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Abstract: Foamy viruses (FV) are retroviruses belonging to the Spumaretrovirinae subfamily. They are
non-pathogenic viruses endemic in several mammalian hosts like non-human primates, felines,
bovines, and equines. Retroviral DNA integration is a mandatory step and constitutes a prime target
for antiretroviral therapy. This activity, conserved among retroviruses and long terminal repeat
(LTR) retrotransposons, involves a viral nucleoprotein complex called intasome. In the last decade,
a plethora of structural insights on retroviral DNA integration arose from the study of FV. Here,
we review the biochemistry and the structural features of the FV integration apparatus and will also
discuss the mechanism of action of strand transfer inhibitors.
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1. Introduction

The retroviridae family is a large group of viruses containing seven genera (alpha, beta, gamma,
delta, epsilon lenti, and spuma-virus). The deltaretrovirus and lentivirus genera contain the two major
human pathogens, Human T-Lymphotropic Virus (HTLV-1) and Human Immunodeficiency Virus-1
(HIV-1), respectively. One feature that distinguishes retroviruses from the other viruses is the ability
to integrate their linear double stranded DNA into host cellular chromatin. This essential activity is
catalyzed by the virally encoded integrase (IN) protein and will lead to the covalent insertion of the
provirus into the host genome [1]. The mechanism of retroviral integration is also shared by numerous
prokaryotic and eukaryotic mobile DNA elements to mobilize genetic information between and within
genomes. Moreover, retroviral integrases are closely related to the DD(E/D) polynucleotidyl transferase
family of DNA transposases [2]. Although the DNA cutting and strand transfer reactions occur through
a similar mechanism between these genetics elements, the structure of DNA to be mobilized differs,
i.e., IN cannot act on an already integrated DNA molecule and requires linear DNA to carry out the
two essential sequential events, 3′ processing, and strand transfer [3–5]. These processes take place
in the context of a nucleoprotein complex called intasome, consisting of the two viral DNA (vDNA)
ends and a multimer of IN [6,7]. While the function of retroviral integrases is well described, the
molecular mechanisms involved were, for a long time, hampered by the lack of structural information.
The propensity of many retroviral integrase to self-associate into high order aggregates in vitro has
been a factor limiting structural endeavors. Conversely, FV integrase like prototype foamy virus (PFV)
was shown to be very amenable for structural biochemistry and was the source of many breakthroughs
on the comprehension on the molecular basis of retroviral integration and strand transfer inhibitors
resistance [8–11].

Viruses 2019, 11, 770; doi:10.3390/v11090770 www.mdpi.com/journal/viruses

http://www.mdpi.com/journal/viruses
http://www.mdpi.com
https://orcid.org/0000-0002-7521-5546
https://orcid.org/0000-0002-8107-4583
https://orcid.org/0000-0002-4623-0675
http://www.mdpi.com/1999-4915/11/9/770?type=check_update&version=1
http://dx.doi.org/10.3390/v11090770
http://www.mdpi.com/journal/viruses


Viruses 2019, 11, 770 2 of 15

2. Biochemistry of Foamy Virus Integration

Biochemical studies of retroviral integration started with the purification of preintegration
complexes (PIC) from infected cells [12,13]. Such complexes can perform vDNA integration into target
DNA in vitro. Analysis of the intermediates produced during these integration reactions uncovered
the two activities catalyzed by retroviral integrase: 3′ processing and strand transfer (Figure 1) [3,4].
The resulting integration products generate a single strand gap and a two-nucleotide overhang that
will be repaired by cellular proteins to complete the integration reaction.
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Figure 1. DNA cutting and joining steps catalyzed by retroviral integrases. During 3′ processing (left)
the integrase removes two (or three) nucleotides from the 3′ ends to expose a conserved terminal CA
dinucleotide. The 3′ hydroxyl groups (red OH) will be used in the second step (right) to attack the
phosphodiester bonds on each target DNA strand.

