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ABSTRACT 
 
T-cells play an essential role in the adaptive immune system by seeking out, binding and 
destroying foreign antigens presented on the cell surface of diseased cells. An improved 
understanding of T-cell immunity will greatly aid in the development of new cancer 
immunotherapies and vaccines for life threatening pathogens. Central to the design of such 
targeted therapies are computational methods to predict non-native epitopes to elicit a T cell 
response, however, we currently lack accurate immunogenicity inference methods. Another 
challenge is the ability to accurately simulate immunogenic peptides for specific human 
leukocyte antigen (HLA) alleles, for both synthetic biological applications and to augment real 
training datasets. Here, we proposed a beta-binomial distribution approach to derive epitope 
immunogenic potential from sequence alone. We conducted systematic benchmarking of five 
traditional machine learning (ElasticNet, KNN, SVM, Random Forest, AdaBoost) and three deep 
learning models (CNN, ResNet, GNN) using three independent prior validated immunogenic 
peptide collections (dengue virus, cancer neoantigen and SARS-Cov-2). We chose the CNN 
model as the best prediction model based on its adaptivity for small and large datasets, and 
performance relative to existing methods. In addition to outperforming two highly used 
immunogenicity prediction algorithms, DeepHLApan and IEDB, DeepImmuno-CNN further 
correctly predicts which residues are most important for T cell antigen recognition. Our 
independent generative adversarial network (GAN) approach, DeepImmuno-GAN, was further 
able to accurately simulate immunogenic peptides with physiochemical properties and 
immunogenicity predictions similar to that of real antigens. We provide DeepImmuno-CNN as 
source code and an easy-to-use web interface. 
 
INTRODUCTION 
 
Immunotherapy has emerged as a promising strategy to combat cancer by “reprogramming” a 
patient’s own immune system. Effective targeted immunotherapies require accurately predicting 
which cancer-specific neo-epitopes are most likely to elicit an immune response. Similar 
strategies are currently being designed to target antigens commonly produced by serious 
pathogens, such as the SARS-Cov-2 (COVID-19) virus [1]. Human leukocyte antigens (HLAs) 
are a polymorphic class of proteins on the cell surface of T cells that recognize foreign antigens 
presented by another cell. The process of antigen recognition is the cornerstone of the adaptive 
immune system. HLA proteins are encoded by the Major Histocompatibility Complex (MHC) 
genes in humans. Predicting the immunogenicity of MHC-I bound epitopes is crucial for 
understanding the molecular rules governing T cell directed adaptive immunity and creating 
precision cancer or pathogen targeting vaccines. Cellular antigen recognition is governed by a 
series of carefully orchestrated molecular interactions between cell-surface-presented antigen 
and T cells of the immune system. MHC-I proteins are responsible for presentation of short 
epitopes on the cell surface and mediating interactions with CD8+ T cell receptors (TCR). An 
immunogenic peptide is capable of binding with a cognate MHC molecule, resulting in the 
exposure of its non-self portion. The exposure of “foreign” signals trigger immunoreceptor 
tyrosine-based activation motifs (ITAMs) on the T cell to be phosphorated and activate an 
immune response [2]. The process ultimately results in targeted cell death of the antigen 
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expression cell by CD8 T cell. Hence, the identification of immunogenic epitopes that can trigger 
T cell responses is central to developing new cancer immunotherapies and vaccines. Because 
thousands of potential disease-associated antigens can be presented in innate or foreign cells 
[3], it is necessary to prioritize which candidates are most likely to induce T cell response prior 
to experimental validation. 

To reduce the number of epitopes to be chosen, in silico methods have been developed 
to predict antigen immunogenicity. POPI [4] was developed as the first automated 
computational immunogenicity prediction tool. POPI used a selected subset of physicochemical 
features identified by a bi-objective algorithm for support vector machine (SVM) based 
classification. An updated version POPISK [5] further considers MHC binding properties to 
improve its prediction ability. PAAQD [6] was later developed to consider amino acid pairwise 
contact potential and quantum topological molecular similarity (QTMS) for feature selection. 
Subsequently, a machine learning-based immunogenicity predictor NeoPepsee [7] was 
developed that integrated 14 independent features to infer peptide immunogenicity. These initial 
methods paved the way for more advanced algorithms, however, the applicability of such 
methods have historically been challenging due to small training datasets and limited 
consideration of HLA alleles. A significant advance in the field came with the introduction of the 
immune epitope database (IEDB) and associated predictive immunogenicity tools [8]. This 
invaluable resource continues to systematically characterize the biochemical properties of over 
30,000 MHCI-bound immunogenic epitopes. IEDB further includes a suite of algorithms to 
predict binding affinity and immunogenicity, including a position-weighted calculated schema by 
considering kullback-leibler (KL) divergence and amino acid preference (default method). More 
recently, algorithms with improved reported accuracy have been described, including a Random 
Forest based approach called INeo-Epp [9] which uses a customized immunogenic score and 
the recurrent neural network-based deep learning approach DeepHLApan [10]. While promising, 
a potential limitation of these these approaches is that the prediction of immunogenic epitopes is 
treated as a binary classification problem using predefined hard cutoffs, in which each peptide-
MHC pair will be considered immunogenic or non-immunogenic, even though the 
immunogenicity of a certain peptide-MHC will vary substantially depending on the subject’s 
immune profile and TCR repertoire [2]. Further, while DeepHLApan [10] applies a well-
rationaled deep learning approach, its encoding of amino-acid sequence does not incorporate 
physicochemical or other amino-acid parameters (one-hot encoding). As a result, the outputs 
from these methods might not fully reflect the ability of the peptide-MHC to trigger a T cell 
response. 

