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ARTICLE INFO ABSTRACT

Keywords: Oscillatory neural activity is a fundamental characteristic of the mammalian brain spanning multiple levels of
EEG spatial and temporal scale. Current theories of neural oscillations and analysis techniques employed to investigate
Alpha L their functional significance are based on an often implicit assumption: In the absence of experimental manip-
g:;iiiit;:amy ulation, the spectral content of any given EEG- or MEG-recorded neural oscillator remains approximately sta-
Power tionary over the course of a typical experimental session (~1h), spontaneously fluctuating only around its
Frequency dominant frequency. Here, we examined this assumption for ongoing neural oscillations in the alpha-band

(8-13Hz). We found that alpha peak frequency systematically decreased over time, while alpha-power
increased. Intriguingly, these systematic changes showed partial independence of each other: Statistical source
separation (independent component analysis) revealed that while some alpha components displayed concomitant
power increases and peak frequency decreases, other components showed either unique power increases or
frequency decreases. Interestingly, we also found these components to differ in frequency. Components that
showed mixed frequency/power changes oscillated primarily in the lower alpha-band (~8-10 Hz), while com-
ponents with unique changes oscillated primarily in the higher alpha-band (~9-13 Hz). Our findings provide
novel clues on the time-varying intrinsic properties of large-scale neural networks as measured by M/EEG, with
implications for the analysis and interpretation of studies that aim at identifying functionally relevant oscillatory
networks or at driving them through external stimulation.

1. Introduction

Rhythmic neural activity is ubiquitous across multiple spatial scales
of the nervous system and across species (Buzsaki et al., 2013). Since the
invention of electroencephalography (EEG; see Berger, 1929), reliable
associations have been revealed between distinct cognitive states/-
functions and frequency-specific EEG activity in humans (Kahana, 2006;
Ward, 2003). This has led to proposals that oscillatory activity represents
a fundamental mechanism underlying information encoding and transfer
between distinct brain regions and across temporal scales (Bonnefond
et al.,, 2017; Fries, 2005, 2015; Salinas and Sejnowski, 2001; Schyns
et al., 2011; Siegel et al., 2012; Varela et al., 2001).

Oscillatory alpha-band (~8-13 Hz) activity represents one of the
most prominent features of the EEG in the waking brain. A substantial
body of evidence links this activity to processes such as perception
(Benwell et al., 2017; Chaumon and Busch, 2014; Iemi et al., 2017;
Samaha and Postle, 2015; van Dijk et al., 2008; VanRullen, 2016),
attention (Foxe and Snyder, 2011; Keitel et al., 2019; Thut et al., 2006;
Worden et al., 2000) and memory (Bonnefond and Jensen, 2012; Jokisch
and Jensen, 2007; Klimesch, 1999, 2012). Alpha-power is inversely
related to both the blood-oxygen-level dependent (BOLD) signal (Laufs
et al., 2003; Magri et al., 2012; Scheeringa et al., 2016) and cortical
excitability (Haegens et al., 2011; Lange et al., 2013; Romei et al., 2007).
It has been linked to the functional inhibition of cortical regions
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responsive to information that is irrelevant for the task at hand (Jensen
and Mazaheri, 2010; Klimesch et al., 2007), potentially by gating of
communication from local to other cortical regions (Fries, 2015; Zumer
et al., 2014). However, neural oscillations as recorded with EEG or MEG
(M/EEG) can reflect a large mixture of generating processes in terms of
both local micro-circuitry and large-scale networks. For instance, recent
studies have revealed multiple distinct alpha generators with different
functional and/or laminar profiles (Barzegaran et al., 2017; Bollimunta
et al., 2011; Haegens et al., 2015; Hughes and Crunelli, 2005; Keitel and
Gross, 2016a; Scheeringa et al., 2016). Hence, while band-limited
oscillatory activity measured at the macroscale is typically interpreted
as a single process within a unitary framework (e.g. alpha for gating), this
assumption is likely an over-simplification (Clayton et al., 2018).

Most M/EEG experiments employ designs and analyses that are based
on a variety of implicit assumptions regarding the activity of interest (for
an overview see Gross, 2014). For instance, in the absence of experi-
mental manipulation (i.e. during trial baselines), neural oscillators are
often assumed to spontaneously fluctuate around their mean frequency
and power (lemi et al., 2017; Romei et al., 2007; Samaha and Postle,
2015), leading in the case of alpha activity to the characteristic,
band-limited alpha peak in the power spectrum. However, across the
course of an experimental session, tonic power changes in certain fre-
quencies, such as an increase in alpha-band power (Kasten et al., 2016;
Mathewson et al., 2009, 2015; Simon et al., 2011), and state- and
stimulus-dependent fluctuations in oscillation peak frequency have been
reported (Babu Henry Samuel et al., 2018; Haegens et al., 2014; Nelli
et al.,, 2017), even during 2 min resting-state EEG recordings (Cohen,
2014; for an overview see Mierau et al., 2017). These non-stationarities
of oscillatory activity are likely of theoretical importance but are rarely
accounted for when analysing experimental data.

Here, we analysed the degree of non-stationarity of two fundamental
oscillatory characteristics — frequency and power — in the alpha-band
over the course of a typical EEG experimental session. We found a sys-
tematic decrease in individual alpha peak frequency accompanied by a
concurrent increase in alpha-power. Decomposing scalp-recorded alpha-
band activity into multiple statistically separate sources via independent
component analysis (ICA) revealed that whereas alpha sources tended
towards power increases and frequency decreases overall, only some
components showed both simultaneously. We conclude that M/EEG re-
cordings can demonstrate the existence of multiple non-stationary
endogenous processes inherent in macroscopic alpha-band activity.
These non-stationarities should ideally be taken into consideration in
future research on the functional importance of large-scale rhythmic
neural activity.

2. Materials and methods

We analysed combined EEG data from two experiments that were
recorded using the same EEG hardware and 60 scalp electrodes, after
verifying that analysing each data set on its own revealed the same
pattern of results. Both experiments lasted approximately the same
amount of time (~1 h) and had similar trial structures. Since our primary
aim was to investigate the degree of non-stationarity of ongoing, baseline
oscillatory activity (in the absence of stimulus processing) over the
course of an experimental session, we combined pre-stimulus epochs
(duration=1s) across both datasets in order to increase statistical
power.

2.1. Participants

Analyses were carried out on the data from 34 individuals (15 males,
19 females, mean age: 24, min = 17, max = 33). 20 participated in a line
bisection experiment (Benwell et al., 2018) and 14 participated in a
luminance discrimination experiment (Benwell et al., 2017; Tagliabue
et al., 2018). All participants gave written informed consent and were
financially compensated for their time. The studies were approved by the
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Ethics Committee of the College of Science and Engineering at the Uni-
versity of Glasgow. The experimental sessions were carried out within
the same lab in the Institute of Neuroscience and Psychology at the
University of Glasgow.

2.2. Instrumentation and stimuli

In both experiments, different visual discrimination tasks were per-
formed but we combined the datasets because we were primarily inter-
ested in endogenous changes in the EEG activity during the pre-stimulus
trial baselines occurring irrespective of the visual stimulus and the task
performed. Full descriptions of the rationale, methodology and results for
each experiment are available in the original papers (Benwell et al.,
2017, 2018) but a brief description of each experimental protocol is
provided below.

2.3. Experiment 1

Participants performed a computerised line bisection task in which
they were asked to estimate which of two segments of a pre-bisected
horizontal line was shortest. On any given trial, the line could be 1 of 3
lengths and pre-bisected at 1 of 13 horizontal locations. The stimuli were
presented using the E-Prime software package (Schneider et al., 2002) on
a CRT monitor with a 1280 x 1024 pixel resolution and 85 Hz refresh
rate. Participants were seated 70 cm from the monitor with their
midsagittal plane aligned to the centre of the screen and their chin in a
chin rest. Each trial began with presentation of a black fixation cross
(subtending 0.4° x 0.4° of visual angle, VA) which remained on the
screen for 3 s followed by presentation of the pre-bisected line (0.15s).
Following the disappearance of the line, the fixation cross remained on
the screen until the participant indicated which end of the line had
appeared shortest to them by pressing either the left (“v”) or right (“b”)
response key with their dominant right-hand (right index and middle
finger respectively). Each participant completed 702 trials overall, split
into 9 blocks with short breaks being permitted between blocks. The
entire experiment lasted approximately 1 h.

2.4. Experiment 2

Participants performed a forced-choice luminance discrimination task
in which they were asked to estimate whether a briefly presented
Gaussian patch was lighter or darker than a grey background. On any
given trial, the Gaussian patch could take 1 of 3 stimulus intensities
corresponding to 25%, 50% and 75% successful detection performance
(determined in a previous behavioural titration session). The experiment
also included catch trials in which no stimulus was presented. The stimuli
were presented using the Psychophysics Toolbox (Brainard, 1997; Pelli,
1997) in Matlab (Mathworks, Inc. USA) on a CRT monitor with a
1280 x 1024 pixel resolution and 100 Hz refresh rate at a viewing dis-
tance of 57 cm.

Each trial began with presentation of a black fixation cross, which
remained on the screen for 1.4 s, followed by presentation of the dark or
light Gaussian patch (0.03 s) in the upper right visual field. The fixation
cross was then displayed for 1 s before a response prompt asked partic-
ipants to judge whether the stimulus had been lighter or darker than the
background (by pressing ‘1’ or 2’ on the numeric pad of the keyboard
with their right hand). After this decision, another response prompt
asked participants to rate the clarity of their perception on a four-point
scale. Responses were given by pressing four different buttons on the
keyboard (‘0’, °1’, °2’ and ’3’ on the numeric pad) and the following trial
began immediately after this response. Each participant completed 800
trials overall split into 10 blocks with short breaks being permitted be-
tween blocks. The entire experiment lasted approximately 1 h.
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2.5. EEG recording and pre-processing

During both experiments, continuous EEG was recorded with two
BrainAmp MR Plus units (Brain Products GmbH, Munich, Germany) at a
sampling rate of 1000 Hz through 60 (Benwell et al., 2018) and 61
(Benwell et al., 2017) Ag/AgCl pellet pin scalp electrodes placed ac-
cording to the 10-10 International System. Electrode impedance was kept
below 10 KQ. Note that the extra scalp electrode included in Benwell
et al. (2017) was not analysed here in order to equate the montages
between the two experiments. Subsequent pre-processing steps per-
formed on the original data of each experiment are described below.
Please note that despite their differences (in terms of filter cut-offs and
down sampling), an initial analysis revealed the same pattern of
pre-stimulus effects when each data set was analysed on its own, hence
showing that the reported effects do not depend on any idiosyncratic
pre-processing step in these two data sets.

2.6. Experiment 1 pre-processing

Pre-processing was performed using a combination of custom scripts
incorporating EEGLAB (Delorme and Makeig, 2004) and FieldTrip
(Oostenveld et al., 2011) functions in Matlab (Mathworks, USA). Offline,
continuous data were filtered for power line noise using a notch filter
centred at 50 Hz. Additional low (100 Hz) and high-pass (0.1 Hz) filters
were applied using a zero-phase second-order Butterworth filter. The
data were then divided into epochs spanning —2.5-1.5s relative to
stimulus onset on each trial. Subsequently, excessively noisy electrodes
were removed without interpolation, the data were re-referenced to the
average reference (excluding ocular channels) and trials with abnormal
activity were rejected using a semi-automated artefact detection pro-
cedure. An independent component analysis (ICA) was then run using the
runica EEGLAB function (Delorme and Makeig, 2004) and components
corresponding to blinks, eye movements and muscle artefacts were
removed. Missing channels were then interpolated using a spherical
spline method.

