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This paper is a review of cognitive neurodynamics research as it pertains
to recent advances in Multivariate Autoregressive (MVAR) modeling. Long-
range synchronization between the frontoparietal network (FPN) and forebrain
subcortical systems occurs when multiple neuronal actions are coordinated
across time (Chafee and Goldman-Rakic, 1998), resulting in large-scale measurable
activity in the EEG. This paper reviews the power and advantages of the
MVAR method to analyze long-range synchronization between brain regions
(Kaminski et al., 2016; Kaminski and Blinowska, 2017). It explores the synchronization
expressed in neurocognitive networks that is observable in the local field potential
(LFP), an EEG-like signal, and in fMRI time series. In recent years, the surge in MVAR
modeling in cognitive neurodynamics experiments has highlighted the effectiveness
of the method, particularly in analyzing continuous neural signals such as EEG and
fMRI (Pereda et al., 2005). MVAR modeling has been particularly useful in identifying
causality, a multichannel time-series measure that can only be consistently computed
with multivariate processes. Due to the multivariate nature of neuronal communication,
multiple non-linear multivariate-analysis models are successful, presenting results
with much greater accuracy and speed than non-linear univariate-analysis methods.
Granger’s framework provides causal information about neuronal flow using neural
time and frequency analysis, comprising the basis of the MVAR model. Recent
advancements in MVAR modeling have included Directed Transfer Function (DTF) and
Partial Directed Coherence (PDC), multivariate methods based on MVAR modeling that
are capable of determining causal influences and directed propagation of EEG activity.
The related Granger causality is an increasingly popular tool for measuring directed
functional interactions from time series data.
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INTRODUCTION

Complex systems are of central interest to cognitive neuroscience.
Any system composed of multiple moving parts is complex. The
brain is a complex system. So is the cerebral (neo)cortex, that
part of the brain most essential for cognition. Synchronization
is a hallmark of complex systems. Brain synchronization within
large-scale networks has been a primary research topic for many
cognitive neuroscientists over the course of several decades.
Large-scale coordination concerns brain synchronization within
the broader context of coordinated structures in nature, a
subject of study in physics, biophysics, and other disciplines.
Directed functional connectivity is synchronization in regard
to fMRI studies, and this paper discusses mathematical models
for measuring directed functional connectivity. The mentioned
directed functional connectivity is a key means of measuring
synchronization within large-scale neocortical networks, or
neurocognitive networks. Neurocognitive networks are defined
as large-scale, distributed, interconnected systems of brain
areas in the central nervous system that are joined together
to perform a particular cognitive task (Bressler and Menon,
2010). Neurocognitive networks require a binding mechanism
to function. The brain and cerebral cortex are complex systems
that use binding mechanisms. They can be studied by applying
directed functional connectivity methods because brain areas
are linked by axon bundles, containing axons on which action
potentials all travel in the same direction. This paper seeks
to provide a review of Multivariate Autoregressive (MVAR)
modeling in cognitive neurodynamics. Previous studies using
MVAR modeling to analyze continuous neural signals are
detailed, and further conclusions are drawn regarding given data
and long-term implications.

Synchronization within neurocognitive networks concerns
neural oscillations, brain activity that occurs in different brain
areas that may or may not be spatially distant. Neural oscillations
are unique in that they only display frequency, amplitude, and
phase. In fact, when two or more neural oscillations are in
synchronization, the exhibited frequency is always identical,
a characteristic feature of the activity of neural oscillations.
Amplitude and phase synchronization are both observed in the
brain. Each is a possible mechanism of synchronization and may
serve as a binding mechanism between neuronal populations
within brain regions.

Considerable efforts have been made to model the directed
functional connectivity in neurocognitive networks, and
multiple mathematical models have been proposed to better
interpret synchronization as a binding mechanism for neuronal
populations in the brain. Of the models that have thus been
developed, multivariate models are far more accurate and
statistically significant than univariate non-linear models.
Among other factors, the multi-dimensional nature of
neuronal communication means that multivariate models
are more ideal for interpreting directed functional connectivity
and synchronization within the brain. Of the mathematical
models that measure directed influences and causality within
neurocognitive networks, Granger causality is the most basic
and widely used, and is the most widely applicable to statistical
contexts concerning causal influence within broader networks.