A secondary, but important challenge in the field of immunogenicity prediction, is to learn 
the rules that govern which peptides are immunogenic and why. Understanding these rules, 
could be used to develop improved prediction models or produce large synthetic datasets for 
training more accurate predictive models. Deep generative models [11] are a newly-emerging 
area in artificial intelligence (AI) that can be applied to diverse research problems. In effect, 
such models allow for the creation of accurate synthetic models from limited existing training 
data. Such methods take random noise to create new datasets that reflect the original training 
data but that contain unique informative features. Generative adversarial networks (GANs) are 
widely used in computer vision [12] and synthetic biology [13] to generate new images or 
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sequences of interest (i.e. antimicrobial peptides), but have not previously used to produce 
synthetic models of immunogenic peptides.  

To overcome the aforementioned limitations, we propose a new convolutional neural 
network (CNN) [14] approach called DeepImmuno-CNN. During the training, a beta-binomial 
probabilistic model is fitted to the training dataset to derive a continuous immunogenic score. 
This score differentially weights each peptide-MHC complex in the model based on its 
associated experimental evidence (high-confidence or low-confidence), to further produce a 
more reliable variable immunogenic score for each peptide in the test dataset. Each amino acid 
sequence is additionally encoded using a reduced principal component analysis (PCA) feature 
space of 566 well-curated amino acid physicochemical features from the AAindex1 database 
[15] to overcome sparsity issues related to one-hot encoding [16]. Diverse machine learning and 
deep learning approaches exist, which have potential strengths and weaknesses for this 
problem (e.g., performance, accuracy, flexibility to dataset size). To ensure the rigor of this 
approach, we performed a systematic comparison of five traditional machine learning algorithms 
(ElasticNet, K-Nearest Neighbors (KNN), SVM, Random Forest, AdaBoost) and three deep-
learning models (CNN, Graph Neural Network (GNN), Residual Net (ResNet)). This 
benchmarking further supports the use of a CNN for this problem. In addition, an evaluation of 
different encoding schemas, confirms that our AAindex1 PCA encoding strategy provides 
excellent performance relative to alternative methods. When benchmarked against two state-of-
the-art workflows for immunogenicity prediction (DeepHLApan and IEDB), DeepImmuno-CNN 
was able to significantly increase both precision and recall for different HLA genotypes using 
diverse real-world test datasets (IEDB, TESLA and COVID-19). To further explore the 
dependent epitope features for immunogenicity prediction, we developed a GAN model [13][17] 
which mimics the salient features of validated immunogenic peptides. These data support the 
hypothesis that immunogenic peptides are learnable as a possible future source for high quality 
synthetic training data.  

Hence, this work represents multiple important advances and insights into the field of 
immunogenicity prediction, including: 1) comprehensive benchmarking of existing and new 
methods, 2) improved quantitative prediction models, 3) applicability for neoantigen and 
infectious peptides, 4) crucial determinants for T cell responses and 5) an accurate approach for 
synthetic modeling. 
 
METHODS 
 
Datasets 
Multiple training and test datasets were analyzed in this study using previously published 
experimentally tested datasets. For initial training and validation, we analyzed >9,000 
experimentally evaluated immunogenicity assay predictions from the Immune Epitope 
Database, IEDB database (August 13th, 2020). For our evaluation, we restricted the dataset to 
peptides with metadata that matched to the following keywords: (1) linear epitope, (2) T cell 
assay, (3) MHC class I, (4) human, and (5) disease. To restrict the dataset to informative 
predictions, we developed a rigorous data cleaning strategy. First, data instances without 
explicit 4-digit MHC alleles were discarded. Second, all redundant peptide-MHC allele instances 
were discarded (the same peptide with different HLA alleles were considered different 
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instances). Third, all negative epitopes, without explicit experimental information (number of 
subjects tested, number of subjects responded) or with less than four tested subjects were 
removed (likely not informative at a human population-level). Fourth, peptides of length 9 and 10 
were retained for the training process. 9-mer and 10-mer peptides cover 97.5% of all data 
instances and are also the dominant length for MHCI-bound peptides [18]. Finally, we separated 
out 408 dengue virus positive instances from Weiskopf et al [19] for the purpose of internal 
validation of different prediction methods. Specifically, 9,056 data instances were retained in the 
final dataset, among which 4,143 were positive reactive instances and the remaining 4,913 were 
negative. We used ten-fold cross validation for internal benchmark analysis to avoid over-fitting. 
That is, we split the datasets into 10 rotating subsets - nine for training and one for validation in 
each run. At the end of cross validation, the scores for each evaluation metric were averaged 
over the ten testing subsets as the model’s performance. We selected two independent test 
datasets for further evaluation: 1) 637 experimentally tested tumor specific neoantigens from the 
Tumor Neoantigen Selection Alliance (TESLA) [20], and 2) 100 SARS-Cov-2 peptides [1,20] 
tested for their immunogenicity in convalescent and unexposed subjects, respectively. 
 
Encoding Strategy 
To represent each HLA allele and encoded peptide sequences in a numerical matrix as the 
input for each evaluated machine learning and deep learning algorithms, we developed and 
tested different encoding strategies. We used HLA paratopes (HLA-antigen interacting residues) 
as a proxy of different HLA alleles as these sequences contain the most salient information to 
describe peptide-HLA spatial interactions. The AAindex encoding strategy was designed to 
account for amino acid comprehensive physicochemical properties. 
 