2.7. Experiment 2 pre-processing

Pre-processing steps were performed using Brain Vision Analyzer 2.0
(BrainProducts). Offline, continuous data were filtered for power line
noise using a notch filter centred at 50 Hz. Additional low (85 Hz) and
high-pass (0.1 Hz) filters were applied using a zero-phase second-order
Butterworth filter. ICA was applied to identify and remove eye blinks and
muscle artefacts. The data were segmented into epochs of 5s starting
—2.5s before stimulus onset and down sampled to 250 Hz. All epochs
were then visually inspected and removed if contaminated by residual
eye movements, blinks, strong muscle activity or excessive noise.

2.8. Split-half FFT analysis

In order to investigate changes in power and frequency over time, the
artifact-free single-trial data were split into two separate datasets corre-
sponding to the 1st and 2nd halves of the experiment for each participant
and re-epoched from —1-0 s relative to stimulus onset (i.e. 1 sec single-
trial baselines). The 1 s single-trial baselines were then multiplied by a
Hamming window, zero padded and fast Fourier transformed in order to
retrieve power spectra (frequency resolution=0.1 Hz) which were
averaged over trials separately for the 1st and 2nd half of the experiment.
This yielded one power spectrum per split-half and per EEG electrode.
The peak alpha frequency (frequency with highest power between 8 and
13 Hz) and amplitude were then extracted from the electrode with the
highest mean alpha (8-13 Hz) power within each participant separately
for each half of the experiment. Paired-samples t-tests were employed to
test for systematic changes in both frequency and power over time. In-
dividual changes in alpha frequency and power were calculated by
subtracting the values of the 1st half of the experiment from those in the
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2nd. Hence, positive values indicated an increase in frequency/power
and negative values indicated a decrease. A Spearman's correlation
analysis was performed to assess any relationship between the individual
changes in alpha frequency and power over time.

2.9. EEG time-frequency transform

Next, we compared the frequency-power relationship at both short
(within-trial) and long (across trials) time scales. Fourier-based spectro-
temporal decomposition of the artifact-free single-trial data was per-
formed using the ft freqanalysis function (frequency-domain wavelet
convolution; method: ‘mtmconvol’) from the FieldTrip toolbox (Oos-
tenveld et al., 2011), yielding a complex-valued time-frequency plane for
each trial. A temporal resolution was maintained by decomposing over-
lapping 0.5 s segments of trial time series, consecutively shifted forward
in time by 20 ms. Data segments were multiplied with a Hanning taper
and then zero-padded to achieve a frequency resolution of 1 Hz across the
range of 1-40 Hz. Power values were calculated as the squared absolute
values of the complex Fourier Spectra. The data were then re-epoched
from —1-1 s relative to stimulus onset.

2.9.1. Instantaneous alpha frequency (Inst-AF) calculation

The instantaneous frequency is defined as the change in the phase of
an oscillator per unit time (Boashash, 1992). The Inst-AF calculation was
implemented using code developed by Cohen (2014). The single-trial
EEG waveforms at all electrodes were filtered between 8 and 13 Hz
using a zero-phase (two-pass), plateau-shaped, band-pass filter with 15%
transition zones (Matlab filtfilt function). Phase angle time series for each
electrode were then extracted from the resulting alpha waveforms by
means of a Hilbert transform. The instantaneous frequency (in Hz) is
defined by the temporal derivative of the phase angle time series (when
scaled by the sampling rate and 2x). Noise-induced spikes in the Inst-AF
time series were attenuated by application of several median filters of 10
different orders (i.e. corresponding to a minimum of 10 msec and
maximum of 400 msec). The median of the resulting values was then
taken. The Inst-AF data were then re-epoched from —1-1 s relative to
stimulus onset and averaged over samples in order to match the 20 ms
resolution of the time-frequency power.

2.9.2. Analysis of the relationship between Inst-AF and alpha power

Cohen (2014) found a non-linear (inverted u-shape) relationship
between Inst-AF and band-limited alpha power in 2 min resting-state EEG
recordings. To test the time-resolved relationship between Inst-AF and
power here, each variable was z-transformed across all data points (20 ms
resolution), trial baselines and electrodes within each participant. Note
that only pre-stimulus baseline time points (—1-0s) were included for
z-normalisation. An inverted u-shaped relationship was formally tested
using the two-line solution (Simonsohn, 2018) which involves perform-
ing linear regression between the variables separately for ‘high’ (z-values
above 0 collapsed across all samples (electrodes, trials, time points)) and
low (z-values below 0) values of the x-axis variable (Inst-AF values). If a
significant u-shaped relationship exists, then the coefficients for the
‘high’ and ‘low’ regressions should be of opposite sign and both indi-
vidually significant. To test an additional influence of time-on-task on the
relationship between Inst-AF and power, the data for each variable were
also averaged over samples in each single-trial baseline (—1-0s) and
these baseline-averaged values were also z-transformed across all trials
and electrodes within each participant. We tested for both monotonic and
inverted u-shaped relationships by means of an overall linear regression
between baseline-averaged Inst-AF and power (monotonic) and the
two-line solution described above (u-shaped).

2.9.3. Single-trial time-on-task analysis of both time-resolved Inst-AF and
alpha-power

Within participant correlations were then calculated between trial
order (1-N trials) and each EEG measure separately (Inst-AF and alpha-
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power) for all electrodes and time-points across the full epoch (—1-1s
relative to stimulus onset, 20 ms resolution) using a two-tailed Spear-
man's rank analysis. If at a given data-point (electrode/time), the value of
the EEG measure systematically changes over time, then the Spearman's
rho values should show a consistent directionality across participants.
Alternatively, if the EEG measure remains relatively stationary or fluc-
tuates spontaneously across trials, then rho values across participants
should be random (centred around 0). Hence, for both Inst-AF and alpha-
power, we performed one-sample t-tests (test against 0) on the Spear-
man's rho values across participants at all data points (i.e. all electrodes
and time points). In order to control the familywise error rate (FWER)
across the large number of comparisons, cluster-based permutation
testing (Maris and Oostenveld, 2007) was employed. Based on the initial
one-sample t-tests, all t-values above a threshold corresponding to an
uncorrected p-value of .05 were formed into clusters by grouping
together adjacent significant time-points and electrodes. This step was
performed separately for samples with positive and negative t-values
(two-tailed test). Note that for a significant sample to be included in a
cluster it was required to have at least 1 adjacent neighbouring signifi-
cant sample in both space (electrodes) and time. The spatial neighbour-
hood of each electrode was defined as all electrodes within
approximately 5 cm, resulting in a mean of 6.3 (min = 3, max = 8) and
median of 7 neighbours per electrode. The t-values within each cluster
were then summed to produce a cluster statistic. Subsequently, this
procedure was repeated across 2000 permutations to create a data-driven
null hypothesis distribution using ft statistics montecarlo (Oostenveld
etal., 2011). On each iteration, this function effectively switched the sign
of the correlation for a random subset of the participants. One-sample
t-tests of rho values against zero were then performed at each data
point. After clustering significant t-values across neighbouring data
points (as above), the most extreme cluster-level t-score was retained.
The location of the original real cluster statistics within this null hy-
pothesis distribution indicates how probable such observations would be
if the null hypothesis were true. Hence, if a given negative/positive
cluster had a cluster statistic lower/higher than 97.5% of the respective
null distribution cluster statistics, then this was considered a significant
effect (5% alpha level). Note that, for the sake of completeness, both pre-
and post-stimulus time points were included in this analysis in order to
investigate whether the effects of time-on-task held for both time periods.
This was the only analysis in which we also included post-stimulus time
points. In order to further assess the nature of the observed monotonic
relationships, we also applied linear, quadratic and cubic fits to the trial
number - alpha frequency and trial number — alpha power relationships.

2.10. Split-half stratification FFT analysis

We then investigated to what extent the decrease in alpha frequency
and increase in alpha power over time are linked by employing a strat-
ification analysis. We hypothesised that if the frequency decrease and
power increase are manifestations of the same process, holding constant
the value of one measure between the 1st and 2nd half of the experiment
should also abolish the change in the other measure. For example, if the
Inst-AF decrease over time is co-varying exactly with the increase in
power, then when power is held constant the Inst-AF should also remain
stationary (and vice versa). To test this, single-trial values of both alpha
power (8-13 Hz) and Inst-AF were averaged over the baseline period
(—1-05) across all electrodes and the data were split into bins corre-
sponding to the 1st and 2nd half of the experiment in each participant.
The mean, variance and higher order statistics of both the 1st and 2nd
half trial distributions of one of the measures (either alpha-power or Inst-
AF) were equalized by sub-sampling the single trials using the ft stratify
function (‘histogram’ method with 100 bins) in FieldTrip (Oostenveld
etal., 2011). The stratification was performed separately for alpha power
and frequency. Because the stratification algorithm approximately
equalizes the trial distributions and the results are not necessarily iden-
tical each time it is run, the peak alpha frequency and amplitude were
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extracted from the electrode with the highest mean alpha (8-13 Hz)
amplitude (using the same FFT analysis as described above across the
trials remaining after stratification) on every iteration of 100 runs of the
analysis and averaged (separately for the 1st and 2nd half distributions)
within each participant. On average, 211 trials (min = 141, max = 320)
remained in each distribution after stratification of alpha power and 190
trials (min=108, max=267) remained after stratification of
alpha-frequency. The peak alpha frequency and power values were
entered into paired-samples t-tests to test for systematic changes in either
frequency or power over time after approximate equalisation of the other
variable.

2.11. Alpha-band source separation using independent component analysis

In order to further investigate the relative independence of the power
increases and frequency decreases over time, we performed an analysis
using independent component analysis (ICA) and current-dipole model-
ling to statistically separate sources of alpha-activity contributing to the
EEG signal measured on the scalp. Scalp-level EEG alpha activity reflects
a superposition of multiple alpha rhythms (Barzegaran et al., 2017; Keitel
and Gross, 2016b). Thus the primary aim of the ICA analysis was to
statistically separate independent components of alpha-activity and to
investigate whether the scalp-level power- and frequency trends per-
sisted for individual alpha components. Our tests were conducted against
the null-hypothesis that across all components the power and frequency
trends were net zero. Alternatively, and supported by trends at the scalp
level (see Results), we expected that alpha components would show a
preference towards power increases and frequency decreases. Statistical
separation further allowed us to examine whether each individual
component echoed scalp-level mixed power and frequency trends or
whether some components showed unique increases in power over time
(no concurrent frequency decrease) or unique decreases in frequency
over time (no concurrent power increase). Finally, using this classifica-
tion of components, we investigated whether components possessing
distinct non-stationary characteristics were spectrally dissociated.