Granger’s framework has been expanded on. Both partial
directed coherence (PDC) and directed transfer function (DTF)
exclusively interpret directed influences between time series
in the multivariate framework (Faes et al., 2013). They both
differ from Granger causality. PDC, a method introduced by
Baccalá and Sameshima (2001), is an expansion of Granger
causality that normalizes terms in the frequency domain by
the total outflow at a site. DTF, a method introduced by
Kaminski and Blinowska, normalizes frequency-domain terms
by the total inflow at a site. It is an alternative causality
model that normalizes directed influences by the sum of
transfer functions entering the site, as opposed to the sum
of transfer functions leaving a site that PDC measures. In
most neural contexts, MVAR models using non-instantaneous
effects are utilized to interpret rhythms. MVAR models, with
and without instantaneous effects, are elaborated upon in the
following sections.

METHODS

Visuomotor Experiments in Macaque
Monkeys
Macaque monkeys performed a visuomotor task with a
GO/NO-GO response (Brovelli et al., 2004). Microelectrodes
measured surface-to-depth Local Field Potentials (LFPs) from
15 sites across one hemisphere in the monkey’s neocortex.
During the task, the monkey depressed and held a lever
in a random interval of 0.12 to 2.2 s. On GO trials, the
monkey was rewarded with water if it released the lever
within 500 msec after stimulus onset. Extracted data were
preprocessed by selection and removal of trials containing
contaminated or incorrect behavioral responses. Correct GO-
trial LFP recordings were combined to result in approximately
900 trials per monkey. The data were then interpreted
using MVAR spectral analysis (Geweke and Singleton,
1980; Geweke, 1982). Model coefficients were estimated by
treating the analyzed LFP data as realizations of a common
stochastic process.

Power, coherence, and relative phase spectral measures were
estimated from the MVAR spectral matrix. The largest power
peak by far was in the beta frequency range. Coherence
and Granger causality spectra also contained prominent peaks
in the beta frequency range. Coherence spectra were then
analyzed for synchronized beta oscillations. A permutation
distribution was created, and significance values were corrected
using Dunn’s multiple comparison procedure. Granger causality
spectral analysis was also used to identify the predictability
and relative strengths of influence at various cortical sites of
the monkeys. Peak values and frequencies were identified and
listed for each coherence and Granger causality spectrum at
p < 0.005 (Figure 1).

FPN Synchronization During Working
Memory in Macaque Monkey
Macaque monkeys performed a delayed match-to-sample task,
while frontoparietal network (FPN) areas were monitored
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FIGURE 1 | Prestimulus beta-frequency coherence and (conditional spectral) Granger causality maps derived from the sensorimotor cortices of two monkeys (A,B).
A self-generated hand press (–1250 to –500 msec) cued the monkey that a visual stimulus (0 msec onset; 100 msec duration) was soon to appear on a visual
display screen. The stimulus was subsequently perceptually discriminated as part of a visual pattern discrimination task (water reward given on response trials
500 msec after stimulus onset) (Bressler et al., 1993). In each case, the pattern of synchronization (coherence) and Granger causality of beta-band oscillations from
primary and secondary somatosensory and motor cortices consistent with execution of the hand press cue: somatosensory input is fed to the primary
somatosensory cortex and motor output is transmitted from the primary motor cortex to the motor spinal cord to the hand muscles to execute the hand press. Sulci:
Cs – Central; As – Anterior; Ls – Lunate; STs – Superior Temporal; IPs – IntraParietal (Figure modified from Brovelli et al., 2004).

(Salazar et al., 2012). Two macaque monkeys matched the identity
of a sample object, while recordings were made of broadband
neuronal activity from 6 prefrontal cortical (PFC) and 6 posterior
parietal cortical (PPC) sites (Figure 2). LFPs were recorded from
monkeys A (over 27 days) and B (over 47 days). Time-frequency
coherence and Granger causality spectra were computed for
all FPN pairs (Figure 2). Pairs having significant spectra were
identified, and peak values and frequencies were listed. Identity
selectivity was also identified at each stimulus location.