AAIndex: We retrieved 566 amino acid associated physicochemical properties from the 
AAindex1 database [15]. Among the 566 properties, 13 indices were discarded due to missing 
values for certain amino acids (Supplementary Table 1). We introduced a placeholder amino 
acid “-” for padding the gaps of HLA paratope sequences and 9-mer peptides (see below). The 
corresponding AAindex values were set as the average of all other 20 canonical amino acids. 
This method adds the total amino acid number to 21. The resulting 21 x 553 numeric matrix was 
normalized using RobustScaler [21] via the following operation: 

  
Where X is the numeric matrix, m is the median per each feature column and IQR is the 
interquartile (Q3-Q1) per each feature column. The normalized feature matrix undergoes a 
principal component analysis (PCA) to remove noisy features such that it only retains relevant 
components. We chose 12 principal components which explain 95% total variance. This step 
leads to a 21 x 12 numerical matrix (hereafter AAindex matrix). For peptides, we adopted an 
encoding schema similar to that of O’Donnell et al [22] to pad shorter peptides (9-mer) to a 
longer sequence (10-mer) such that first five residues and the last four residues were joined by 
a placeholder “-”, since the two termini are often involved in binding interactions [23,24]. For 
MHC molecules, we encoded each MHC allele based on its parotopes sequence, which is the 
set of discontinuous residues sterically interacting with peptides. This paratope information was 
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evidenced and analyzed from crystal structure and was retrieved from IMGT-3D-Structure 
database [25] (http://www.imgt.org/3Dstructure-DB/). For MHC alleles which did not have a 
solved peptide-MHC structure, their paratope information was determined by their neighbors. 
Specifically, the paratopes of allele HLA-A*2403 were determined by its nearest neighbor HLA-
A*2402, which is a more frequent allele whose paratope sequence is available. We then 
performed two rounds of multiple sequence alignment using clustal-omega [26]. The first 
iteration was used for generating a consensus sequence for a single HLA allele from all its 
solved crystal structure, while the second round was for all paratope sequences with same 
length, gaps were filled with the placeholder “-” [26]. A schematic example is shown in 
Supplementary Figure 1. 
 

 
Supplementary Figure 1. Workflow to generate HLA paratope sequences. To predict the 
antigen-binding residues of each HLA allele or paratope, we constructed consensus paratope 
sequences for each known human HLA allele. Shown here are five example sequences from 
five independent solved crystal structures of the HLA allele HLA-A*0101. A consensus paratope 
sequence was determined by computing the most frequent residue in each position. Another 
round of multiple sequence alignment generates fixed-length HLA paratopes for all HLA alleles. 
The token “-” is introduced to represent nicks and gaps. 
 
Beta Binomial immunogenic model 
Three columns of information from the IEDB database were used in the creation of the beta-
binomial model, namely the immunogenic class (x), result claimed by submitter (positive, 
positive-high, positive-intermediate, positive-low, negative), number of subjects tested (s) and 
number of subjects responded (s-f). We derived a prior beta distribution based on the 
immunogenic class (x): 
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For a given epitope (data instance), assuming that we observe s successful T cell responses 
and f fails, then the posterior distribution of this epitope’s immunogenic potential follow a new 
beta distribution: 

 
We then performed 50 bootstrapped iterations from the derived posterior distribution and used 
the average as the final immunogenic potential of a certain peptide-MHC complex. 
 
Prediction models 
We first adopted and rigorously compared the performance of five machine learning algorithms 
(ElasticNet, KNN, SVM, Random Forest and AdaBoost), after optimizing parameters for each 
method as follows. ElasticNet regression was first cross-validated to determine the best 
hyperparameters (alpha=0.01, l1_ratio=0.51), where alpha controlled the regularization strength 
and l1_ratio determined the percentage of the L1-norm penalty (lasso regression) and the L2-
norm penalty (ridge regression). KNN regressor was cross-validated to determine the best 
hyperparameters (n_neighbors=23), n_neighbors control the neighbor information used for 
inferring query point’s properties. SVM linear regressor was cross-validated to determine the 
best hyperparameter (C=0.01), C is the reciprocal of regularization strength which is inversely 
proportional to how many mistakes are allowed in the model. Random Forest was cross-
validated to determine the best hyperparameter (n_estimators=200, min_sample_leaf=1), 
n_estimators control the number of decision trees in the model and min_sample_leaf control the 
minimum amount of samples to be a leaf node. The aforementioned cross-validations were all 
10-fold and rooted mean square error (RMSE) was used as default evaluation criteria if not 
specifically mentioned otherwise. The same hyperparameters were adopted for the adaptive 
boost (AdaBoost) model, similar to Random Forest, since they are both tree-based ensemble 
methods. 
 
We further implemented and optimized three deep learning architectures: 
CNN: The pictorial architecture is shown in Figure 1C. Peptide and MHC were processed by 
two consecutive convolutional layers, followed by two dense layers to consider the interactions 
between peptide and MHC. The basic convolution operation is mathematically represented as: 
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Where F is the resultant feature map, X is the input numerical matrix and W is the kernel. Lower 
case d denotes the row index and i denotes the column index of original matrix and k denotes 
the index of kernels in the convolutional layers. The ReLu function was used as an activation 
function. When training the model, we set the batch_size = 128. Two early stopping strategies 
were adopted: 1) monitor the training_loss with patience = 2; training will immediately stop if 
training loss increases and 2) monitor the valiation_loss with patience=15; training will stop 
when we did not observe validation loss decrease in 15 epochs.  
 