During 3′ processing, retroviral integrase cleaves two (or, depending on the in vitro conditions,
three [14,15]) nucleotides on the 3′ ends of the U3 and U5 vDNA long terminal repeats (LTR).
This sequence-specific reaction, a nucleophilic attack by a water molecule, liberates a recessed 3′

hydroxyl group adjacent to an invariant CA dinucleotide [5]. Foamy virus 3′ processing occurs
asymmetrically, modifying only the U5 end as the U3 extremity generated after reverse transcription
constitutes a bona fide substrate for integration [16,17]. In contrast, the U5 extreme dinucleotides are
necessary during the first strand of reverse transcription but have to be cleaved off for integration.
During the strand transfer step, the intasome binds host chromosomal DNA, forming the target capture
complex (TCC), and utilizes the 3′ hydroxyls as nucleophiles to cut and join simultaneously both
3′vDNA ends to apposing DNA strands with 4–6 bp stagger (4 in the case of FV).

Recombinant retroviral integrases are very efficient at catalyzing 3′ processing and strand transfer
reactions in vitro [18–20]. However, the bulk of strand transfer products obtained are generally the
result of unpaired products, also called half site integration. Recombinant PFV integrase became
a standard model to investigate retroviral integration, as it appeared far more proficient at paired
full-site integration. PFV integrase is more soluble in vitro than HIV-1 IN, but the exact biochemical
reasons underlying these differences are unclear. Interestingly, comparison of in vitro IN enzymatic
reaction conditions among FVs, such as substrate specificity, cofactor usage, and target commitment,
showed that the feline foamy virus (FFV) IN has a broader range of substrates and cofactor than
other FV INs [21]. FFV IN cleaved PFV U5 LTR substrate, as well as FFV U5 LTR substrate, during
in vitro 3′ processing reaction, but not vice versa. The internal six nucleotides in front of terminal CA
dinucleotide are identical between the two substrates, indicating that the FFV IN has low substrate
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specificity compared with PFV IN. Mn2+ or Mg2+ ions are known as essential cofactors of IN enzyme
activities, and in vitro IN activities appear most effectively in the presence of Mn2+. Previous studies
have reported that multimerization of HIV-1 IN was promoted by Ca2+ as well as Mn2+, although
Ca2+ could not substitute in strand transfer reaction [22]. Interestingly, Zn2+ and Ca2+ divalent cations
were found to act in FFV 3′ processing in the absence of Mn2+ ion, and their inductions of enzymatic
reactions were concentration-dependent. Moreover, like FFV IN, PFV integrase was shown to be fairly
lax for divalent cations and target DNA commitment. Indeed, while HIV-1 integrase was shown to
commit to substrate DNA within 1 min, PFV integrase took more than an hour [23]. Moreover, the
same group performed single molecule experiments using PFV intasomes to investigate the mechanics
of target DNA capture and catalysis. Using single molecule total internal reflection fluorescence
(smTIRF) microscopy, individual PFV intasome were visualized on naked DNA [24]. Theoretical
dynamic modelling showed a 1D rotation-coupled translational diffusion of PFV intasome along DNA.
1D diffusion is a phenomenon exploited by many proteins to scan for sequences, lesions, or structures
on nucleic acids. Remarkably, this target DNA searching process is very often non-productive as few
integration events were recorded, even in the presence of favored PFV integrase sequences. Instead,
since PFV intasome prefers supercoiled DNA as the target substrate [8,24], the authors suggested an
additional search for DNA conformation rather than sequence alone. However, the question of the
search process on the nucleosomal chromatin template remains to be investigated.

3. Domain Organization of Retroviral Integrase

All retroviral IN contain three conserved folded domains that were initially identified using limited
proteolysis on HIV-1 IN [25]: the N-terminal domain (NTD), the catalytic core domain (CCD), and the
C-terminal domain (CTD). In addition, spumaretrovirinae (as well as epsilon and gammaretroviral)
integrases harbor a ~40 residues NTD extension domain (NED) (Figure 2A).