First, artifact-free epochs were band-pass filtered at 5-15 Hz, then an
ICA (runica EEGLAB function (Delorme and Makeig, 2004)) was per-
formed on the filtered concatenated epochs using only the baseline
period (—1-0s). For each participant, we obtained 20 “alpha” IC's by
subjecting the data to a principal component analysis prior to ICA (runica
option ‘pca’ set to 20). Original unfiltered epochs were then projected
through the spatial filters (channel weights) of each IC. As a next step, we
identified ICs that showed reliable alpha peaks (within 8-13 Hz), as
determined by an automated peak-finding algorithm based on smoothing
of power spectral density (PSD) estimates with an 11-point, 3rd order
polynomial Savitzky-Golay filter (Corcoran et al., 2018; Keitel et al.,
2018; Savitzky and Golay, 1964). For the selected components, a single
equivalent current dipole was fit using a three-layer boundary element
method (BEM) template model based on the standard Montreal Neuro-
logical Institutes's (MNI) brain template using the DIPFIT EEGLAB
plug-in (Oostenveld and Oostendorp, 2002) with default options. Only
dipoles with fits leaving less than 15% residual variance and that were
located inside the model brain volume were selected for further analysis
(see Gulbinaite et al., 2017 for a similar approach). This resulted in a total
number of 327 alpha-component dipoles across participants (median per
participant = 10, range = 2-16). Next, single-trial power and instanta-
neous frequency estimates were calculated for each component by means
of a Hilbert transform (see Instantaneous alpha frequency (Inst-AF)
calculation section above, instantaneous power = squared absolute of
the analytical Hilbert signal) and averaged within each trial baseline.
Within each participant, Spearman rank correlations were then calcu-
lated between trial order (1-N trials) and each measure separately (sin-
gle-trial Inst-AF and alpha-power) for each component. For each
individual component, Spearman's rho value, z-values and
non-parametric p-values were calculated against a permutation distri-
bution of rho-estimates based on 10000 random shuffles of trial order. At
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the group level, we tested for systematic shifts in power and frequency
using one-sample t-tests (test against 0) on the z-values across all com-
ponents. Additionally, we tested whether combined power and frequency
changes clustered around a preferred tendency in a two-dimensional
distribution. First, collapsing the 2D- into a circular space, we
computed the phase angle of a surrogate complex number whose real
part was given by the z-value indicating the power change and its
imaginary part given by the z-value indicating the frequency change for
each component. The phase angle distribution was then tested for
non-uniformity using a Rayleigh test. Second, because this analysis ne-
glects the magnitudes of component trends, we supplemented the Ray-
leigh statistic with a circular T2 test (Victor and Mast, 1991). In the
component plane spanned by power and frequency trends, Tfm tests
whether the centroid of the bivariate distribution is different from the
origin (0,0). Finally, in order to investigate spectral differences, we
compared peak alpha frequency values between unique power increase,
unique frequency decrease and mixed power increase/frequency
decrease components by means of independent samples t-tests.

2.12. Data and code availability statement

The EEG data used in this study, as well as the Matlab code to re-
produce the analyses and figures, are openly available on The Open
Science Framework (OSF) under the URL: https://osf.io/7sfgw/.

3. Results
3.1. Baseline alpha-power and -frequency show non-stationarity over time

Fig. 1A plots grand-averaged power spectra centred on the alpha band
for the 1st (blue) and 2nd (red) half of the experimental session respec-
tively. The peak frequency values are denoted by the vertical dashed
lines. This plot suggests that over time peak alpha frequency decreased,
whereas alpha power increased. Fig. 1B and C plot for each participant the
change in individual alpha frequency (IAF) and power over time (2nd
half TAF minus 1st half IAF), highlighting the consistency of the effects
across participants for both measures. The group median IAF was
10.35 Hz for the 1st half of the experimental session (standard devia-
tion =0.89 Hz, range: 8.4-11.7Hz) and 10.1Hz for the 2nd half
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(standard deviation =0.9 Hz, range: 8.2-11.4 Hz). Although the fre-
quency shift was small on average (0.25Hz), shifts within individuals
could reach 2 Hz (see Fig. 1B). Paired-sample t-tests confirmed a group-
level reduction in IAF (t(33) = —2.5755, p=.0147, Cohen's d = 0.442)
and an increase in alpha-power over time (t(33)=3.35, p=.002,
Cohen's d =0.823). Additionally, both effects persisted using propor-
tional change measures (reduction in IAF: t(33) = —2.64, p=.0125, in-
crease in power: t(33) =2.8149, p =.0082). However, the individual
changes in peak alpha frequency did not correlate with the individual
changes in alpha power across participants (Spearman's Rho = —0.038,
p=.8305). Fig. 1D plots grand-averaged topographies of alpha-power
(8-13Hz) for the 1st (top) and 2nd (bottom) halves of the experi-
mental session respectively, revealing similar spatial distributions but an
increase in amplitude over time.

3.2. Comparing frequency-power relationship between shorter and longer
time scales

Cohen (2014) found a non-linear (inverted u-shape) relationship
between estimates of instantaneous alpha frequency (Inst-AF) and
band-limited alpha power in 2 min resting-state EEG recordings (see also
Nelli et al. (2017)). Here, we replicated this finding with time-resolved
data from the single-trial baseline alpha activity for which we deter-
mined alpha power and Inst-AF. Both measures were averaged within
consecutive 20 ms segments for each 1-sec baseline epoch per electrode
and participant separately to preserve variability on the short time scale
(i.e. within trials) and then z-scored within participants. Alpha-power
was then plotted against Inst-AF (see Fig. 2A for a representative sam-
ple of participants, and Fig. 2B for the group average). A consistent
relationship between alpha power and alpha frequency across
time-points of the 1-sec epoch (i.e. on a short time scale) is revealed, with
increased variability and higher maximum power values close to the
central alpha frequency. The inverted u-shaped relationship was formally
tested using the two-line solution proposed by Simonsohn (2018). This
method involved performing linear regression between Inst-AF and
power separately for ‘high’ (in our case, z-values above 0) and ‘low’
(z-values below zero) values of the independent variable (Inst-AF values)
for each participant. If a significant inverted u-shaped relationship exists,
then the coefficients for the ‘high’ and ‘low’ regressions should be
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Fig. 1. Split-half Fast Fourier Transform (FFT) analysis. (A) Grand-averaged power spectra (z-scored) in the alpha band from trial baselines for both the 1st (solid blue
line) and 2nd (solid red line) halves of the experimental session. The peak frequency values are denoted by vertical dashed lines (blue = 1st half, red = 2nd half). Alpha
power increased whereas peak alpha frequency decreased from the 1st to the 2nd half of the experimental session. (B) Shifts in individual alpha frequency from the 1st
to the 2nd half of the experimental session. Red dots denote individual participants and the black dot represents the group average shift. (C) Shifts in individual alpha
power from the 1st to the 2nd half of the experimental session. Red dots denote individual participants and the black dot represents the group average power change.
(D) Grand-averaged topographies of alpha power (8-13 Hz) for the 1st (top) and 2nd (bottom) half of the experimental session respectively. The topographical
distributions were almost identical but the increase in amplitude over time is apparent.
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Fig. 2. Comparing the alpha frequency-power relationship between shorter versus longer time scales (A&B versus C&D). (A) Scatterplots from four representative
participants of alpha power values (y-axis: z-scored) as a function of instantaneous alpha frequency (x-axis: z-scored) from the 1st (blue dots) and 2nd halves (red dots)
of the experimental session. Note that each dot represents a single electrode-time point for one participant. (B) Group-averaged scatterplot of short time-scale resolved
alpha power values (y-axis: mean z-scores) as a function of instantaneous alpha frequency (x-axis: mean z-scores) from the 1st (blue dots) and 2nd halves (red dots) of
the experimental session. Dots represent the group-average per single electrode-time point. Both A and B show systematic frequency-power variability with increased
variability and higher amplitude of power values close to the central alpha frequency (replicating Cohen (2014)). (C) Scatterplots from the same 4 participants as in A
of alpha power values (y-axis: z-scored) as a function of alpha frequency (x-axis: z-scored) when longer time-scale resolved (averaged over time-points within each
single trial baseline). Hence, each dot represents a baseline-averaged value from a single-trial for one electrode, and the graph illustrates between-trial variability in
pre-stimulus alpha power/frequency over time. (D) Group-averaged scatterplot of longer time-scale resolved alpha power values (y-axis: z-scored) as a function of
alpha frequency (x-axis: z-scored). Dots represent the group-averaged baseline values for each trial and electrode. Both C and D show that emphasising variability over
the longer-term time-scale (across trials) highlights an inverse relationship between alpha power and frequency, in addition to the parabolic relationship observed at
the short-term scale (within trials) in A and B.

opposite in sign and both individually statistically significant. The anal- and power increasing. Hence, we re-represented the data as frequency-
ysis revealed a significant positive relationship between low (below 0) power distributions after averaging Inst-AF and power values over each
z-values of Inst-AF and power (t-test of coefficients across group against 1-sec baseline epoch per electrode to emphasize the variability across a
0: t(33) =8.7979, p <.0001) and a significant negative relationship be- longer time scale (i.e. across trials) and performed regression analysis
tween high (above 0) z-values of Inst-AF and power (t(33) = —18.8715, between these values. Fig. 2C and D shows the corresponding scatter
p <.0001), thereby formally confirming the inverted u-shaped relation- plots of alpha power values against Inst-AF values for the same repre-
ship between time-resolved Inst-AF and power. sentative participants as in Fig. 2A, along with the group average (as in

However, our split-half data binning analyses above suggest that both Fig. 2B). We tested for both monotonic and nonlinear relationships be-
measures also change systematically over a longer time-scale (i.e. across tween baseline-averaged Inst-AF and power and found a significant
trials over the course of an experiment), with alpha frequency decreasing negative overall linear relationship (t(33) = —4.1123, p <.0001) but no

106



C.S.Y. Benwell et al.

inverted u-shaped relationship as the Inst-AF-power regression for both
the low and high Inst-AF bins showed significant negative relationships
(low Inst-AF values versus power: t(33) = —2.1746, p = .0369, high Inst-
AF values versus power: t(33) = —6.6183, p < .0001). This confirms that
introducing a longer-term time scale (across trials) results in an inverse
relationship between Inst-AF and power, as opposed to the parabolic
relationship observed at the short-term scale (within trials).