ResNet: An overview is shown in Supplement Figure 2A. Peptide and MHC undergo three 
consecutive residue blocks, each residual block containing three CNN layers followed by a 
maxpool layer. Two dense layers were used at the end for prediction. Each residual block [27] 
contains skip connection which feed the input back to the output to avoid gradient vanishing as 
determined by: 

 
Where Y is the output matrix of a single residual block, 𝛂 determines the fraction of 
convolutional output we want to keep, X is the original input matrix. 
 
GNN: An overview is shown in Supplementary Figure 2B. Each peptide-MHC complex was 
represented by an acyclic undirected graph. Two types of edges were specified, ones were 
intra-edges denoting the interactions between/within-peptide and within-MHC interactions, 
others were inter-edges denoting the interactions between peptide and MHC. To emphasize the 
peptide-MHC interactions, we assigned a weight = 2 on inter-edges and weight = 1 on intra-
edges. Two graph convolutional layers [28] were built upon the constructed graph objects, 
followed by a mean readout layer [29] to summarize node embedding at the graph level. The 
learned graph level features are fed into two dense layers for predictions. The core graph 
convolution operation can be mathematically described as: 

 
Where Aij is the adjacency matrix of graph objects, i-th row and j-th column represent the ith 
node and its j-th associated feature and IN is the self-loop which is a diagonal matrix. The 
degree matrix D is the sum of adjacency matrix over the columns. H is the graph representation, 
which corresponds to a N x M matrix where N is the number of nodes and M is the number of 
features associated with each node. Lower case i denotes the layer of graph representation and 
W is the trainable weight matrix that governs the learning process. 
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Figure 1. The DeepImmuno model. (A-B) In DeepImmuno, to assess the probability that a 
given antigen is immunogenic, variable peptide immunogenic potential is computed by sampling 
from a posterior beta distribution of well-defined true positive and true negative immunogenic 
antigens to produce a continuous immunogenic score. The posterior distribution is derived using 
a subset of T-cell immunogenic assay results from the Immune Epitope DataBase (binomial) 
and a prior beta distribution of either (A) negative or (B) positive assay results. (C) The 
DeepImmuno-CNN architecture is shown to predict interactions between each peptide and MHC 
allele. In this model, each peptide/MHC pair is subjected to two consecutive convolutional 
layers, followed by two fully-connected dense layers to output a predictive value for each pair. 
(D) The DeepImmuno-GAN architecture is depicted for simulating immunogenic peptide 
sequences using only random sequences as an input. The GAN model is composed of a 
generator and a discriminator. This learning generator produces pseudo-sequences in an 
attempt to artificially convince the discriminator the immunogenic sequences are real, while the 
discriminator uses real peptides sequences along with generated pseudo-sequences to 
distinguish the difference. 
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Supplementary Figure 2. Schematic overview of the ResNet and Graph Neural Network 
(GNN) models. (A) The ResNet architecture is depicted with three Residual blocks, chained 
together to extract high-level abstract features associated with immunogenic and non-
immunogenic sequences. Each residual block encompasses three convolutional neural network 
layers followed by a maxpool layer. (B) The GNN architecture is depicted with the first two 
layers of the graph kernel designed to aggregate neighbors’ attributes (physicochemical 
properties of each amino acid). A mean pooling layer is used to integrate the graph-level 
embedding, followed by two dense fully-connected layers to predict immunogenicity. 
 
 
Occlusion Sensitivity 
To assess the relative importance of each amino-acid position in the model, we sequentially 
occluded those features associated with each position by setting the values = 0  and re-
assessed performance by recording the decrease in resultant predictive score. We measured 
the performance decrease in all 4,143 positive training instances. We sampled 2,000 positive 
instances each time and measured the decrease in performance and a rank of position was 
derived and recorded in an array. Note that we did not retrain the initial model but rather zeroed-
out/masked each position. We simulated this process 100 times to validate the robustness of 
the ranking information. A one-sided Mann Whitney U test was performed to test the statistical 
significance of each occlusion. The motif heatmap of specific MHC alleles were generated 
based on the schema proposed by Hu et al. [24], where a position-weighted matrix was 
produced from all collected immunogenic peptides of the queried MHC allele as described by: 
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Where H is the resultant motif matrix, w is the position importance derived from occlusion 
analysis, j denotes 20 amino acids, i denotes the position index and m signifies the overall 
number of immunogenic peptides for the queried MHC allele and 𝛅 is an indicator function. 
 
Benchmarking 
We benchmarked DeepImmuno-CNN against two existing immunogenicity prediction tools with 
a high reported auROC. For deep learning based methods, we benchmark against a Gated 
Recurrent Unit (GRU) [30] based deep learning model DeepHLApan [10]. We downloaded the 
docker file from docker hub (https://hub.docker.com/r/biopharm/deephlapan) specified in the 
github page and ran the software in a docker container. We also benchmarked against IEDB’s 
default MHC-I immunogenicity prediction algorithm [8] from the IEDB web portal. Benchmarking 
results are shown in Figure 2. Other algorithms were excluded for evaluation due to either 
challenging to use interfaces (e.g. inability to query multiple alleles simultaneously - INeo-Epp 
[9]) or because they could not be directly compared due to underlying assumptions of the 
method (e.g., Neopepsee [7]). The evaluated algorithms were not time benchmarked, as the 
running time for all algorithms were relatively fast (seconds). 
 