The first structural features of individual domains were obtained using nuclear magnetic resonance
(NMR) and X-ray crystallography. The structure of HIV-1 and HIV-2 NTD was determined using NMR
and shows 3-helical bundles coordinating a single zinc atom via the side chains of a HisHisCysCys
(HHCC) motif [26,27] (Figure 2B). The structure confirms the importance of the zinc as an IN cofactor,
and also the location of the conserved His and Cys residues involved in the chelation of metal. The CTD
structure was also solved in solution by NMR and revealed a high similarity with Src homology
3 (SH3)-like beta barrel and Tudor domains [28,29] (Figure 2D). The NTD and CTD domains play
important roles in substrate recognition and assembly of intasome. They are connected to the CCD
via flexible linkers whose size varies among retroviral genera. The CCD contains the active site of
the enzyme with the invariant D,D-35-E motif. The crystal structure of HIV-1 IN CCD showed a
nucleotidyltransferase fold, which is shared with several prokaryotic and eukaryotic transposases,
recombinases, and resolvases [30,31]. The structure revealed a dimer of CCD with an extensive interface.
The two active sites are facing outward, opposite to each other, and separated by approximately
35 Å. This distance is incompatible with a functional concerted integration of the two viral ends
across a major groove of the target DNA that is around 17 Å in a canonical B-form (Figure 2C).
Following this observation and the similarity with the mechanistically related transposases [32–34],
it appeared clear that an IN multimer must be involved in vDNA concerted integration. Biochemical
analysis of IN from various genera failed to establish a relationship between their oligomeric states
in solution and the formation of active complexes once bound to their cognate DNA substrates.
The breakthrough came from PFV integrase. Monomeric in solution, highly soluble, and exceptionally
efficient in catalysis in vitro, this model was the first functional retroviral IN.DNA complex amenable
to structural characterization.
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Figure 2. Domain organization of retroviral integrases. (A) Schematic of the retroviral IN domain
sequences shown as boxes. Isolated domain structures of HIV-1 NTD (B), (PDB 1WJC), CCD (C),
(PDB 1ITG), CTD (D), (PDB 1IHV). Chains are shown in cartoon, except active site residues Asp64 and
Asp116, which are shown as red sticks (Glu152 residues are disordered and not visible in the structure).

4. Architecture of the PFV Intasome

Determined by X-ray crystallography, the structure of the PFV intasome fundamentally changed
the landscape in the field of retroviral integration, as it could both unravel the functional architecture of
the integration apparatus and elucidate the mechanism of action of HIV strand transfer inhibitors [9].

The PFV intasome revealed a tetramer of integrases synapsing a pair of vDNA ends. The tetramer
consists of a dimer of dimer with two structurally distinct subunits (Figure 3A). The inner subunits
mediate all the protein–protein, protein–DNA contacts in an extended conformation and host the
active sites to catalyze the 3′ processing and strand transfer reactions. The inner integrases interact
via intermolecular NTD−CCD contacts, and by the insertion of a pair of CTDs that rigidly bridge
the two halves of the intasome between the CCDs. The outer subunits connect the inner protomers
via the canonical CCD–CCD interface. Although the respective positions of the outer NTDs and
CTDs are not resolved in the intasome structures published to date, some hints were obtained using
SAXS/SANS analysis of PFV intasome [35]. These domains are dispensable for PFV intasome assembly
and in vitro activity [36] but they are suspected to provide additional stabilizing interaction with
vDNA and/or cellular cofactors. However, the outer CTDs appear to promote aggregation in vitro,
as further experiments using intasome lacking the outer domains have shown an increased stability
and activity on naked DNA. Solving the structure of the PFV intasome reinforced the hypothesis
that the tetrameric architecture was the functional multimer of HIV-1 intasome. Yet, more recently,
four additional structures from orthoretroviral intasome; α-retroviral Rous sarcoma virus (RSV) [37],
β-retroviral mouse mammary tumor virus (MMTV) [38], lentiviral maedi-visna virus (MVV) [39],
and lentiviral HIV-1 [40] were reported, revealing a variety of architectures (see [41] for a more detailed
review) (Figure 3B). First, RSV and MMTV intasomes structures solved by X-ray crystallography and
Cryo-EM, respectively, revealed an octameric assembly. A core tetramer (called conserved intasome
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core, CIC [41]) is positioned similarly as in PFV intasome, with the conserved inner catalytic protomers
flanked by outer monomer subunits. The position of the synaptic CTDs bridging both halves of the
intasome is conserved in the octameric structures, but due to the small size of the CCD–CTD linker,
they cannot be supplied by the inner protomer and come from the flanking dimers. Indeed, while in
PFV IN the CCD–CTD linker is fifty residues long, in α and β retroviral INs, they are only eight amino
acids long. Interestingly, the size of this linker varies among retroviral genera and may predict the
requirement for additional oligomers to support CIC assembly [38].
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Figure 3. Architecture of PFV and related retroviral intasomes. (A) PFV intasome shown in two
orthogonal views (PDB 4E7H) with individual domains indicated. Inner IN subunits are colored pale
green and light blue, and the outer subunits are in orange. (B) Comparison of retroviral intasomes
structures (RSV PDB: 5EJK, MMTV PDB: 3JCA, MVV PDB: 5M0Q). Complexes are viewed from below
the active site. The conserved intasome core, CIC, is colored as in (A), synaptic CTDs are in red,
and flanking subunits are in light grey.