3.3. Frequency sliding and power increase confirmed with cluster-based
analysis of instantaneous frequency and power

Next, we performed a time resolved analysis across 2-sec single-trial,
stimulus-locked epochs spanning both baseline and post-stimulus periods
(=1 to +1 s from stimulus-onset). Post-stimulus data were included to
test whether the relationship holds for both pre- and post-stimulus pe-
riods. Fig. 3 displays the results of group-analyses in which we investi-
gated whether correlation coefficients between spectral content and trial
number differed systematically from zero (i.e. negative or positive)
across participants. In line with the split-half analyses, the results
revealed that Inst-AF was lower in the 2nd as compared to the 1st half of
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the experimental session (Fig. 3A, t-values systematically negative over
entire epoch), whereas alpha-power was higher in the 2nd as compared
to the 1st half of the session (Fig. 3D, t-values systematically positive).
Their respective pre-stimulus topographic representations (averaged
over —1 to —0.5 s to avoid the possible inclusion of post-stimulus activ-
ity) are shown in Fig. 3B and E. Fig. 3C shows the relationship between
trial number (x-axis) and z-scored single-trial Inst-AF (averaged over
—1-0.5 s across all electrodes in each single-trial baseline period; y-axis)
collapsed across all participants. On average, the alpha peak frequency
decelerated by 0.2 Hz per hour. A Spearman's correlation applied to this
collapsed data confirmed a highly significant negative relationship
(tho=-0.1131, p<.0001). The black line represents the best-fitting
linear regression slope. Both linear and quadratic fits to the data were
significant (95% confidence bounds for coefficients did not overlap with
0), though adding the additional term (quadratic) only minimally
improved the goodness-of-fit (linear fit adjusted R-squared =0.0130,
quadratic fit =0.0135). Adding an additional term (cubic fit) did not
improve the fit (95% confidence bounds for additional coefficient over-
lapped with 0; adjusted R-squared =0.0135). Fig. 3F shows the rela-
tionship between trial number and z-scored single-trial alpha-power. A
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Fig. 3. Time-resolved analysis of frequency sliding and power changes. (A-C) Trial order-alpha frequency effects. (A) T-values averaged over all electrodes. A negative
t-value indicates a decrease in frequency over trials. Significant time-points are indexed by the grey background fill. One significant negative cluster was found which
spanned the entire epoch. Hence, this analysis confirmed that alpha-frequency systematically decreased over the course of the experimental session at both pre- and
post-stimulus time points. The luminance of the background fill indicates how many electrodes were included in the significant cluster at each time-point (the darker
the fill, the more electrodes are included in the cluster at this time-point). (B) Topographic representation of the t-values averaged over the pre-stimulus (—1 - 0.5s)
portion of the significant cluster. Electrodes that were included in the cluster at least once at any time-point during this time period are highlighted in white. (C)
Scatterplot of the relationship between trial number (x-axis) and alpha frequency (y-axis: z-scored). Each dot represents a frequency value averaged over one single-
trial baseline and across all electrodes within one participant. Note that the data for all participants are included. The solid black line represents the best-fitting
regression slope. (D-F) Trial order-alpha power effects. (D) T-values values averaged over all electrodes. A positive t-value indicates an increase in power over tri-
als. Significant time-points are indexed by the grey background fill. One significant positive cluster was found which spanned the entire epoch. Hence, this analysis
confirmed that alpha power systematically increased over the course of the experimental session at both pre- and post-stimulus time points. The luminance of the
background fill indicates how many electrodes were included in the significant cluster at each time-point (the darker the fill, the more electrodes are included in the
cluster at this time-point). (E) Topographic representation of the t-values averaged over the pre-stimulus (—1 — 0.5 s) portion of the significant cluster. Electrodes that
were included in the cluster at least once at any time-point during this time period are highlighted in white. (F) Scatterplot of the relationship between trial number (x-
axis) and alpha power (y-axis: z-scored and averaged over —1 — 0.5s across all electrodes in each single-trial baseline period). Each dot represents a power value
averaged over one single-trial baseline and across all electrodes within one participant. Note that the data for all participants are included. The solid black line
represents the best-fitting regression slope.

107



C.S.Y. Benwell et al.

highly significant positive relationship was confirmed (Spearman's
Rho =0.1222, p <.0001). Again, both linear and quadratic fits to the
data were significant (95% confidence bounds for coefficients did not
overlap with 0), though adding the additional term (quadratic) only
minimally improved the goodness-of-fit (linear fit adjusted R-
squared = 0.0105, quadratic fit=0.0132). Adding an additional term
(cubic) did not improve the fit (95% confidence bounds for additional
coefficient overlapped 0; adjusted R-squared = 0.0132).

3.4. Frequency sliding and power increases in the alpha-band over time are
driven by partially independent processes

Fig. 4A and B plot the results of a power stratification analysis (i.e.
when power was held constant between the 1st and 2nd split-half bins of
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Fig. 4. Trial stratification analysis reveals non-stationary processes are at least
partially independent. (A) Analysis with power held approximately constant
between the 1st and 2nd half of the experiment through trial sub-sampling:
Grand-averaged frequency spectra (z-scored) in the alpha band from stratified
trial baselines for both the 1st (solid blue line) and 2nd (solid red line) halves of
the experimental session. The peak frequency values are denoted by vertical
dashed lines (blue = 1st half, red = 2nd half). Despite alpha power remaining
approximately stationary, peak alpha frequency still decreased from the 1st to
the 2nd half of the experimental session. (B) Shifts in individual alpha frequency
(IAF) from the 1st to the 2nd half of the experimental session from the power
stratification analysis. Red dots denote individual participants and the black dot
represents the group average shift. (C) Analysis with instantaneous frequency
held approximately constant between the 1st and 2nd half of the experiment
through trial sub-sampling: Grand-averaged frequency spectra (z-scored) in the
alpha band from stratified trial baselines for both the 1st (solid blue line) and
2nd (solid red line) halves of the experimental session. The peak frequency
values are denoted by vertical dashed lines (blue = 1st half, red = 2nd half).
Despite alpha frequency remaining approximately stationary, alpha power still
increased from the 1st to the 2nd half of the experimental session. (D) Shifts in
individual alpha power from the 1st to the 2nd half of the experimental session
from the instantaneous frequency stratification analysis. Red dots denote indi-
vidual participants and the black dot represents the group average
power change.
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the experiment). Despite power being held constant, the grand average
peak alpha frequency still decreased from the 1st to the 2nd half of the
experiment (Fig. 4A) as denoted by the vertical dashed lines (blue = 1st
half, red = 2nd half). Fig. 4B plots the change in peak alpha frequency
over time (2nd half IAF minus 1st half IAF) for each participant. A paired
t-test confirmed a group-level reduction in peak alpha frequency
(t(33) = —2.8497, p = .0075). Fig. 4C and D plot the results of the Inst-AF
stratification analysis (i.e. when Inst-AF was held constant between the
1st and 2nd split-half bins of the experiment). Again, despite Inst-AF
being held constant, alpha power increased from the 1st to the 2nd
half of the experiment (Fig. 4C). Fig. 4D plots the change in alpha power
over time for each participant, which also remained significant
(t(33) =2.1759, p =.0368). Hence, when power was held constant, the
decrease in peak alpha frequency over time was maintained and when
Inst-AF was held constant, the increase in power over time was also
maintained. Overall, this suggests that frequency sliding and power
changes over time are not likely to be two manifestations of the same
process but rather may index two partially independent non-stationary
processes in the alpha-band.

3.5. Both mixed and unique power/frequency non-stationarities contribute
to sensor level effects

To further investigate the relative (in)dependence of alpha power
increases and alpha frequency decreases over time, we repeated the
single-trial regression analyses on ICA-derived alpha components. In line
with the sensor level results, alpha components showed an overall in-
crease in power over time (t(326) = 6.5446, p <.0001) and an overall
decrease in frequency over time (t(326) = —4.9096, p <.0001). Fig. 5
plots locations of equivalent dipoles and standardised regression co-
efficients (indexed by dot colour) for alpha independent components
(masked (p <.05) at the individual component level) which showed
unique power changes over time (5A), unique frequency changes over
time (5B) and mixed power and frequency changes over time (5C). Note
the dominance of increases in power over time in 5A (indexed by positive
z-scores) and the dominance of decreases in frequency over time in 5B
(indexed by negative z-scores). Fig. 5D plots the distribution of di-
rectionalities of all component shifts over time in a 2-dimensional trend
space spanning the orthogonal axes of frequency and power changes
(from decrease to increase). The changes systematically cluster around a
combination of power increases and frequency decreases (average
angle = 335.52° +13.15°, Rayleigh z = 35.2025, p <.0001), also when
taking into account the magnitude of the effects (T2 (2,652)=0.115,
p<1x107'5). The latter is illustrated in Fig. 5E, which shows the 2-
dimensional distribution of components with a black square indicating
its centroid. A zoom-in on the central region (bottom-right panel) further
depicts the centroid's bootstrapped 95% confidence intervals (1000
samples, bias-corrected and accelerated, see Efron (1987)). Notably, both
CIs exclude zero (power trend CI=[0.921 1.717]; frequency trend
CI=[-0.840 -0.365]).

Fig. 6A plots grand-averaged alpha-component spectra for mixed
power increase/frequency decrease components (green), unique fre-
quency decrease components (blue) and unique power increase compo-
nents (red) respectively. Mean peak frequency values are denoted by the
vertical dashed lines. Fig. 6B plots histograms of the corresponding dis-
tributions of individual component peak frequencies, showing that those
components which both increased in power and decreased in frequency
over time had significantly lower peak frequencies (at around 8-10 Hz)
than both unique frequency decrease components (t(192) = —6.6528,
p <.0001) and unique power increase components (t(219) = —7.1865,
p<.0001) (at around 10-12Hz). Unique frequency decrease compo-
nents did not differ in peak frequency from unique power increase
components (t(165) = 0.6686, p =.5047). These differences in spectral
characteristics held even when the analysis was restricted to data from
the 1st quarter of trials in each participant (mixed components versus
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Fig. 5. Statistical separation of alpha sources — dipole distributions and time-on-task analysis. (A) Dipole locations of components showing alpha power change over
time, but no frequency change, in MNI source space regardless of the directionality of the change. Only component dipoles with regression coefficients corresponding
to non-parametric p-values < .05 (uncorrected) are plotted for visualisation purposes. Note that the majority of dipoles show power increases (warm colours). (B)
Dipole locations of components showing alpha frequency change, but no power change, in MNI source space regardless of the directionality of the change. Only
component dipoles with regression coefficients corresponding to non-parametric p-values < .05 (uncorrected) are plotted for visualisation purposes. Note that the
majority of dipoles show frequency decreases (cool colours). Also note that fewer dipoles show unique frequency change as compared with dipoles showing unique
power change in A. (C) Source-space distribution of dipole locations showing both alpha power and frequency changes = mixed change. The colour indicates the
magnitude of the combined slopes (=Euclidean norm of power and frequency shifts). Note that more components exhibit mixed change than unique frequency change
in B. Because the representation in C conceals the direction of the effects, (D) illustrates the distribution of directionalities in a 2-dimensional trend space spanning the
orthogonal axes of frequency and power change (from decrease to increase). Bars in this circular histogram indicate the number of components (scale = grey circles)
that show a similar preference towards a certain combination of change. The changes cluster around a combination of power increases and frequency decreases (black
line displays mean resultant vector, grey arc shows the corresponding 95% circular confidence interval). Also note that only very few components fall into a power
decrease/frequency increase region. (E) Distribution of alpha components by power- and frequency trend (z-scored). Data points in the main plot are colour-coded to
assign components to participants (same participant = same colour). The ‘+’ marks the origin (0,0). A zoom-in (bottom-right panel) on the central region of the main
plot (brown square) shows bootstrapped 95%-confidence intervals for mean power- and frequency trends (green lines). Additional histograms show marginal dis-
tributions of power- (bottom) and frequency trends (right); dashed lines = zero.