Pairs with significant coherence selectivity index (CSI) were
identified, and pairs having common CSI during the delay were
grouped. Mean and variance of relative phase and power of beta-
range distributions were displayed. To determine the relation
between cortical regions and FPN synchronization in working
memory activity, fronto-parietal pairs showing significant CSIs
were sorted. To determine cortical regions showing dominant
activity in working memory, Granger causality evaluated the
prediction that FPN synchronization is governed by synaptic
influences in the PFC, originating in the PPC (Chauvette et al.,
2012) (Figure modified from Salazar et al., 2012).

fMRI Blood-Oxygen-Level-Dependent
Studies of Top-Down Influence in Human
Neocortex
Human subjects performed a visual anticipation task designed
to test the hypothesis that prefrontal and parietal cortices
contain control areas that send top-down signals to visual cortex
to modulate activity there and instantiate visual anticipatory
attention (Bressler et al., 2011; Figure 3).

fMRI Blood-Oxygen-Level-Dependent
Studies in the Human Dorsal Anterior
Cingulate Cortex
Eleven adolescents participated in the study under proper
ethical guidelines (Asemi et al., 2015; Figure 4). Participants
were instructed to tap their right-hand forefinger as quickly
as possible in response to a white flashing visual stimulus.
fMRI Blood-Oxygen-Level-Dependent (BOLD) data were
collected continuously across the study’s conditions. A complete
BOLD scan lasted 6.83 s. Functional volumetric images were
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FIGURE 2 | Content specific fronto-parietal synchronization during working memory in the macaque monkey. (A) Time-frequency coherence spectra for an LFP pair
for three sample objects presented at one screen location. (B) Coherence selectivity index as a function of time and frequency [CSI(t,f)] for the same pair showing
significant selectivity (significance threshold at p < 0.02 indicated by white contours) during the delay period. (C) Median value of [CSI(t,f)] for LFP pairs showing
selectivity for the sample identity (upper) and location (lower) during the delay. (D) Mean rank-ordered coherence (+/– SEM) in the 12–22 Hz band for the same
identity selective pairs as in the upper plot of (C). (E) Mean standard deviation of the relative phase (+/– SEM) in the 12–22 Hz band for the same identity selective
pairs as in the upper plot of (C). In plots (D,E), the two SEMs were calculated with the number of pairs or sessions as the degree of freedom.

preprocessed with SPM5 under standard protocol (Friston et al.,
1995). Regions of Interest (ROIs) were dorsal anterior cingulate
cortex (dACC), Supplementary Motor Area (SMA) and primary
motor cortex (M1) in the left hemisphere. Eigenvariate time
series were extracted from voxels centered in these ROIs from an
effects of interest contrast. Values were averaged and the average
eigenvalue time series underwent analysis. ROI time series were
preprocessed by z-value normalization and outlier rejection.

Pearson product-moment correlation coefficients were
computed between the dACC fMRI BOLD time series and that
of SMA and M1 for each participant. DFC was then estimated
from MVAR models. Correlations were compared between task
and rest by the parametric paired t-test and the non-parametric
Mann-Whitney-Wilcoxon signed-rank test.

Existing Multivariate Autoregressive
Models
Granger Causality
The general unrestricted equation of Granger causality is

as follows: y(t) =
∞∑
i=1

aiy(t − i) +
∞∑
j=1

βjx(t − j)+ c2 + v2t.

Granger causality is a popular multivariate model that provides
causal interactions from time-series data. Granger causality
is the main mathematical method by which dependencies on
multiple variables can be investigated as opposed to undirected
influences (Seth et al., 2015). Causal influences are estimated

using the conditional Granger causality index (CGCI). Granger
causality is often used in conjunction with Dynamic Causal
Modeling (DCM), a non-linear system that utilizes the Bayesian
Model Comparison. Despite early controversies regarding the
full potential to capture causal mechanisms within functional
neural circuits, Granger causality has been largely characterized
as an accurate and reliable method to measure directed influence
among the neural circuits that underly behavior, cognition, and
perception. A recent extension of Granger causality is proving
popular (West et al., 2020).

Multivariate Autoregressive Model Without
Instantaneous Effects
The Multivariate Autoregressive Model without Instantaneous
Effects is described by the following equation: X (n) =
p∑

k=1
A(k)X(n− k)+ U(n), where p is the model order, A(k),

k = 1,..., p, are M × M matrices contain the elements Aij(k)
(Erla et al., 2009). MVAR models without instantaneous effects
describe causality influences with lag and are generally less
popular than MVAR models with instantaneous effects.