In the case of lentiviral (and δ-retroviral) INs, the size of the CCD–CTD linker is around twenty
residues. However, it adopts a compact alpha-helical structure, which is predicted to be incompatible
to allow the formation of a minimalist CIC [42].

Fusing HIV-1 IN with the DNA binding domain Sso7d [43] promoted its solubility as well as its
in vitro activity [44], allowing the assembly of a complex that could be structurally characterized by
Cryo-EM. The structure of the HIV-1-Sso7d intasome revealed a tetramer competent for integration [40].
However, the CCD–CTD linker could not be seen on the electron density map, and assembly of
an intasome using HIV-1 IN cofactor lens epithelium-derived growth factor (LEDGF/p75) integrase
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binding domain (IBD) to stabilize higher-order species revealed a dodecameric structure. In this
complex, the core intasome is assembled between two tetramers with a flanking dimer inserting the
synaptic CTDs.

The MVV intasome was assembled using wild type integrase proteins and shows a hexadecameric
structure (a tetramer of tetramers). Here again, the catalytic core is formed by the CIC. Overall,
both intasome architecture are similar and resume the CIC formation. It has been suggested that the
extra fusion domain Sso7d in HIV-1 intasome, which cannot be seen in the EM density, may disrupt
the dimer–dimer interaction in the flanking HIV-1 IN tetramer, and therefore result in a dodecameric
structure, while MVV intasome displays a hexadecamer.

5. Structural Basis for Target DNA Capture

Co-crystallization of the PFV intasome with its target DNA (tDNA) allowed the visualization of
both target capture complex (TCC) and strand transfer complex (STC) before and after the reaction,
respectively [10,45]. The tDNA binds along the groove created by the two inner subunits, right below
the active site (Figure 4A). The intasome does not undergo significant structural rearrangements to
accommodate the tDNA, which is severely bent. This deformation is maximal at the center of the
integration site, with the widening of the major groove to 26.3 Å. This separation allows the scissile
phosphodiester to fit into the active site for in line nucleophilic attack. Because DNA bendability is
in large part dictated by the nature of the dinucleotide step, with pyrimidine–purine (YR) being the
most flexible and purine-pyrimidine (RY) being the least, it is then not surprising that PFV integration
sites are naturally biased towards more flexible pyrimidine–purine dinucleotide at the central position.
As expected, due to the low selectivity of tDNA sequence, the majority of contacts between the intasome
and tDNA are mediated through the phosphodiester backbone [10], except CCD residue Ala188 and
CTD Arg329, that make base-specific contacts. Ala188 makes van der Waals interaction with cytosine
at position 6, whereas Arg329 interacts with guanosine 3, guanosine −1, and thymine −2 through
hydrogen bonds (Figure 4A, right). Interestingly, these two residues interact with all the consensus
bases flanking the flexible central YR dinucleotide. Consequently, PFV IN Ala188 and Arg329 mutants
showed in vitro strand transfer defects, as well as new sequence selectivity. The importance of these
contacts has been validated for HIV-1 integrase, as mutating Ser119 (the structural equivalent of PFV
IN Ala188) showed altered strand transfer and modified sequence selectivity [46–48].