unique frequency decrease components: t(192) = —5.7509, p <.0001, 4. Discussion
mixed components versus unique power increase components:
t(219) = —5.2314, p < .0001, unique frequency decrease versus unique The current study reveals the existence of endogenous non-stationary
power increase components: t(165) =1.1790, p =.2401). Hence, they processes in human alpha-band EEG activity. Over the course of an
cannot be explained by the non-stationarities themselves but rather likely experimental session (~1h), peak alpha-frequency decreased whereas
represent intrinsic features of separate alpha components. Fig. 6C plots alpha-power increased, even in the absence of external stimulation dur-
power spectra in the alpha-band (z-scored) across all individual compo- ing trial baselines. Furthermore, the frequency decrease and power in-
nents for mixed power increase/frequency decrease components (top crease were partially independent and hence did not represent two
row), unique frequency decrease components (middle row) and unique manifestations of the same process. Below, we discuss these findings
power increase components (bottom row). from theoretical, methodological and applied perspectives in light of
Overall, the ICA analysis suggests a mixture of underlying generating current theories and approaches in electrophysiological research on
mechanisms for the sensor level effects in the alpha band, including alpha oscillatory brain activity and its functions.

generators with distinct alpha sub-bands (see Fig. 7 for a discussion of
possible underlying models). The results show that a single power in-

crease/frequency decrease oscillator model can be ruled out (Fig. 7A). 4.1. Understanding neural network activity at the macro-scale

Instead, the effects can be partly accounted for by low alpha frequency

components increasing in power, which simultaneously pulls the Over recent decades, evidence has converged on a dynamic functional
instantaneous frequency towards lower alpha frequencies (i.e. effectively role of alpha oscillations in sensation and cognition beyond the seminal
changing the ratio of low/high alpha frequency power in favour of low alpha-idling hypothesis (Pfurtscheller et al., 1996). Alpha oscillations
frequencies (see Fig. 7C)). However, additional components show unique have been implicated in the orchestration of active inhibition vs. facili-
power increases and frequency decreases, in line with the model pro- tation of task-irrelevant vs. task-relevant brain regions (Foxe and Snyder,
posed in Fig. 7B. Hence, multiple non-stationary processes likely 2011; Klimesch et al., 2007; Rihs et al., 2007), of sensory sampling and its
contribute to the net alpha-power increase and alpha-frequency decrease temporal resolution (Cecere et al., 2015; Samaha and Postle, 2015) and
over time measured at the sensor level. the interregional gating or communication of information (Fries, 2015;

Jensen and Mazaheri, 2010; Palva and Palva, 2007; Zumer et al., 2014).
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Fig. 6. Statistical separation of alpha sources — frequency distribution analysis. (A) Grand-averaged power spectra (z-scored) for alpha independent components (ICs)
showing both power increase and frequency decrease over time (solid green line), unique frequency decrease over time (solid blue line) and unique power increase
over time (solid red line) respectively. Mean peak frequency values are denoted by the vertical dashed lines. (B) Distributions of individual component peak fre-
quencies for mixed power (+)/frequency (—) (green), unique frequency (—) (blue) and unique power (+) (red) alpha ICs. Note the relatively lower peak frequency
values for the mixed power (+)/frequency (—) components. Minimum and maximum frequency bin counts are plotted to the right of each distribution separately. (C)
Power spectra of individual mixed power (+)/frequency (—) (top), unique frequency (—) (middle) and unique power (+) (bottom) alpha ICs. Each row represents an IC

and colour corresponds to z-scored spectral power.

Here, we reveal systematic non-stationarities in alpha power and peak
frequency. The increase in alpha-power over time replicates previous
studies, which have associated the effect with the level of sustained
attention and fatigue (Boksem et al., 2005; Cajochen et al., 1995; Craig
et al., 2012; Kasten et al., 2016; Mathewson et al., 2015; Simon et al.,
2011). Accordingly, it is plausible that changes in vigilance and fatigue
over the course of the experimental session may be related to the shift in
alpha power and frequency observed here. Drifts in oscillatory power
within experimental sessions have also been linked to non-stationarities
in psychophysical measures (Benwell et al., 2013, 2018; Bompas et al.,
2015; Mathewson et al., 2009) and cognitive processes necessary for the
maintenance of task performance (Stoll et al., 2016). In terms of
alpha-frequency, previous studies have shown long-term changes over
the life-span related to aging and pathology (Aurlien et al., 2004; Kli-
mesch, 1999; Mierau et al., 2017) as well as short-term changes in the
sub-second to second range. For instance, alpha-frequency transiently
increases in response to sensory stimulation and task engagement,
particularly under conditions of high stimulus intensity and/or cognitive
demand (Babu Henry Samuel et al., 2018; Cohen, 2014; Haegens et al.,
2014; Hiilsdiinker et al., 2016; Maurer et al., 2014; Nir et al., 2010).
Here, we add the crucial observation that alpha frequency systematically
decreases over the course of a typical experimental session in the order of
minutes/hour.

While in line with previous studies reporting non-stationarities in
alpha-power and frequency (on the time scale of seconds), our data
provide novel insights into their potential sources, albeit at the limited

110

spatial resolution of EEG. The macroscale activity of widespread, larger
cell assemblies has been postulated to produce slower oscillations and
also higher power density than local, smaller cell assemblies (Buzsaki,
2004). Therefore, an increase in power and concurrent decrease in fre-
quency may be explained by changes in the extent of oscillating networks
over time. Additionally, previous studies have linked cycle-by-cycle in-
creases in oscillatory power with decreases in instantaneous frequency,
both in rat hippocampal gamma-activity (Atallah and Scanziani, 2009)
and in evoked human alpha-activity (Himmelstoss et al., 2015). The
relationship has been attributed to rapid adjustments in synaptic inhi-
bition in response to fluctuating excitatory amplitude. Although our re-
sults are partially commensurate with these interpretations, our ICA
analysis suggests a mixture of generating mechanisms with distinct
spectral and spatial profiles. Alpha-activity in EEG recordings has pre-
viously been dissociated in lower and upper sub-bands (Klimesch et al.,
1997; Lobier et al., 2018; Shackman et al., 2010), which are thought to be
differentially implicated in various cognitive and perceptual functions
(ElShafei et al., 2018; Klimesch, 1999). In line with the presence of
meaningful alpha sub-divisions, our results show low frequency alpha
networks (~8-10 Hz) to be associated with tonic power increases over
time and a simultaneous decrease in peak frequency, while independent,
higher alpha frequency components (~9-13 Hz) showed unique de-
creases in instantaneous frequency or increases in power respectively.
Hence, the scalp level alpha non-stationarities do not reflect a unitary
rhythm but a mixture of generating mechanisms with potentially
different neurophysiological and functional characteristics. These
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Fig. 7. Three candidate scenarios underlying systematic long-term alpha frequency decrease and alpha power increase at the sensor level (= net trend). Black lines
(straight in A, straight and dashed in B and C) depict schematic power spectra of underlying neural assemblies oscillating at a mean (peak) alpha frequency (with
spontaneous fluctuations around the mean over trials determining peak width). Note that all scenarios produce the same net trends in changes over time (red and blue
arrows on grey dashed lines). (A) Alpha, as measured with M/EEG, is generated by a single process that increases its power (red arrow) and reduces its frequency (blue
arrow) over time. This scenario cannot account for the current results because several generative sources with distinct spectral and spatial profiles were revealed by the
ICA analysis. (B) Our findings of independent power and frequency changes speak to the presence of multiple generative processes (black straight and dashed lines).
One of them increases in power (e.g. a;, red arrow), while the other decreases in frequency over time (e.g. ap, blue arrow). (C) Changes in power only (red and golden
arrows), of generative processes with offset peak frequencies («; and o), may also contribute to the same net trends. Their power ratio can influence the estimate of
individual alpha frequency because peaks are not readily separable in EEG data (instead, EEG measurements capture a weighted sum of single spectra). Evidence for
this scenario is provided by our finding of mixed power increase/frequency decrease components primarily in low alpha frequencies which may alter the low/high
frequency alpha power ratio over time in favour of low frequency alpha which simultaneously decreases the peak frequency. Note that these scenarios are necessarily
simplifications of a more complex cortical reality that may involve multiple oscillating micro-circuits (Cohen, 2017), also with non-sinusoidal properties (Cole et al.,
2017; Cole and Voytek, 2017; Jones, 2016).

findings open up exciting possibilities to further separate out and func- spontaneous processes (Caspers, 1983; Meisen, 2016; Samaha and Postle,
tionally dissociate alpha networks with a view to establishing a more 2015). However, band-limited EEG spectral non-stationarities occur at
complete understanding of the role they play in perception and cognition the sub-second timescale (Cohen, 2014; Gross, 2014; Meisen, 2016) and
(e.g. by dissociating those components which show unique frequency also in the order of minutes/hours as demonstrated in the present study.
changes, power changes, or both). It is likely that some of the observed This is of importance because apparently spontaneous fluctuations in
non-stationary alpha components are related to fluctuations in global pre-stimulus power, phase and frequency are increasingly being linked to
vigilance and fatigue states (Cajochen et al., 1995; Sadaghiani et al., perceptual and cognitive functions (Benwell et al., 2017; Busch and

2010), whilst others may be specific to engagement with cognitively or VanRullen, 2010; Iemi et al., 2017; Mathewson et al., 2009; Samaha and
perceptually demanding tasks (Stoll et al., 2016). These distinct networks Postle, 2015). On average, we found alpha frequency to decrease by

can be further disentangled by future studies to identify sources of 0.2 Hz/hour. While this may appear to be modest, and is an order of
distinct alpha non-stationarities and their functional relevance at the magnitude smaller than the typical alpha band width, some studies have
macro-scale. identified brain-behaviour relationships with absolute effect sizes well

within the range of the non-stationarities we observe here. Changes of
this magnitude may thus be of perceptual and cognitive relevance (see
Samaha and Postle (2015) and Wutz et al. (2018) for reports of percep-
tually relevant frequency differences of ~0.02-0.04 Hz). In particular,
non-stationarities should be considered for the interpretation of
M/EEG-behaviour relationships when not only present in the M/EEG
signal but also displayed in the employed behavioural measures, as can
be the case for psychometric function threshold and slope, detection rate
and reaction time (Benwell et al., 2013, 2018; Doll et al., 2015; Frund

4.2. Methodological and applied considerations

Systematic endogenous non-stationarity of both the frequency and
power of alpha activity calls for caution in the interpretation of some
frequently employed M/EEG time-frequency analysis procedures and
their results. For instance, in the absence of experimental manipulation,
stationarity of oscillatory characteristics is often assumed, or intrinsic
(i.e. baseline) fluctuations are interpreted to represent stochastic or
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et al., 2011). In this situation, a correlation between the two measures of
interest may be detected simply because both measures systematically
change over time (i.e. they both independently correlate with trial order
across the experiment). If this is not investigated and/or accounted for,
then a potentially epiphenomenal correlation between the two measures
may be misinterpreted as a causal or functional relationship. Hence, it is
critical that non-stationarity is considered in the interpretation of any
observed brain/behaviour relationship (see Benwell et al., 2017; Math-
ewson et al., 2009; van Dijk et al., 2008 for examples of studies which
explicitly account for temporal variations in M/EEG and/or behavioural
measures). If non-stationarity is present in both the M/EEG and behav-
ioural measures, then this could be factored in by including
time-on-task/trial order as an additional variable in the
M/EEG-behaviour analysis (Benwell et al., 2018; Bompas et al., 2015;
Macdonald et al., 2011), by regressing out the effect of trial order on the
M/EEG and behavioural measures (Wostmann et al., 2019) or by
assessing the brain-behaviour relationship over only short timescales
(Iemi and Busch, 2018).