Multivariate Autoregressive Model With
Instantaneous Effects
The Multivariate Autoregressive Model with Instantaneous
Effects is described by the following equation: X (n) =
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FIGURE 3 | Top row. Top-down (top left) and bottom-up (top middle) Granger causality F-statistic histograms for a representative ROI pair, right aIPS and right V3A,
in one subject. The critical value of F is 3.87 for significance (p < 0.05) in both directions. A larger fraction of the total number of voxel pairs (1064) had significant F
statistics in the top-down (16.9%) than in the bottom-up (8.7%) direction. The schematic diagram (top right) showed Granger causality represented as arrows in the
two directions between these ROIs on a standard brain image. Arrow thickness corresponds to the significant fraction, representing Granger causality strength.
Bottom Top-down Granger causality before correct versus incorrect performance. (A) Grid specifying the significance of correct versus incorrect performance
difference in a group analysis of top-down Granger causality: *p < 0.05, **p < 1.0 × 1010, ***p < 1.0 × 1030; white, not significant. Each cell represents Granger
causality from the row-labeled ROI to the column-labeled ROI. (B) The fraction of significant top-down Granger causality from right aIPS to left VP was significantly
greater before correct (blue) than incorrect (red) performance in five of six subjects [Figure modified from Bressler (2018)].
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FIGURE 4 | Top The group mean and standard error of influence in both directions between the 2 ROIs (SMA to dACC, dACC to SMA) for Task (blue) and Rest (red)
conditions. Post hoc paired t-tests revealed that the influence from dACC to SMA was significantly greater for Task than Rest, but that the influence from SMA to
dACC did not significantly differ (**p < 0.01). Bottom The distribution across subjects for both directions between the 2 ROIs (SMA to dACC, dACC to SMA) and for
Task (blue) and Rest (red) conditions, as box plots. Note that the distribution for the influence from dACC to SMA during the Task is both more compact than and
elevated above the distribution during Rest (Figure modified from Asemi et al., 2015).

p∑
k=0

B
(
k
)
X
(
n− k

)
+W(n). The input noise W(n) = [W1(n),...,

Wm(n)] ˆT is a vector of zero-mean uncorrelated processes
with diagonal covariance matrix

∑
W (Erla et al., 2009). MVAR

models with instantaneous effects describe causality effects with
the instantaneous terms included, as opposed to MVAR models
without instantaneous effects. MVAR models with instantaneous
effects are generally more popular than MVAR models without
instantaneous effects.

Partial Directed Coherence Derived From Granger
Causality
Partial Directed Coherence is an MVAR model proposed by
Baccalá and Sameshima (2001) that comprises a frequency-
domain method for Granger causality. The Partial Directed
Coherence from channel j to i is represented by the following
equation: Pij(f ) =

Aij(f )
√

aj∧∗ (f ) aj(f )
(Baccalá and Sameshima, 2001;

Sameshima and Baccalá, 2014). Partial Directed Coherence

displays directed influences between channels, normalized by the
outflows from the j-th site.

Directed Transfer Function Derived From Granger
Causality
Directed Transfer Function (DTF) is an MVAR model proposed
by Kaminski and Blinowska (Kaminski and Blinowska, 1991; Kus
et al., 2004) that is closely related to the PDC model. The DTF
from channel j to i is represented by the following equation:

DTFji(f ) =
|Hij(f )|2∑k

m=1 |Him(f )|2
(Kaminski and Blinowska, 1991). DTF

is normalized by the sum of inflows to the i-th site. The model
is applicable to a wide variety of neurophysiological contexts.
To distinguish direct from indirect influences, direct Directed
Transfer Function (dDTF) is utilized. Direct Directed Transfer
Function from channel j to channel i is represented by the
following equation: dDTFji(f ) = F2