In eukaryotes, host target DNA is compacted within chromatin that strongly distorts DNA around
nucleosomes. PFV intasome showed strong integration activity when supplied with purified or
recombinant human mononucleosomes [11,49]. Isolation of a stable complex of the PFV intasome and
recombinant mononucleosome permitted the characterization by cryo-electron microscopy (Cryo-EM)
of the TCC and a nucleosome core particle at 8 Å resolution [11] (Figure 4B). The crystal structures of
the intasome and the nucleosome can be unambiguously docked into the electron density map. The
intasome harbors the classical tetramer with the two types of subunits. No additional density is seen
compared to the previous intasome crystal structures. The intasome sits on nucleosomal DNA above
one of the H2A–H2B dimers and makes an extensive nucleosome–intasome interface involving three
IN subunits, both turns of the nucleosomal DNA, and one H2A–H2B dimer. The carboxy-terminal
helix of H2B is directly poking toward the intasome and is surrounded by a triad of loops from the
inner subunits. Integrase residues Pro135, Pro239, and Thr240 wrap the C-terminal helix of H2B
(Figure 4B, left) and the double substitution P135E/T240E strongly affected nucleosome binding and
nucleosome strand transfer activity. The histone H2A shows density from its N-terminus reaching
out to the inner IN CTD, and deletion of the first twelve H2A residues abolished intasome binding
and decreased strand transfer activity into nucleosome. Further mutagenesis uncovered a role for
the intasome outer domains, specifically the outer CTDs, as its deletion reduced the ability to bind
nucleosomes. Additional important contacts between the intasome and the nucleosome involve the
canonical CCD–CCD interface and the second gyre of nucleosomal DNA (Figure 4B, right). Residues
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Q137, K159, and K168 are located in the vicinity of the contacts with the second gyre of DNA, and their
substitution affected nucleosome binding and integration activity in vitro.
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Figure 4. Target DNA capture. (A) Crystal structure of the target capture complex TCC (PDB: 3OS1)
with sequence specific target DNA interactions shown as a blow up. Arg329 making contacts with
guanosine 3, −1, and thymine −2, as well as Ala188 making contact with cytosine 6, are shown as red
sticks. (B) Structure of the PFV intasome–nucleosome complex displayed as pseudoatomic model
by docking PFV intasome (PDB 3L2Q) and nucleosome (PDB 1KX5) structures into the Cryo-EM
map (EMDB ID 2992). Histones H2A are colored in yellow, H2B in red, H3 in blue, and H4 in green.
IN contacts with H2B (left) and with the second gyre of nucleosomal DNA (right) are shown as
zoomed boxes.

Most striking is the path of DNA captured within the tDNA-binding groove of the intasome.
When compared to its structure on a native nucleosome, the captured DNA is kinked and lifted from
the surface of the histones, perfectly matching the strong bending seen on the PFV intasome capture
complex [11]. The multivalent intasome–nucleosome interactions may aid to reach the energy state
required to deform nucleosomal DNA beyond its ground state, and seems to be the only determinant
required as, more recently, Yoder and colleagues demonstrated that unwrapping DNA-histones
modifications in the vicinity of the intasome integration sites does not impact nucleosome capture [50].

6. Mechanics of PFV Intasome Active Site

Because the IN catalysis requires divalent metal ion cofactor, it has been possible to freeze
the PFV enzyme in different ground states before 3′ processing and strand transfer [45] (Figure 5).
Both reactive and non-reactive strands of the vDNA are separated via the intrusion of the residues
Pro214-Gly218, stacking against the adenine base, leaving three bases unpaired. The scissile dinucleotide
phosphodiester backbone makes hydrogen bonds with Tyr212 and Gln186, while the adenine and
thymidine bases contacts with the IN are limited to Van der Waals interactions. The binding of the two
Mn2+ ions in the active site induces a shift of the scissile phosphodiester toward the catalytic triad
DDE. The metal ion A is in a near perfect octahedral coordination. It comprises oxygen atoms from
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Asp128 and Asp185, the pro-Sp oxygen atom of the scissile phosphodiester and three water molecules,
one of them positioned for in-line nucleophilic attack on the scissile CA\AT phosphodiester bond.
Both oxygen atoms of Glu221 and one from Asp128 coordinate metal B, as well as one water molecule,
a bridging oxygen atom of the scissile phosphodiester and a non-bridging pro-Sp oxygen shared with
metal A. This non-ideal environment for metal B may aid scissile phosphodiester bond destabilization
during catalysis. Before 3′ processing, the distance between the two metal ions is 3.9 Å, and changes
to 3.1 Å after dissociation of the dinucleotide. This metal ions movement has been also described in
the RNase H active site and was suggested to allow the nucleophilic water to approach the scissile
phosphodiester [51]. In the active site, the metal cofactors move further apart from each other (from
3.1 Å to 3.8 Å) upon target DNA capture. The roles of both metal ions changes between 3′ processing
and strand transfer. Metal A and metal B coordination with active site residues stays unchanged,
as well as the sharing of the pro-Sp oxygen atom from the target phosphodiester. Accordingly, metal A
destabilized the target phosphodiester scissile bond by interacting with the 3′-bridging oxygen atom
while metal B activates and positions the 3′OH of the vDNA for nucleophilic attack. After strand
transfer catalysis, both metal ions move closer to approximately 3.2 Å.
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Figure 5. Mechanics of PFV 3′processing and strand transfer. Top panel, a close up of PFV intasome
active site during 3′ processing. Superimposition of intasome structures before 3′ processing with and
without bound manganese Mn2+ (grey spheres A and B) (left) and after cleavage (right). Relocation of
the scissile phosphodiester upon metal binding is shown with a red arrow. The red spheres illustrate
the water molecules, and the nucleophile water molecule is shown as a big red sphere. Bottom panel,
strand transfer activity upon target DNA binding. The nucleophilic attack is shown with red dashes.