Additionally, the current results may have implications for attempts
to entrain oscillatory activity through methods such as visual flicker
(Ahrens et al., 2015; Capilla et al., 2011; de Graaf et al., 2013; Gulbinaite
et al., 2017; Keitel et al., 2014, 2018; Mathewson et al., 2012; Notbohm
and Herrmann, 2016; Spaak et al., 2014) and non-invasive transcranial
brain stimulation (NTBS) (Helfrich et al., 2014; Romei et al., 2016; Thut
et al., 2017; Veniero et al., 2017). It has recently been suggested that
aligning external stimulation frequency with the endogenous peak alpha
frequency may represent an optimal approach to effectively enhan-
ce/entrain alpha oscillations (Cecere et al., 2015; Gulbinaite et al., 2017;
Romei et al., 2016; Thut et al., 2017; Vossen et al., 2015). Though it
remains unclear how essential this alignment of the external and internal
oscillator is (Notbohm and Herrmann, 2016; Reato et al., 2013), sys-
tematic shifts in peak frequency of the magnitude observed here may be
important to consider when attempting to interact with ongoing activity.
By contrast, the heterogeneous nature of the sources of alpha activity
(Barzegaran et al., 2017; Bollimunta et al., 2008; Buffalo et al., 2011;
Capilla et al., 2012; Haegens et al., 2015; Hughes and Crunelli, 2005;
Keitel and Gross, 2016a; Mo et al., 2011; Sadaghiani et al., 2010;
Scheeringa et al, 2016) invalidates the assumption that the
peak-frequency necessarily represents a single endogenous ‘oscillator’
and hence raises questions regarding the rationale of targeting the
peak-frequency for entrainment. Therefore, precise targeting of oscilla-
tory networks will benefit from more refined considerations of the origin
and functional roles of the frequency and power content of the EEG
signal.

Conflicts of interest
The authors declare no conflict of interest.
Acknowledgements

We would like to thank Dr. Mike X. Cohen for EEG analysis scripts and
useful discussions regarding interpretation. This work was supported by
grants from the Wellcome Trust (grant numbers 098434 and 098433 to
GT and JG respectively) and the UK Economic and Social Research
Council (grant number ES/102395X/1 to CSYB).

References

Ahrens, M.M., Veniero, D., Gross, J., Harvey, M., Thut, G., 2015. Visual benefits in
apparent motion displays: automatically driven spatial and temporal anticipation are
partially dissociated. PLoS One 10, e0144082.

Atallah, B.V., Scanziani, M., 2009. Instantaneous modulation of gamma oscillation
frequency by balancing excitation with inhibition. Neuron 62, 566-577.

Aurlien, H., Gjerde, 1.O., Aarseth, J.H., Eldgen, G., Karlsen, B., Skeidsvoll, H., Gilhus, N.E.,
2004. EEG background activity described by a large computerized database. Clin.
Neurophysiol. 115, 665-673.

112

Neurolmage 192 (2019) 101-114

Babu Henry Samuel, 1., Wang, C., Hu, Z., Ding, M., 2018. The frequency of alpha
oscillations: task-dependent modulation and its functional significance. Neuroimage
183, 897-906.

Barzegaran, E., Vildavski, V.Y., Knyazeva, M.G., 2017. Fine structure of posterior alpha
rhythm in human EEG: frequency components, their cortical sources, and temporal
behavior. Sci. Rep. 7.

Benwell, C.S.Y., Harvey, M., Gardner, S., Thut, G., 2013. Stimulus- and state-dependence
of systematic bias in spatial attention: additive effects of stimulus-size and time-on-
task. Cortex 49, 827-836.

Benwell, C.S.Y., Keitel, C., Harvey, M., Gross, J., Thut, G., 2018. Trial-by-trial co-variation
of pre-stimulus EEG alpha power and visuospatial bias reflects a mixture of stochastic
and deterministic effects. Eur. J. Neurosci. 48, 2566-2584.

Benwell, C.S.Y., Tagliabue, C.F., Veniero, D., Cecere, R., Savazzi, S., Thut, G., 2017.
Prestimulus EEG power predicts conscious awareness but not objective visual
performance. eNeuro 4. ENEURO.0182-0117.2017.

Berger, H., 1929. Uber das Elektrenkephalogramm des Menschen. Archiv fiir Psychiatrie
und Nervenkrankheiten 87, 527-570.

Boashash, B., 1992. Estimating and interpreting the instantaneous frequency of a signal
.1. Fundamentals. Proc. IEEE 80, 520-538.

Boksem, M.A., Meijman, T.F., Lorist, M.M., 2005. Effects of mental fatigue on attention:
an ERP study. Brain Res. Cogn. Brain Res. 25, 107-116.

Bollimunta, A., Chen, Y., Schroeder, C.E., Ding, M., 2008. Neuronal mechanisms of
cortical alpha oscillations in awake-behaving macaques. J. Neurosci. 28, 9976-9988.

Bollimunta, A., Mo, J., Schroeder, C.E., Ding, M., 2011. Neuronal mechanisms and
attentional modulation of corticothalamic alpha oscillations. J. Neurosci. 31,
4935-4943.

Bompas, A., Sumner, P., Muthumumaraswamy, S.D., Singh, K.D., Gilchrist, I.D., 2015. The
contribution of pre-stimulus neural oscillatory activity to spontaneous response time
variability. Neuroimage 107, 34-45.

Bonnefond, M., Jensen, O., 2012. Alpha oscillations serve to protect working memory
maintenance against anticipated distracters. Curr. Biol. 22, 1969-1974.

Bonnefond, M., Kastner, S., Jensen, O., 2017. Communication between brain areas based
on nested oscillations. eNeuro 4. ENEURO.0153-0116.2017.

Brainard, D.H., 1997. The psychophysics toolbox. Spatial Vis. 10, 433-436.

Buffalo, E.A., Fries, P., Landman, R., Buschman, T.J., Desimone, R., 2011. Laminar
differences in gamma and alpha coherence in the ventral stream. Proc. Natl. Acad.
Sci. Unit. States Am. 108, 11262-11267.

Busch, N.A., VanRullen, R., 2010. Spontaneous EEG oscillations reveal periodic sampling
of visual attention. Proc. Natl. Acad. Sci. U. S. A. 107, 16048-16053.

Buzsaki, G., 2004. Neuronal oscillations in cortical networks. Science 304, 1926-1929.

Buzsaki, G., Logothetis, N., Singer, W., 2013. Scaling brain size, keeping timing:
evolutionary preservation of brain rhythms. Neuron 80, 751-764.

Cajochen, C., Brunner, D.P., Krauchi, K., Graw, P., Wirz-Justice, A., 1995. Power density
in theta/alpha frequencies of the waking EEG progressively increases during
sustained wakefulness. Sleep 18, 890-894.

Capilla, A., Pazo-Alvarez, P., Darriba, A., Campo, P., Gross, J., 2011. Steady-state visual
evoked potentials can be explained by temporal superposition of transient event-
related responses. PLoS One 6, e14543.

Capilla, A., Schoffelen, J.-M., Paterson, G., Thut, G., Gross, J., 2012. Dissociated a-band
modulations in the dorsal and ventral visual pathways in visuospatial attention and
perception. Cerebr. Cortex 24, 550-561.

Caspers, H., 1983. Electroencephalography: basic principles, clinical applications and
related fields. Ernst Niedermeyer, Fernando Lopes da Silva. Q. Rev. Biol. 58,
301-302.

Cecere, R., Rees, G., Romei, V., 2015. Individual differences in alpha frequency drive
crossmodal illusory perception. Curr. Biol. 25, 231-235.

Chaumon, M., Busch, N.A., 2014. Prestimulus neural oscillations inhibit visual perception
via modulation of response gain. J. Cogn. Neurosci. 26, 2514-2529.

Clayton, M.S., Yeung, N., Cohen Kadosh, R., 2018. The many characters of visual alpha
oscillations. Eur. J. Neurosci. 48 (7), 2498-2508.

Cohen, M.X., 2014. Fluctuations in oscillation frequency control spike timing and
coordinate neural networks. J. Neurosci. 34, 8988-8998.

Cohen, M.X., 2017. Where does EEG come from and what does it mean? Trends Neurosci.
40, 208-218.

Cole, S.R., van der Meij, R., Peterson, E.J., de Hemptinne, C., Starr, P.A., Voytek, B., 2017.
Nonsinusoidal beta oscillations reflect cortical pathophysiology in Parkinson's
disease. J. Neurosci. 37, 4830-4840.

Cole, S.R., Voytek, B., 2017. Brain oscillations and the importance of waveform shape.
Trends Cognit. Sci. 21, 137-149.

Corcoran, A.W., Alday, P.M., Schlesewsky, M., 2018. Toward a reliable, automated
method of individual alpha frequency (IAF) quantification. Psychophysiology 55,
e13064.

Craig, A., Tran, Y., Wijesuriya, N., Nguyen, H., 2012. Regional brain wave activity
changes associated with fatigue. Psychophysiology 49, 574-582.

de Graaf, T.A., Gross, J., Paterson, G., Rusch, T., Sack, A.T., Thut, G., 2013. Alpha-band
rhythms in visual task performance: phase-locking by rhythmic sensory stimulation.
PLoS One 8, e60035.

Delorme, A., Makeig, S., 2004. EEGLAB: an open source toolbox for analysis of single-trial
EEG dynamics including independent component analysis. J. Neurosci. Methods 134,
9-21.

Doll, R.J., Veltink, P.H., Buitenweg, J.R., 2015. Observation of time-dependent
psychophysical functions and accounting for threshold drifts. Atten. Percept.
Psychophys. 77, 1440-1447.

Efron, B., 1987. Better bootstrap confidence-intervals. J. Am. Stat. Assoc. 82, 171-185.


http://refhub.elsevier.com/S1053-8119(19)30163-6/sref1
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref1
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref1
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref2
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref2
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref2
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref3
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref3
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref3
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref3
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref4
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref4
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref4
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref4
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref5
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref5
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref5
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref6
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref6
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref6
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref6
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref7
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref7
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref7
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref7
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref8
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref8
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref8
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref9
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref9
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref9
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref10
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref10
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref10
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref11
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref11
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref11
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref12
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref12
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref12
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref13
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref13
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref13
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref13
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref14
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref14
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref14
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref14
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref15
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref15
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref15
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref16
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref16
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref17
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref17
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref18
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref18
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref18
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref18
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref19
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref19
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref19
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref20
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref20
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref21
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref21
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref21
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref21
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref22
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref22
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref22
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref22
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref23
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref23
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref23
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref24
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref24
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref24
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref24
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref24
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref25
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref25
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref25
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref25
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref26
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref26
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref26
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref27
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref27
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref27
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref28
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref28
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref28
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref29
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref29
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref29
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref30
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref30
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref30
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref31
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref31
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref31
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref31
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref32
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref32
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref32
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref33
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref33
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref33
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref34
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref34
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref34
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref35
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref35
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref35
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref36
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref36
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref36
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref36
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref37
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref37
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref37
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref37
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref38
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref38

C.S.Y. Benwell et al.