Generative Adversarial Network (GAN) 
To determine whether immunogenic peptides could not only be predicted but learned and 
simulated, we trained a GAN model. The GAN model is composed of a generator and a 
discriminator. We adopted the architecture proposed by Gupta et al [13], as shown in Figure 
1D. Briefly, an one-hot encoding strategy was used to facilitate the inverse transformation from 
a probability to pseudo-sequence, then five residual blocks were chained together in both the 
generator and the discriminator. A 1-dimensional convolutional layer was used to convert the 
number of channels to be the number of 21 amino acids sequences. We modified the general 
objective function using Wasserstein distance (WGAN) [17] and improved the stability of training 
by enforcing 1-Lipshitz constraint using a gradient penalty (WGAN-GP) [31]. The proposed GAN 
model uses the following loss function: 

 
Where Pg is the generated sequence, Pr is the real sequence, and D(x) indicates the predictive 
score from the discriminator.  
 
We applied a previously described training strategy for the GAN [13]. Here, gumbel-softmax 
(tau=0.75) was used in lieu of ordinary softmax to allow sampling from the discrete output. 
Beta1 and Beta2 hyperparameters of the adaptive learning Adam optimization algorithm were 
set to 0.5 and 0.9 respectively. Finally, the parameters in the discriminator are updated every 
mini-batch, while the parameters in the generator are updated every 10 mini-batches. The 
model was trained using batch_size=64 and trained on 100 epochs. 
 
Similarity between pseudo-sequence and real sequence 
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The similarity between two peptides’ sequences was defined as the longest contiguous common 
sequence length between two queried sequences. For two sequence S1 and S2, the similarity 
was computed as: 

 
Where M denotes the length of each longest common sequence (LCS). S1 and S2 belong to 20 
amino acids plus a placeholder amino acid “-”. We used the SequenceMatcher function in 
Python3 difflib package for calculation.  
 
Web application development 
We built an interactive web application (https://deepimmuno.herokuapp.com) for quick query of 
immunogenic epitopes. The front-end was implemented in HTML5 with bootstrap 4 framework. 
The back-end was implemented in the Flask python3 framework. The webpage was deployed to 
Heroku platform through the DeepImmuno github webportal. The weblogos are generated using 
(http://weblogo.threeplusone.com/create.cgi) for bound peptides of each MHC allele [32]. 
Please note, if not recently used, the web app takes 30-60 seconds to load for each session. 
 
RESULTS 
 
DeepImmuno-CNN was developed with the primary objective of improving immunogenicity 
predictions for relevant disease antigens identified from diverse upstream approaches. To this 
end, we set out to systematically evaluate existing as well as potential machine and deep 
learning strategies. This benchmarking was performed on multiple recently described high-
quality experimentally validated immunogenic peptides, after carefully excluding low-confidence 
experimental results (Methods).  
 
Evaluation criteria 
We used different evaluation metrics depending on the characteristics of each testing dataset. 
For the tumor neoantigen test dataset, we considered: a restricted dataset of the (1) top 20 or 
(2) top 50 immunogenic peptides predictions for each algorithm’s or (3) overall sensitivity. The 
top 20 or 50 immunogenic peptides were purposely selected as these are the same number of 
peptides considered in prior related discovery or clinical reports [20]. For the sensitivity analysis, 
a threshold of 0.5 was used for DeepImmuno-CNN and DeepHLApan and a threshold of 0 for 
the IEDB default classification algorithm, which has a distinct scoring range. Since an absolute 
threshold is not used for DeepImmuno-CNN, which outputs a score based on the trained 
binomial-distribution, this threshold was only used for comparative benchmarking purposes. It is 
worth noting that we do not consider specificity in the validated neoantigen dataset because 
each peptide has only been tested in a single cancer patient and hence it is highly likely that a 
certain peptide can be immunogenic in a larger population with more diverse TCR repertoires. 

For antigens from a recent COVID-19 study, we considered recall and precision as the 
primary criteria due to a much higher number of negative versus positive immunogenic antigens 
(imbalanced). For evaluation, we used 10-fold cross validation to assess the effectiveness of 
DeepImmuno-CNN. In each iteration, area under the Receiver Operating Characteristic curve 
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(auROC) and area under the precision recall curve (auPR) were computed to compare 
performance at different selected cutoffs. auPR is more informative than auROC in an 
imbalanced scenario due to the incorrect interpretation of specificity [33]. For the five evaluated 
machine learning algorithms, we tuned the major hyperparameters based on ten-fold cross 
validation with Root Mean Square Error (RMSE) as the evaluation criterion.  
 
Comparison of immunogenicity prediction models 
To account for variable immunogenic potential for each evaluated peptide, we fitted a beta-
binomial probabilistic model in the training dataset to derive a continuous immunogenic score 
(Figure 1A, B and Methods). For instance, the peptide RPIDDPFGL for the HLA allele HLA-
B*0702 was tested in 40 subjects and triggered a T cell response in all 40 subjects, whereas the 
peptide KTWGQYWQV in conjunction with HLA-A*0201 elicited a T cell response in only 1 out 
of  6 subjects, even though both are “immunogenic”. Hence, the former epitope result is of 
greater confidence. By considering the derived immunogenic potential, we can better ensure 
that the final predictive scores are more reflective of an epitope’s real immunogenicity. 