ijC
2
ij(f ) (Korzeniewska et al.,

2003). dDTF has been used, for example, to identify relations
between primary motor sites.
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Inherent Mechanisms of Multivariate
Autoregressive Models
The MVAR models discussed are subsets of directed frequency-
domain influences, under the general set of functional
connectivity metrics. Functional connectivity is regarded as
the incidence of statistically related neurophysiological events
occurring in spatially distant regions of the brain (Pourahmadi
and Noorbaloochi, 2016). Ongoing research on functional
connectivity seeks to uncover large-scale neural circuits
responsible for executive function and behavior. Modeling of
brain activity is an increasingly critical undertaking in order
to fully understand the mechanisms of brain function and
connectivity. Although there have been considerable efforts to
investigate and understand brain rhythms, future research will
be needed to fully understand the mechanisms of brain activity,
and in particular, calculated mean-power-spectra-displayed beta
oscillatory activity at peaks surrounding 20 Hz, the oscillations
being apparent in large-scale cortical networks. While classical
univariate analysis is useful in particular contexts, multivariate
time series analysis more fully captures the dynamic nature of
brain connectivity and communication. The nature of neuronal
connectivity is such that multiple inputs over a specified
frequency and time-domain must be considered, thus justifying
the need for MVAR modeling.

The methods of the discussed research are mainly
mathematical. The following Multivariate Autoregressive
Model is used to analyze continuous neural signals in the form
of EEG and fMRI: Xi,t = ai, 1, 1X1, t−1 + ai,1,2X1, t−2 + ...+
ai,1,mX1,t−m + ai,2,1X2,t−1 + ai,2,2X2,t−2 + ...+ ai,2,mX2,t−m +

...+ ai,p,1Xp,t−1 + ai,p,2Xp,t−2 + ...+ ai,p,mXp,t−m + ei,t . This
equation can be further stated in matrix form as the
following: Xt = A1Xt−1 + ...+ AmXt−m + Et , where
Xt = [X1t, X2t, ..., Xpt] ∧ T are p data channels, m is the
model order, Ak are p × p coefficient matrices, and Et is the
white noise residual error process vector. Spectral Analysis is
then conducted from MVAR modeling using the Spectral Matrix
S(f ) =< X(f )X(f )∗ >= H(f )

∑
H∗(f ) where ∗ denotes matrix

transposition and complex conjugation;
∑

is the covariance

matrix of Et ; and H(f ) = (
m∑
k=1

Ake−2πikf ) ∧−1 is the transfer

function of the system. The Power Spectrum of channel k
is Skk(f ) which is the kth diagonal element of the spectral
matrix. The parameters of the mentioned MVAR model have
been determined by solving the multivariate Yule-Walker

equations:
m∑
k=1

A(k) ∗ Rx(i− k) = −Rx(i), where ≤ i ≤ m.

RESULTS

Visuomotor Experiments in Macaque
Monkeys
The calculated BOLD mean power spectra displayed beta
oscillatory activity at peaks surrounding 20 Hz mean. Coherence
and Granger causality spectra also displayed peaks near 20 Hz.
Coherence spectra displayed synchronization of oscillations.

Granger causal (GC) influences between cortical sites were
mediated by beta range oscillations, as illustrated by the
pronounced peaks surrounding 20 Hz in GC spectra. Coherence
spectra were tested to identify significant beta peaks, a classic
sign of synchronized beta LFP oscillations. Ultimately, coherence
values were largest in three brain regions: the primary motor
cortex, primary somatosensory cortex, and an area inferior to the
intraparietal sulcus. GC oscillations within the beta oscillatory
network were determined. GC spectra and coherence were closely
linked, although GC influences were not found to be linked
with the time delay values from phase spectra. Inferior posterior
parietal sites exerted greater influence on the GC relations of
primary motor sites.

Frontoparietal Network Synchronization
During Visual Working Memory in
Macaque Monkeys
The calculated CSI and WGC values demonstrated that
FPN synchronization during visual working memory tasks is
widespread, content-specific, and task-dependent during the
delay period. PPC influences dominate the synchronization
patterns (Verhoef et al., 2011). The findings of this experiment
are generally consistent with past studies concerning the spatial
attention modulation of inter-areal coherence (Verhoef et al.,
2011). Short-term memories are represented as patterns that are
specific to stimuli and are characteristic of synchronized activity
widely distributed throughout the FPN (Tallon-Baudry et al.,
2001). Ultimately, it was concluded that the FPN exerts top-down
control of and transmits behavioral influences to the visual cortex
during the delay period of the given task (Bressler and Richter,
2015; Richter et al., 2018). The beta frequency band was observed
to contain the main spectral peak in the delay period, and the
beta GC from the frontal cortex was especially strong during
the delay period.