ElShafei, H.A., Bouet, R., Bertrand, O., Bidet-Caulet, A., 2018. Two Sides of the Same
Coin: Distinct Sub-bands in the Alpha Rhythm Reflect Facilitation and Suppression
Mechanisms during Auditory Anticipatory Attention eNeuro.

Foxe, J.J., Snyder, A.C., 2011. The role of alpha-band brain oscillations as a sensory
suppression mechanism during selective attention. Front. Psychol. 2.

Fries, P., 2005. A mechanism for cognitive dynamics: neuronal communication through
neuronal coherence. Trends Cognit. Sci. 9, 474-480.

Fries, P., 2015. Rhythms for cognition: communication through coherence. Neuron 88,
220-235.

Frund, 1., Haenel, N.V., Wichmann, F.A., 2011. Inference for psychometric functions in
the presence of nonstationary behavior. J. Vis. 11, 16.

Gross, J., 2014. Analytical methods and experimental approaches for electrophysiological
studies of brain oscillations. J. Neurosci. Methods 228, 57-66.

Gulbinaite, R., van Viegen, T., Wieling, M., Cohen, M.X., VanRullen, R., 2017. Individual
alpha peak frequency predicts 10 Hz flicker effects on selective attention. Society for
Neuroscience J. Neurosci. 10173-10184.

Haegens, S., Barczak, A., Musacchia, G., Lipton, M.L., Mehta, A.D., Lakatos, P.,
Schroeder, C.E., 2015. Laminar profile and physiology of the rhythm in primary
visual, auditory, and somatosensory regions of neocortex. J. Neurosci. 35,
14341-14352.

Haegens, S., Cousijn, H., Wallis, G., Harrison, P.J., Nobre, A.C., 2014. Inter- and intra-
individual variability in alpha peak frequency. Neuroimage 92, 46-55.

Haegens, S., Nacher, V., Luna, R., Romo, R., Jensen, O., 2011. Alpha-Oscillations in the
monkey sensorimotor network influence discrimination performance by rhythmical
inhibition of neuronal spiking. Proc. Natl. Acad. Sci. Unit. States Am. 108,
19377-19382.

Helfrich, Randolph F., Schneider, Till R., Rach, S., Trautmann-Lengsfeld, Sina A.,

Engel, Andreas K., Herrmann, Christoph S., 2014. Entrainment of brain oscillations
by transcranial alternating current stimulation. Curr. Biol. 24, 333-339.

Himmelstoss, N.A., Brotzner, C.P., Zauner, A., Kerschbaum, H.H., Gruber, W.,
Lechinger, J., Klimesch, W., 2015. Prestimulus amplitudes modulate P1 latencies and
evoked traveling alpha waves. Front. Hum. Neurosci. 9, 302.

Hughes, S.W., Crunelli, V., 2005. Thalamic mechanisms of EEG alpha rhythms and their
pathological implications. Neuroscientist 11, 357-372.

Hiilsdiinker, T., Mierau, A., Striider, H.K., 2016. Higher balance task demands are
associated with an increase in individual alpha peak frequency. Front. Hum.
Neurosci. 9.

Iemi, L., Busch, N.A., 2018. Moment-to-Moment fluctuations in neuronal excitability bias
subjective perception rather than strategic decision-making. eNeuro 5.

Iemi, L., Chaumon, M., Crouzet, S.M., Busch, N.A., 2017. Spontaneous neural oscillations
bias perception by modulating baseline excitability. J. Neurosci. 37, 807-819.

Jensen, O., Mazaheri, A., 2010. Shaping functional architecture by oscillatory alpha
activity: gating by inhibition. Front. Hum. Neurosci. 4.

Jokisch, D., Jensen, O., 2007. Modulation of gamma and alpha activity during a working
memory task engaging the dorsal or ventral stream. J. Neurosci. 27, 3244-3251.

Jones, S.R., 2016. When brain rhythms aren't ‘rhythmic’: implication for their
mechanisms and meaning. Curr. Opin. Neurobiol. 40, 72-80.

Kahana, M.J., 2006. The cognitive correlates of human brain oscillations. J. Neurosci. 26,
1669-1672.

Kasten, F.H., Dowsett, J., Herrmann, C.S., 2016. Sustained aftereffect of a-tACS lasts up to
70 min after stimulation. Front. Hum. Neurosci. 10.

Keitel, A., Gross, J., 2016a. Individual human brain areas can be identified from their
characteristic spectral activation fingerprints. PLoS Biol. 14, e1002498.

Keitel, A., Gross, J., 2016b. Individual human brain areas can be identified from their
characteristic spectral activation fingerprints. PLoS Biol. 14, e1002498.

Keitel, C., Benwell, C.S.Y., Thut, G., Gross, J., 2018. No changes in parieto-occipital alpha
during neural phase locking to visual quasi-periodic theta-, alpha-, and beta-band
stimulation. Eur. J. Neurosci. 48 (7), 2551-2565.

Keitel, C., Keitel, A., Benwell, C.S.Y., Daube, C., Thut, G., Gross, J., 2019. Stimulus-driven
brain rhythms within the alpha band: the attentional-modulation conundrum.

J. Neurosci. accepted. epub 15 February 2019, 1633-18 https://doi.org/10.1523/
JNEUROSCI.1633-18.2019.

Keitel, C., Quigley, C., Ruhnau, P., 2014. Stimulus-driven brain oscillations in the alpha
range: entrainment of intrinsic rhythms or frequency-following response?
J. Neurosci. 34, 10137-10140.

Klimesch, W., 1999. EEG alpha and theta oscillations reflect cognitive and memory
performance: a review and analysis. Brain Res. Rev. 29, 169-195.

Klimesch, W., 2012. Alpha-band oscillations, attention, and controlled access to stored
information. Trends Cognit. Sci. 16, 606-617.

Klimesch, W., Doppelmayr, M., Pachinger, T., Russegger, H., 1997. Event-related
desynchronization in the alpha band and the processing of semantic information.
Brain Res. Cogn. Brain Res. 6, 83-94.

Klimesch, W., Sauseng, P., Hanslmayr, S., 2007. EEG alpha oscillations: the
inhibition-timing hypothesis. Brain Res. Rev. 53, 63-88.

Lange, J., Oostenveld, R., Fries, P., 2013. Reduced occipital alpha power indexes
enhanced excitability rather than improved visual perception. J. Neurosci. 33,
3212-3220.

Laufs, H., Kleinschmidt, A., Beyerle, A., Eger, E., Salek-Haddadi, A., Preibisch, C.,
Krakow, K., 2003. EEG-correlated fMRI of human alpha activity. Neuroimage 19,
1463-1476.

Lobier, M., Palva, J.M., Palva, S., 2018. High-alpha band synchronization across frontal,
parietal and visual cortex mediates behavioral and neuronal effects of visuospatial
attention. Neuroimage 165, 222-237.

Macdonald, J.S., Mathan, S., Yeung, N., 2011. Trial-by-Trial variations in subjective
attentional state are reflected in ongoing prestimulus EEG alpha oscillations. Front.
Psychol. 2, 82.

113

Neurolmage 192 (2019) 101-114

Magri, C., Schridde, U., Murayama, Y., Panzeri, S., Logothetis, N.K., 2012. The amplitude
and timing of the BOLD signal reflects the relationship between local field potential
power at different frequencies. J. Neurosci. 32, 1395-1407.

Maris, E., Oostenveld, R., 2007. Nonparametric statistical testing of EEG- and MEG-data.
J. Neurosci. Methods 164, 177-190.

Mathewson, K.E., Gratton, G., Fabiani, M., Beck, D.M., Ro, T., 2009. To see or not to see:
prestimulus alpha phase predicts visual awareness. J. Neurosci. 29, 2725-2732.
Mathewson, K.E., Prudhomme, C., Fabiani, M., Beck, D.M., Lleras, A., Gratton, G., 2012.
Making waves in the stream of consciousness: entraining oscillations in EEG alpha

and fluctuations in visual awareness with rhythmic visual stimulation. J. Cogn.
Neurosci. 24, 2321-2333.

Mathewson, K.J., Hashemi, A., Sheng, B., Sekuler, A.B., Bennett, P.J., Schmidt, L.A., 2015.
Regional electroencephalogram (EEG) alpha power and asymmetry in older adults: a
study of short-term test-retest reliability. Front. Aging Neurosci. 7.

Maurer, U., Brem, S., Liechti, M., Maurizio, S., Michels, L., Brandeis, D., 2014. Frontal
midline theta reflects individual task performance in a working memory task. Brain
Topogr. 28, 127-134.

Meisen, P., 2016. TIDAMODEL: modeling Time Interval Data. Analyzing Time Interval
Data. Springer Fachmedien Wiesbaden, pp. 73-89.

Mierau, A., Klimesch, W., Lefebvre, J., 2017. State-dependent alpha peak frequency shifts:
experimental evidence, potential mechanisms and functional implications.
Neuroscience 360, 146-154.

Mo, J., Schroeder, C.E., Ding, M., 2011. Attentional modulation of alpha oscillations in
macaque inferotemporal cortex. J. Neurosci. 31, 878-882.

Nelli, S., Itthipuripat, S., Srinisivan, R., Serences, J.T., 2017. Fluctuations in instantaneous
frequency predict alpha amplitude during visual perception. Nat. Commun. 8.

Nir, R.-R,, Sinai, A., Raz, E., Sprecher, E., Yarnitsky, D., 2010. Pain assessment by
continuous EEG: association between subjective perception of tonic pain and peak
frequency of alpha oscillations during stimulation and at rest. Brain Res. 1344,
77-86.

Notbohm, A., Herrmann, C.S., 2016. Flicker regularity is crucial for entrainment of alpha
oscillations. Front. Hum. Neurosci. 10.

Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.-M., 2011. FieldTrip: open source
software for advanced analysis of MEG, EEG, and invasive electrophysiological data.
Comput. Intell. Neurosci. 2011, 1-9.

Oostenveld, R., Oostendorp, T.F., 2002. Validating the boundary element method for
forward and inverse EEG computations in the presence of a hole in the skull. Hum.
Brain Mapp. 17, 179-192.

Palva, S., Palva, J.M., 2007. New vistas for a-frequency band oscillations. Trends
Neurosci. 30, 150-158.

Pelli, D.G., 1997. The VideoToolbox software for visual psychophysics: transforming
numbers into movies. Spatial Vis. 10, 437-442.

Pfurtscheller, G., Stancék, A., Neuper, C., 1996. Event-related synchronization (ERS) in
the alpha band — an electrophysiological correlate of cortical idling: a review. Int. J.
Psychophysiol. 24, 39-46.

Reato, D., Rahman, A., Bikson, M., Parra, L.C., 2013. Effects of weak transcranial
alternating current stimulation on brain activity-a review of known mechanisms from
animal studies. Front. Hum. Neurosci. 7, 687.

Rihs, T.A., Michel, C.M., Thut, G., 2007. Mechanisms of selective inhibition in visual
spatial attention are indexed by ?-band EEG synchronization. Eur. J. Neurosci. 25,
603-610.

Romei, V., Brodbeck, V., Michel, C., Amedi, A., Pascual-Leone, A., Thut, G., 2007.
Spontaneous fluctuations in posterior -band EEG activity reflect variability in
excitability of human visual areas. Cerebr. Cortex 18, 2010-2018.