To select the best predictive model, we constructed five traditional machine learning 
regressors (ElasticNet, KNN, SVM, Random Forest and AdaBoost) and critical hyperparameters 
were tuned via cross-validation (Methods). In addition, we explored the potential of three deep 
learning models (CNN, ResNet, GNN). We systematically gauged their performance in three 
testing datasets (dengue virus[19], tumor neoantigens[20] and SARS-CoV-2 [1]) 
(Supplementary Table 2). Random Forest based regressor had a slightly better RMSE in the 
nested 10-fold validation than other models, and AdaBoost regression performed the best in 
dengue virus dataset with average accuracy = 0.91. However, the CNN model achieved 
superior performance in the neoantigen dataset, where it predicted 2.9 and 5.9 immunogenic 
epitopes on average and in its top 20 and top 50 predictions, respectively. All the models 
achieved similar results on the SARS-Cov-2 dataset with an average recall around 0.72 in 
convalescent patients and 0.81 in the unexposed groups. Given that it is able to mimic the 
interaction between peptide and MHC, we designed a Graph CNN model, however it suffered 
from “shortcut learning” [34] such that all the predictive values are around 0.5 to achieve a lower 
loss during the training stage. This can be attributed to the fact that the explicit weight 
assignment in the graph may not entirely reflect the real peptide-MHC interactions, which in turn 
can lead to ambiguous results. To explore whether increasing the complexity of the neural 
network architecture can boost performance, we constructed a ResNet model, with 12 layers 
and skip connections. As ResNet did not increase the performance and had inferior results in 8 
out of 9 evaluation criteria across three testing datasets, we surmise that a more complex model 
is not required. Considering its performance overall and in human disease datasets, adaptability 
to training datasets of variable size and the complexity of the model, we chose CNN as the 
optimal prediction model for further analysis, which we call hereafter DeepImmuno-CNN. As a 
final consideration, we attempted to validate our proposed amino acid encoding strategy which 
considers both indices derived from amino acid physicochemical properties (AAindex) and HLA 
allotype information (paratopes). While, use of these algorithms did not result in significant 
performance boosts with neural network based approaches over alternative strategies, our 
selected encoding methods did not decrease performance and did offer a performance boost for 
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specific machine learning methods (Random Forest) for specific test datasets, suggesting its 
benefits may be situation dependent (Supplementary Table 2, Supplementary Figure 3). 

 
 

 
Supplementary Figure 3. Immunogenicity prediction following an ablation test of different 
encoding strategies across 7 evaluated algorithms. Relative immunogenicity detection 
performance of seven evaluated algorithms (ElasticNet, KNN, SVM, Random Forest, AdaBoost, 
CNN and ResNet) and three different encoding strategies (AAindex+Paratopes, One-hot 
encoding + Parartopes and AAindex + HLA Pseudo34). AAindex encoding and HLA paratopes 
representation is shown in black, Onehot encoding and HLA paratopes representation is shown 
in red, AAindex encoding and HLA pseudo34 sequences representation is shown in orange. 
The x-axis represents nine different performance evaluation statistics across the four test 
datasets. These statistical metrics are: 1) validation (RMSE in nested 10-fold validation dataset), 
2) dengue (Accuracy in dengue virus dataset), 3) neoantigen_R (Recall in cancer neoantigen 
dataset) and 4) con-R (Recall in COVID-19 convalescent patients group), un-R (Recall in 
COVID-19 unexposed patients group), con-P (Precision in COVID-19 convalescent patients 
group) and un-P (Precision in COVID-19 unexposed patients group). top 20 = immunogenic 
neoantigen in top 20 ranked hits; top 50 = immunogenic neoantigen in top 50 ranked hits. The 
indicated dataset-specific performance metric is indicated on the y-axis (range 0-1, left) or top 
20/50 hits (counts, right).  
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To validate the effectiveness of the DeepImmuno-CNN model, we conducted a ten-fold 
cross validation in the IEDB dataset, on its own (Figure 2A, B). We foundDeepImmuno-CNN to 
be highly stable with a high average auROC (0.85) and auPR (0.81) for each fold. We next 
compared the performance of this CNN model relative to other prior described immunogenicity 
prediction methods, specifically DeepHLApan and IEDB (default algorithm), as these methods 
are well-validated and have easy-to-use interfaces. When evaluated in the tumor neoantigen 
dataset, DeepImmuno-CNN found an impressive 29 out of 35 (83%) immunogenic neoantigens, 
relative to IEDB which found 63% and DeepHLApan which only found (34%) out of a total of 
637 antigens experimentally tested (Figure 2C). For the same neoantigen dataset, 
DeepImmuno-CNN predicts 4 in the top 20 and 8 in the top 50 neoantigens, while IEDB 
performed relatively poorly (1 in the top 20 and 4 in the top 50), with DeepHLApan producing 
intermediate results (Figure 2C).  