fMRI Blood-Oxygen-Level-Dependent
Studies in the Human Neocortex
Top-down influences from the frontal eye field and the
intraparietal cortex to the visual cortex were found in a
hemisphere of the human brain prior to an expected visual
stimulus in relation to anticipatory visual spatial attention,
suggesting that frontal and parietal control signals modulate
sensory cortex (Bressler et al., 2011). Other site pairs showed
bottom-up, but not top-down, influences.

fMRI Blood-Oxygen-Level-Dependent
Studies in the Human Dorsal Anterior
Cingulate Cortex
Response data were not driven by frequency or periodicity, as
covariance measures with frequency and periodicity did not
have statistical significance. A statistically significant relationship
was observed during Pseudo-random epochs for the relationship
between the percentage of missed responses and age, suggesting
that the frequency of missed responses decreases with age.
Measured correlations between dACC and SMA, and between
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dACC and M1, were greater in the Periodic condition than the
Pseudo-random condition by both conducted paired t-tests and
signed-ranked tests. This finding suggests that dACC activity is
tightly related to both areas when predictable stimuli are present.
Ultimately, results demonstrated greater DFC in the top-down
direction than the bottom-up direction, indicating the presence
of top-down motor control, a major component of many complex
behaviors, exerted by the dACC in this task.

The employed mathematical models indicate with statistical
significance that top-down synchronization exists in human
brains. Furthermore, the results indicate that MVAR models are
usable with statistical significance and accuracy to determine
causal interactions among neuronal groups in neurocognitive
networks. Brain synchronization has been found to be
a binding mechanism within neurocognitive networks, as
reaffirmed by past MVAR modeling studies in cognitive
neuroscience research.

DISCUSSION

All four experiments tested the concept of brain synchronization
as a binding mechanism within neurocognitive networks and
provided evidence for top-down synchronization in monkey and
human brains. Causal influences also suggested that top-down
synchronization from the frontal cortex may compose the basis
for predictive coding and selective attentional set in the brain.
Isolation of sensory and motor areas in neurocognitive networks
suggests that top-down FPN synchronization may contribute
to human understanding and comprehension. The methods of
MVAR modeling and GC are generally effective in measuring
large-scale networks. Directional influences revealed by GC
determine the electrical impulses of brain activity, especially
when analyzing synchronous neural circuits and large-scale
neuronal activity. These methods are particularly accurate when
exogenous inputs direct intracerebral responses (Chang et al.,
2012) but are widely applicable in all neurophysiological contexts.
Modeling between cortical signals is necessary when determining
electrical activity across cortical regions, thus explaining
why univariate models are not as effective as multivariate
methods are. MVAR modeling has provided evidence for
synchronization and coordination in neurocognitive networks,
as supported by numerous studies. Brain synchronization as a
binding mechanism within neurocognitive networks continues
to be heavily researched, and MVAR modeling has increased

understanding of brain synchronization since the inception of
these methods in neuroscience. MVAR models continue to
evolve into an ever-expanding and more relevant method set of
tools for analyzing neuronal communication, with new models
being developed constantly. Despite recent advances in MVAR
modeling (Pagnotta and Plomp, 2018), there remain numerous
opportunities for growth in MVAR modeling of neuronal
populations. First, Granger non-causality analysis depends on
available model covariates, and thus is slightly limited in the
method’s scope when analyzing causality large-scale networks
(Pourahmadi and Noorbaloochi, 2016). Second, the basic GC
only models linear functions, once again restricting the scientific
scope of this method (Seth et al., 2015). Since most normal EEGs
are locally linear, this is not a great problem. Although these are
minor hinderances in the applicability of GC, on which most
MVAR models are based, there rests an even greater potential
for analyzing synchronization and neural communication should
these hinderances be removed.

The concept of brain synchronization as a binding mechanism
within neurocognitive networks continues to be studied in
great detail. Research continues to uncover new aspects of
synchronization and coordination within the human brain.
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