Overlaying the TCC and the STC structure shows that the overall DNA conformations do not
change, except the position of the phosphodiester linking the tDNA to vDNA, which is shifted away
from the active site. Integrase apply a significant torsional stress to the tDNA, likely providing the
displacement force, which is relieved upon cutting of the target phosphodiester bond. This ejection
prevents any reversible reaction that would lead to unfruitful viral infection. A soaking experiment
with metal cofactor showed an apparent loss of metal B binding affinity after strand transfer, probably
due to the ejection of the DNA from the active site. Interestingly, such a tDNA kink within the
active site is important for other transpososomes activity like Hermes [34,52], MuA [53], Tn10 [54],
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and IS231A [55]. This could be an evolutionary conserved feature of DNA transposition apparatus in
order to prevent any reversal reaction, while being competent to access tDNA scissile phosphodiester.

7. PFV Intasome and HIV-1 Strand Transfer Inhibitors

Human immunodeficiency virus type 1 (HIV-1) IN has been widely considered as an important
target protein for novel anti-acquired immune deficiency syndrome (AIDS) drugs [56]. Based on
biochemical assay and biophysical analysis, several classes of retroviral IN inhibitors have been
discovered over the last 25 years [57–60]. Hydroxylated natural products and their derivatives were
developed, and the most important IN inhibitor family, diketo acids (DKA), emerged [59]. Integrase
strand transfer inhibitors (INSTIs) are one of active site inhibitors against HIV-1 integration that act by
preventing the strand transfer reaction; however, numerous significant developments and rational
designs of INSTIs were reported during recent years. Raltegravir (RAL) was the first INSTIs approved
by the United State food and drug administration (FDA) in 2007 [61], providing a new option for highly
active antiretroviral therapy (HAART). After that, elvitegravir (EVG) and dolutegravir (DTG) have
been approved [62,63] (Figure 6A). RAL, EVG, and DTG belong to the bioisosteres compounds of DKA.
DKA derivatives, which contain a 1,3-dicarbonyl aromatic ring, are a class of highly effective HIV-1
INSTIs where the 1,3-dicarbonyl group seizes two Mg2+ ions, preventing the metal ion-mediated
retroviral integration [64–66]. More recently, two new molecules, bictegravir (BIC) and cabotegravir
(CAB), have been developed [67,68]. Bictegravir was approved by the FDA in early 2018 and is being
used as a combination drug. Cabotegravir is currently in phase III development. BIC and CAB are
structurally similar to DTG with their tri-cyclic central pharmacophores (Figure 6A), but the latter
offers an improved half-life [69].