 

 
Figure 2. DeepImmuno-CNN produces stable predictions and outperforms existing 
methods. (A-B) The (A) ROC curve and (B) Precision Recall curve of only DeepImmuno-CNN’s 
performance on 10-fold validation of the IEDB training dataset. (C) Comparison of 
immunogenicity predictions from an experimentally validated tumor neoantigen dataset (637 
tested), with the number of true positive predictions overlapping with each algorithm’s top 20 or 
top 50 predictions (left), or the sensitivity of each algorithm using a static scoring threshold 
(right). (D) In COVID-19 study, recall (left) and precision (right) of each algorithm in 
convalescent COVID-19 patients and the unexposed individuals. 
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We further evaluated DeepImmuno-CNN using a recently published COVID-19 study, 
where immunogenic peptides were validated from two groups of subjects. Convalescent 
patients have already been infected by SARS-Cov-2 and are in the process of recovering, while 
unexposed patients haven’t contracted the disease. In both convalescent and unexposed 
groups, DeepImmuno-CNN achieved the highest sensitivity (68% in convalescent, 88% in 
unexposed) compared to IEDB (52% in convalescent, 38% in unexposed) and DeepHLApan 
(40% in convalescent, 14% in unexposed) (Figure 2D). DeepImmuno-CNN also achieved the 
highest precision (0.28 in convalescent, 0.11 in unexposed), with an overall low precision due 
partially to the fact that COVID-19 patients are a highly selective group and their unique immune 
profile might not be representative of the whole population. We next looked for potential 
immunodominant regions in the SARS-Cov-2 proteome, which can be exploited for T cell 
vaccine development. While our result suggests that both 9-mers and 10-mers do not predict 
immunodominant regions in general (Supplementary Figure 4), some peptides derived from 
ORF2 spike protein display high immunogenic potential (mean>0.75). These peptides likely 
reflect the protein’s primary function, which is to interact with human ACE2 receptor [35] and 
increase the likelihood of triggering a T cell response. 
 

 
Supplementary Figure 4. Predicted immunogenicity is consistent across all ORFs in the 
SARS-Cov-2 proteome. (A) Predicted immunogenicity of all 9-mer peptides translated from 10 
different ORFs. (B) Predicted immunogenicity of all 10-mer peptides translated from 10 different 
ORFs. 
 
 
DeepImmuno-CNN reveals salient positions interacting with the TCR 
To understand the molecular underpinnings of DeepImmuno-CNN we examined the 
dependency of this model on each residue position using occlusion sensitivity. The largest 
decrease in performance corresponds to the most important position across the peptide as 
shown in a saliency heatmap (Figure 3A). We simulated this process 100 times and an 
ascending ranking was performed each time to highlight the most salient position, as shown in 
(Figure 3B). This analysis reveals that amino acid positions P4 (residue 4), P5 and P6 are 
consistently the most dependent positions, followed by P2, P8 and P9. Occlusion of the first and 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 24, 2020. ; https://doi.org/10.1101/2020.12.24.424262doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.24.424262
http://creativecommons.org/licenses/by/4.0/


second most dependent positions (P4 and P5) compared to the least (P3 and P1) resulted in a 
significant performance drop of each single positive instance (One-sided Mann-Whitney U test, 
P-value = 7.9e-209), further evidencing these predictions (Figure 3C). These studies support 
prior structural prediction studies which show that P4-6 interact with the TCR with greatest 
frequency [36,37], whereas, P2 and P9 serve as anchor points for binding of the peptide-MHC 
complex [8] and mirrors other computational predictions [5][8].  
 

 
Figure 3. Identification of salinent immunogenic features of peptide-TCR interactions. (A) 
Schematic overview of the occlusion sensitivity technique to determine the relative contribution 
of each antigen residue for the DeepImmuno-CNN model predictive score. (B) Ascending 
importance-rank of each position, with the position with the largest performance drop received 
the highest ranking across 100 simulations. Dot size corresponds to the frequencies of each 
position being assigned the denoted rank, with different colors indicating different amino acid 
positions. (C) Performance drop for the occlusion of P4 + P5 with occlusion of P3 + P1.  One-
sided Mann-Whitney U test p-value (p=7.94e-209). 
 

To assess the rules governing T cell immunogenicity for different HLA alleles, we next 
evaluated MHC allele dependence on specific amino acid preferences. To perform this analysis, 
we collected all immunogenic peptides bound with each allele and derived a motif matrix based 
on the inferred position importance weight in the model (Methods). These results are 
summarized in Supplementary Figure 5. For example, when examining the allele HLA-A*0201, 
we find Leucine is the most abundant amino acid in position 2 from the model, which is 
consistent with prior structural evidence [38]. Similarly, in a previous study by Hu et al  [24], 
positions 2 and 9 were predicted to act as anchor points for interactions with this specific HLA 
allele. Here, our motif matrix additionally suggests that position 4 and 5 interact with the TCR on 
the other side. We conducted the same analysis on three other HLA alleles (HLA-A*2402, HLA-
B*0702, HLA-B*0801). These alleles were chosen because the number of associated 
immunogenic peptides bound to these three alleles are greater than 150, suggesting that the 
immunogenic motif matrix for these alleles is stable. As expected, position 4 also shows a 
stronger pattern across these three alleles, compared to other positions, supporting a similar 
model of HLA-TCR interactions.  
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Supplementary Figure 5. Immunogenicity motif analysis reveals critical HLA-peptide-TCR 
interacting sequences. The immunogenic motif heatmap for (A) 2,046 HLA-A*0201, (B) 210 
HLA-A*2402, (C) 162 HLA-B*0702 and (D) 176 HLA-B*0801 bound epitopes in the IEDB 
training dataset. Positions are weighted by their relative importance derived from the occlusion 
sensitivity analysis in Figure 3. 
 
 
DeepImmuno-GAN accurately mimics immunogenic peptide sequences 
To better understand the molecular interactions and biochemical properties of T cell 
immunogenicity, we attempted to generate de novo immunogenic peptides using a GAN-based 
approach. Successful creation of such peptides would indicate that immunogenic sequence 
motifs are learnable, potentially paving the way for direct synthesis and optimization of peptides 
for diverse applications (e.g., enhanced immunogenicity)[39]. 

