is in the 30–60 range. Both clas-

ses agree that glutenfreeday, celebrity, and activist have the smallest impacts and doctor and

personal have the largest impacts. From the latent class estimates we can conclude that the gen-

eral results in the previous sections still hold true for almost half of the sample respondents.

Fig 4. Average impact score for information signals for 1,317 survey respondents, when respondents are separated into two classes with different

survey response patterns.

https://doi.org/10.1371/journal.pone.0248570.g004
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For the other half, many of the results hold true, but there are fewer differences in the impact

of the signals.

Limitations

This study has a number of limitations which warrant acknowledgment. While the motivation

for using indirect questioning has scientific justification, it would have been interesting to see

how subjects would have responded if asked how they themselves would have responded to

the information signals. Also, the impact of a signal was evaluated using only one type of ques-

tion, whereas the results may have differed if other types were used. For example, this study

allowed respondents to define a “large” or “small” impact however they liked, but different

respondents may consider the same behavior to be different in terms of overall impact. Future

research, including questions where a “large” impact, should be defined as “complete elimina-

tion of gluten from one’s diet” and “small” impact as “avoiding eating gluten whenever it is

convenient” would be useful in interpreting the results of the study and aid in validating the

questions used.

Discussion

What do these results tell us regarding the “truth” between gluten and health? We, of course,

do not survey Americans in the search of an objective truth, but to better understand how con-

sumers seek truth. Like scientists, most of our survey respondents would probably like to base

their dieting behaviors on objective facts, or what philosophers call the Correspondence The-

ory of truth, whereby statements like “gluten is bad for you” is considered true if it corresponds

to the actual state of affairs. This helps explain why respondents believe information signals

like a doctor’s recommendation or a personal eating experience would have the most impact

on people’s beliefs about the healthiness of gluten. Doctor recommendations are presumed to

be based on scientific evidence, and while the feeling of an irritable bowel may technically be a

subjective feeling, if a person feels irritable bowels that is what philosophers call first-person

knowledge and there can be no ambiguity about what a person feels.

However, there is little scientific consensus on whether gluten sensitivity exists for non-

Celiac patients, and no objective evidence that gluten is generally harmful to health for most

people, so the decision to adopt a gluten-free diet cannot be based on the Correspondence

Theory of truth. Instead, most people must rely on the Pragmatic Theory of truth, which con-

tends “gluten is bad for you” is a true statement if it is useful—if it has value in some way to the

believer [23]. There are many reasons why gluten may be deemed unhealthy in the pragmatic

sense, and we explore some of these reasons below using the results of the survey.

It is sensible to take dieting advice from people similar to oneself, so the result that finds

views on gluten are influenced by the eating habits of friends is intuitive. It is also sensible to

take advice from people who seem to take good care of their bodies, which helps explain why

equal importance is placed on the advice of attractive people and one’s friends (and why com-

mercials use attractive people as spokespersons). While social media does often spread mis-

leading information, it can help people communicate valuable information as well, and the

fact that social media posts touting a gluten-free diet are considered to have a larger influence

than celebrities and activists is telling. All of these signals can be inferences that gluten can be

harmful for health, and are based on the notion that other people have had personal experi-

ences eliminating gluten from their diets, with positive results. Likewise, for a grocery store

dedicating a new section exclusively to gluten-free diets—if it works for many other people, it

might work for oneself.
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It is important to recognize that the belief that gluten is bad for health may be useful even if

it is not true. People will change their eating habits if they adopt this belief, and those new hab-

its may be healthier even if gluten itself is healthy. The typical American diet is high in simple

carbs, low in fiber, and lacking in diversity; this is partially due to America’s high consumption

of refined white flour as opposed to whole wheat flour. As one adopts a gluten-free diet, they

can no longer consume wheat, rye, and barley products. So if they consume grains, they must

find alternative sources such as buckwheat, teff, or quinoa. These alternative grains are more

likely to be sold in whole form, containing the endosperm as well as the bran and germ. Thus,

by eliminating gluten, one might be increasing one’s consumption of fiber, vitamins, and

other minerals—and increasing diet diversity at the same time.

So many food products contain gluten that it can be difficult to actually achieve a gluten-

free diet unless one is very careful. Following a gluten-free diet involves being more intentional

regarding one’s food choices. This more serious attitude towards food and health is likely to

lead to better food choices in general. It is also likely that, if one adopts a gluten-free diet in an

effort to improve one’s health, they may adopt other behavioral changes, like exercising more.

If the adoption of a gluten-free diet occurs concomitant with these other changes, one’s health

may improve not because gluten was eliminated, but because of other reasons. Not recognizing

this false association, though, people may attribute their health improvements—at least par-

tially—to the absence of gluten. As they recommend a gluten-free diet to others, the demand

for gluten-free products rise, grocery stores advertise more gluten-free products, people inter-

pret this to mean gluten is harmful to health, so more people go gluten-free, and so on.

The point is that the belief that gluten is bad for health may be a useful belief even if it is not

technically true. These beliefs are largely formed by interpreting social signals from specific

people and the emergent behavior of social groups. Even seemingly insignificant signals like

January 13 being the official gluten-free day is thought to have a moderate—not low—impact

on beliefs about gluten. What this survey does is highlight the fact that a large number of

respondents agree with the notion that beliefs about food and health stem not just from objec-

tive facts, but a variety of imperfect information signals emanating from society.
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