Despite an increasing drug arsenal, the experimental data related to full-length, wild type HIV-1
intasomes structures are rare. As an alternative, PFV intasome has been adopted for anti-AIDS drug
development. A comparison of the CCD structures between HIV-1 and PFV showed that both conserved
unique structural features, such as the host cellular factor binding faces and the organization of the
active site [8,9,30]. A recent NMR study using the CCD of HIV-1 IN showed that the HIV-1 and PFV IN
flexible loops (residues 140–149 in HIV and 209–218 in PFV) are almost similar, and structure prediction
of the HIV integrase intasome provided further evidence for the similarities between the active amino
acid resides of the PFV and HIV INs [70,71]. Johnson et al. generated a corresponding HIV-1 IN model
from the PFV IN crystal structure and they predicted the in vitro anti-INSTI activities using molecular
docking and molecular dynamics simulation [72]. Despite the limited sequence similarity and different
intasome architecture features (lentiviral: tetramer-of-tetramer, PFV: dimer-of-dimer), PFV IN was
highly sensitive to HIV INSTIs [8,73], suggesting that INSTIs target the most conserved regions of
IN-DNA complexes. Recently, many studies using PFV IN as a surrogate model in order to investigate
HIV-1 INSTIs have been published. Some groups investigated the consistency between in vitro and
in vivo resistance profiles for RAL using PFV IN structures mutated at the corresponding to HIV-1
IN active site, Q148, and N155 [74,75]. Hare et al. confirmed the interaction of the pharmacophores
of PFV intasome with two metal ions at the IN active site, and they also investigated an interaction
between the bound vDNA end and the benzyl group through cocrystal structures of RAL and EVG [9].
Also, they obtained a crystal structure of PFV IN complexed with vDNA and DTG [76] (Figure 6B)
(See [1] for more details on the structural basis for INSTIs). Johnson et al. designed a series of INSTIs
based on the previous target model through homology modeling and structural superposition method.
In their modeling system, the junction between the CCD and CTD adopts a helix-loop-helix motif,
which is similar to the corresponding segment of PFV IN [77].
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PFV active site with or without DTG. By positioning into the active site, the INSTI engages the metal
cofactors and induces a shift of the 3′ reactive hydroxyl (red circle) out of position incompatible for
strand transfer.

Hu et al. investigated the inhibitory mechanism of RAL and the recognition of DKA inhibitors with
PFV-IN via molecular dynamics and molecular docking methods, and they validated the HIV-1 inhibitor
screening platform [73,78]. Du et al. proposed the crystal structure of PFV-IN DNA as a potential
HIV-1 INSTI screening platform through a structural biology information survey [79]. They also
investigated the molecular recognition system of PFV IN, using six naphthyridine derivatives inhibitors
through molecular docking, molecular dynamics simulations, and water-mediated interactions analyses.
Besides, there are a lot of studies using PFV intasome to explore the binding mode of compounds for
new HIV IN inhibitors. These results have implications for the rational design of HIV-1 IN targeting
specific INSTIs with improved affinity and selectivity [80,81].

Some studies have raised doubts on HIV-1 IN inhibitor screening platforms using PFV-IN,
indicating that the HIV-1 IN system behaves differently from PFV in terms of folding, recognition,
and hydrophobicity of the tDNA binding site, and stability [82]. Although conformational changes and
the energy landscape are still unclear, the molecular docking and molecular dynamics study validates
the reliability of the platform and reestablishes PFV IN as one of the most credible surrogate model for
HIV-1 INSTIs studies and anti-AIDS drug development based on IN structure. Nevertheless, thanks to
Cryo-EM advances, future high-resolution structures of primate lentiviral integrases will be of great
interest to further improve the structural basis of INSTI mechanisms and development.
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8. Conclusions and Perspectives

As an important therapeutic target and molecular tool, retroviral integrase is having a lot of
attention from the scientific community. Intensive biochemical studies gave important insights on
the functional architecture of the viral enzyme and, little by little, the structural counterpart emerged:
from individual domains to active intasomes bound to a nucleosome. The publication in 2010 of the
first retroviral intasome structure from PFV was the starting point of a decade-long period of exciting
and insightful research on the integration process. The recent revolution in single particle cryo-electron
microscopy significantly increased the repertoire of retroviral intasome structures now available that
highlight both the conservation and diversity in the architectures. Conservation, because the presence
on all retroviral intasome of a PFV-like intasome CIC hosting the catalytic subunits is quite striking,
and diversity being on the variety of oligomers needed for the whole assembly. It will be of great
interest to expand the catalogue of known intasome structures from the remaining retroviral genera,
but also to further investigate new structures derived from wild type primate lentiviral integrases to
better understand HIV-1 strand transfer inhibitors.

Many open questions will surely keep the fire of retroviral integration research vivid, notably,
what is the precise chronology of intasome assembly during infection. Indeed, HIV-1 virion packages
around 250 molecules of integrase, which is far more than needed from the recent structures of lentiviral
intasomes. Also, although the structure of the PFV intasome bound to a nucleosome afforded important
information on the chromatin capture by retroviral intasomes, the requirement for histones might
differs from genus to genus [83,84], highlighting the need for additional structures of intasomes bound
to nucleosomes. Additionally, early chromatinisation of retroviral pre-integration complexes has
emerged as a feature of two retroviral genera [85,86]. Future studies will be required to determine
the functional importance and the conservation among integrative mobile elements and, notably,
Foamy viruses.
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