Romei, V., Thut, G., Silvanto, J., 2016. Information-based approaches of noninvasive
transcranial brain stimulation. Trends Neurosci. 39, 782-795.

Sadaghiani, S., Scheeringa, R., Lehongre, K., Morillon, B., Giraud, A.L., Kleinschmidt, A.,
2010. Intrinsic connectivity networks, alpha oscillations, and tonic alertness: a
simultaneous electroencephalography/functional magnetic resonance imaging study.
J. Neurosci. 30, 10243-10250.

Salinas, E., Sejnowski, T.J., 2001. Correlated neuronal activity and the flow of neural
information. Nat. Rev. Neurosci. 2, 539-550.

Samaha, J., Postle, Bradley R., 2015. The speed of alpha-band oscillations predicts the
temporal resolution of visual perception. Curr. Biol. 25, 2985-2990.

Savitzky, A., Golay, M.J.E., 1964. Smoothing and differentiation of data by simplified
least squares procedure. Anal. Chem. 36, 1627-1639.

Scheeringa, R., Koopmans, P.J., van Mourik, T., Jensen, O., Norris, D.G., 2016. The
relationship between oscillatory EEG activity and the laminar-specific BOLD signal.
Proc. Natl. Acad. Sci. Unit. States Am. 113, 6761-6766.

Schneider, W., Eschman, A., Zuccolotto, A., 2002. E-prime User's Guide. Psychology
Software Tools Inc, Pittsburgh, PA.

Schyns, P.G., Thut, G., Gross, J., 2011. Cracking the code of oscillatory activity. PLoS Biol.
9, €1001064.

Shackman, A.J., McMenamin, B.W., Maxwell, J.S., Greischar, L.L., Davidson, R.J., 2010.
Identifying robust and sensitive frequency bands for interrogating neural oscillations.
Neuroimage 51, 1319-1333.

Siegel, M., Donner, T.H., Engel, A.K., 2012. Spectral fingerprints of large-scale neuronal
interactions. Nat. Rev. Neurosci. 13 (2), 121.

Simon, M., Schmidt, E.A., Kincses, W.E., Fritzsche, M., Bruns, A., Aufmuth, C.,

Bogdan, M., Rosenstiel, W., Schrauf, M., 2011. EEG alpha spindle measures as
indicators of driver fatigue under real traffic conditions. Clin. Neurophysiol. 122,
1168-1178.

Simonsohn, U., 2018. Two lines: a valid alternative to the invalid testing of U-shaped
relationships with quadratic regressions. Adv. Meth. Pract. Psychol. Sci. 1 (4),
538-555.


http://refhub.elsevier.com/S1053-8119(19)30163-6/sref39
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref39
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref39
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref40
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref40
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref41
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref41
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref41
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref42
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref42
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref42
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref43
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref43
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref44
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref44
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref44
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref45
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref45
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref45
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref45
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref46
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref46
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref46
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref46
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref46
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref47
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref47
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref47
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref48
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref48
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref48
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref48
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref48
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref49
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref49
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref49
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref49
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref50
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref50
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref50
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref51
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref51
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref51
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref52
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref52
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref52
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref53
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref53
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref54
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref54
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref54
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref55
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref55
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref56
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref56
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref56
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref57
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref57
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref57
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref58
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref58
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref58
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref59
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref59
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref59
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref60
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref60
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref61
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref61
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref62
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref62
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref62
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref62
https://doi.org/10.1523/JNEUROSCI.1633-18.2019
https://doi.org/10.1523/JNEUROSCI.1633-18.2019
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref64
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref64
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref64
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref64
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref65
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref65
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref65
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref66
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref66
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref66
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref67
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref67
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref67
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref67
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref68
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref68
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref68
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref68
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref69
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref69
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref69
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref69
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref70
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref70
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref70
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref70
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref71
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref71
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref71
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref71
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref72
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref72
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref72
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref73
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref73
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref73
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref73
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref74
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref74
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref74
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref75
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref75
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref75
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref76
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref76
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref76
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref76
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref76
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref77
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref77
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref77
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref77
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref78
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref78
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref78
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref78
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref79
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref79
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref79
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref80
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref80
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref80
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref80
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref81
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref81
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref81
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref82
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref82
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref83
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref83
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref83
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref83
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref83
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref84
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref84
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref85
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref85
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref85
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref85
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref86
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref86
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref86
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref86
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref87
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref87
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref87
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref87
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref88
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref88
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref88
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref89
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref89
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref89
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref89
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref89
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref89
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref90
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref90
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref90
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref91
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref91
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref91
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref91
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref92
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref92
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref92
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref92
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref93
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref93
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref93
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref94
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref94
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref94
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref94
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref94
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref95
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref95
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref95
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref96
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref96
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref96
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref97
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref97
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref97
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref98
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref98
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref98
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref98
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref99
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref99
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref100
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref100
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref101
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref101
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref101
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref101
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref102
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref102
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref103
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref103
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref103
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref103
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref103
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref104
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref104
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref104
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref104

C.S.Y. Benwell et al.

Spaak, E., de Lange, F.P., Jensen, O., 2014. Local entrainment of alpha oscillations by
visual stimuli causes cyclic modulation of perception. J. Neurosci. 34, 3536-3544.

Stoll, F.M., Wilson, C.R.E., Faraut, M.C.M., Vezoli, J., Knoblauch, K., Procyk, E., 2016. The
effects of cognitive control and time on frontal beta oscillations. Cerebr. Cortex 26,
1715-1732.

Tagliabue, C.F., Veniero, D., Benwell, C.S.Y., Cecere, R., Savazzi, S., Thut, G., 2018.
Subjective Perceptual Experience Tracks the Neural Signature of Sensory Evidence
Accumulation during Decision Formation. bioRxiv.

Thut, G., Bergmann, T.O., Frohlich, F., Soekadar, S.R., Brittain, J.-S., Valero-Cabré, A.,
Sack, A.T., Miniussi, C., Antal, A., Siebner, H.R., Ziemann, U., Herrmann, C.S., 2017.
Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain
activity and associated functions: a position paper. Clin. Neurophysiol. 128, 843-857.

Thut, G., Nietzel, A., Brandt, S.A., Pascual-Leone, A., 2006. Alpha-band
electroencephalographic activity over occipital cortex indexes visuospatial attention
bias and predicts visual target detection. J. Neurosci. 26, 9494-9502.

van Dijk, H., Schoffelen, J.M., Oostenveld, R., Jensen, O., 2008. Prestimulus oscillatory
activity in the alpha band predicts visual discrimination ability. J. Neurosci. 28,
1816-1823.

VanRullen, R., 2016. Perceptual cycles. Trends Cognit. Sci. 20, 723-735.

Varela, F., Lachaux, J.-P., Rodriguez, E., Martinerie, J., 2001. Nat. Rev. Neurosci. 2,
229-239.

114

Neurolmage 192 (2019) 101-114

Veniero, D., Benwell, C.S.Y., Ahrens, M.M., Thut, G., 2017. Inconsistent effects of parietal
alpha-tACS on pseudoneglect across two experiments: a failed internal replication.
Front. Psychol. 8, 952.

Victor, J.D., Mast, J., 1991. A new statistic for steady-state evoked potentials.
Electroencephalogr. Clin. Neurophysiol. 78, 378-388.

Vossen, A., Gross, J., Thut, G., 2015. Alpha power increase after transcranial alternating
current stimulation at alpha frequency (alpha-tACS) reflects plastic changes rather
than entrainment. Brain Stimul. 8, 499-508.

Ward, L.M., 2003. Synchronous neural oscillations and cognitive processes. Trends
Cognit. Sci. 7, 553-559.

Worden, M.S., Foxe, J.J., Wang, N., Simpson, G.V., 2000. Anticipatory biasing of
visuospatial attention indexed by retinotopically specific alpha-band
electroencephalography increases over occipital cortex. J. Neurosci. 20, RC63.

Wostmann, M., Waschke, L., Obleser, J., 2019. Prestimulus neural alpha power predicts
confidence in discriminating identical auditory stimuli. Eur. J. Neurosci. 49 (1),
94-105.

Wutz, A., Melcher, D., Samaha, J., 2018. Frequency modulation of neural oscillations
according to visual task demands. Proc. Natl. Acad. Sci. U. S. A. 115, 1346-1351.

Zumer, J.M., Scheeringa, R., Schoffelen, J.-M., Norris, D.G., Jensen, O., 2014. Occipital
alpha activity during stimulus processing gates the information flow to object-
selective cortex. PLoS Biol. 12, e1001965.


http://refhub.elsevier.com/S1053-8119(19)30163-6/sref105
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref105
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref105
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref106
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref106
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref106
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref106
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref107
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref107
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref107
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref108
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref108
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref108
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref108
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref108
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref108
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref108
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref109
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref109
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref109
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref109
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref110
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref110
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref110
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref110
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref111
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref111
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref112
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref112
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref112
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref113
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref113
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref113
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref114
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref114
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref114
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref115
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref115
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref115
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref115
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref116
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref116
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref116
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref117
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref117
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref117
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref118
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref118
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref118
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref118
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref119
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref119
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref119
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref120
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref120
http://refhub.elsevier.com/S1053-8119(19)30163-6/sref120

	Frequency and power of human alpha oscillations drift systematically with time-on-task
	1. Introduction
	2. Materials and methods
	2.1. Participants
	2.2. Instrumentation and stimuli
	2.3. Experiment 1
	2.4. Experiment 2
	2.5. EEG recording and pre-processing
	2.6. Experiment 1 pre-processing
	2.7. Experiment 2 pre-processing
	2.8. Split-half FFT analysis
	2.9. EEG time-frequency transform
	2.9.1. Instantaneous alpha frequency (Inst-AF) calculation
	2.9.2. Analysis of the relationship between Inst-AF and alpha power
	2.9.3. Single-trial time-on-task analysis of both time-resolved Inst-AF and alpha-power

	2.10. Split-half stratification FFT analysis
	2.11. Alpha-band source separation using independent component analysis
	2.12. Data and code availability statement

	3. Results
	3.1. Baseline alpha-power and -frequency show non-stationarity over time
	3.2. Comparing frequency-power relationship between shorter and longer time scales
	3.3. Frequency sliding and power increase confirmed with cluster-based analysis of instantaneous frequency and power
	3.4. Frequency sliding and power increases in the alpha-band over time are driven by partially independent processes
	3.5. Both mixed and unique power/frequency non-stationarities contribute to sensor level effects

	4. Discussion
	4.1. Understanding neural network activity at the macro-scale
	4.2. Methodological and applied considerations

	Conflicts of interest
	Acknowledgements
	References