As a proof-of-concept, we collected all immunogenic peptides known to bind to HLA-
A*0201 (the most abundant allele in the training database) for training the deep GAN model. We 
trained a Wasserstein GAN model for 100 epochs (Methods) and extracted the generative 
pseudo-sequences from every 20 epochs. We utilized the same encoding schema we used in 
the prediction model to perform dimension reduction using PCA and visualized the distribution 
of generative and real immunogenic sequences (Figure 4A,B and Supplementary Figure 6A). 
When viewed as a PCA projection, we find that random peptide sequences significantly deviate 
from the experimentally validated immunogenic peptide sequences, prior to GAN model training. 
However, after GAN model training, the generative pseudo-sequence maps to a common 
coordinate embedding within the PCA projection to that of real immunogenic peptide 
sequences. These data suggest that the GAN model is able to extract the high-level features 
from real instances and teach the generator to output similar immunogenic peptides built from 
random sequence as a starting input. The same distribution shifts were observed with tSNE 
dimensionality reduction (Supplementary Figure 6B).  
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Figure 4. DeepImmuno-GAN is able to learn and produce synthetic immunogenic pseudo-
sequences. (A-B) PCA analysis of the distribution of real sequences (blue dots) and random 
generative sequences (red dots) (A) prior to training and (B) after training (100 epochs). The 
degree of common embedding is considered an indicator of prediction similarity. (C) The 
number of DeepImmuno-CNN predicted immunogenic peptides, produced from noise, in 
different GAN training epochs. (D) Example generative pseudo-sequences and their most 
similar counterparts in experimentally observed HLA-A*0201 immunogenic peptides.  

 
 
To further assess the immunogenicity of these generative sequences, we submitted all 

generated sequences at different epoch points to our DeepImmuno-CNN model. At the 
beginning, the 1,024 random sequences were found to only contain 40% of the immunogenic 
sequence (predictive score > 0.5). As training progresses, the fraction of immunogenic peptides 
gradually increases to 67%, which translates to 265 more immunogenic peptides generated 
during training (Figure 4C). We compared each generative pseudo-sequence to their most 
similar real counterparts (Figure 4D). The similarity was defined as the total longest contiguous 
matching subsequence (LCS) between the real and pseudo-sequence, with 87% (891/1024) of 
all pseudo-sequences having >60% similarity to their matched real immunogenic peptides 
(Methods) (Supplementary Figure 7) [40]. Hence, immunogenic peptides can be learned and 
produced when sufficient training data exists.  
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Supplementary Figure 6. Convergence of real immunogenic and pseudo-sequences with 
progressive GAN training. GAN generative sequences from epoch 0, epoch 20, epoch 40, 
epoch 60, epoch 100 were concatenated with real HLA-A*0201 instances and their joint 
embedding spaces were visualized using either (A) PCA or (B) t-SNE. 
 

 
Supplementary Figure 7. Distribution of max similarity between GAN generated pseudo-
sequences and their matched real immunogenic peptides in HLA-A*0201.  
The maximum similarity for each GAN-generated pseudo-sequence and its most similar 
counterpart in real immunogenic peptide repertoires are shown, with similarity defined as the 
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longest contiguous common sequence length in total between two queried sequences 
(Methods).   
 
 
Online web interface 
In order to simplify the process of building DeepImmuno from source code, we developed an 
easy-to-use web interface allowing users to quickly query peptide sequences to predict 
immunogenicity potential for a given HLA allele. Additionally, this service allows a user to query 
for which HLA allele would yield the highest immunogenicity and hence which patients might 
benefit most from an immunogenic therapy. A third supported query type is for an HLA allele, 
what epitopes it will prefer or disfavor. To address the latter question, the user can simply enter 
the queried epitope sequence and HLA allele to obtain the immunogenicity score, top five 
combinations with different HLA alleles and a weblogo view of all immunogenic and non-
immunogenic epitopes associated with a certain HLA allele (Figure 5). Moreover, the 
DeepImmuno web portal allows users to perform multiple queries by specifying an input file with 
epitope sequence information and an output text file with the predicted immunogenicity scores 
will automatically be returned. 
 

 
Figure 5. The DeepImmuno web interface. An easy-to-use web interface for querying peptide 
and HLA sequence pairs. The three primary outputs of the interface are: (1) Immunogenicity 
score for queried peptide-HLA combination, (2) the top 5 HLA combinations that will yield the 
highest immunogenicity score for each queried peptide and the (3) preferential motif of the 
queried HLA allele. Please note, if not recently used, the web app takes 30-60 seconds to load 
for each session. 
 
 
DISCUSSION 
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The accurate identification of potential immunogenic epitopes remains a significant challenge for 
understanding the molecular mechanisms underlying host immune response and designing 
effective targeted therapies. Given the fact that millions of possible epitopes can be generated 
from human protein coding genes [3], experimentally validating all possibilities is simply not yet 
feasible. Effective computational models can largely accelerate this process by providing a pre-
screening platform to find high-confidence immunogenic epitopes or to eliminate low confidence 
predictions. Machine learning and deep learning algorithms have been shown to provide 
increased performance in a wide spectrum of bioinformatics applications [41,42]. However, 
comprehensive benchmarking and the selection of an optimal encoding strategy are required to 
develop improved models that can be applied to diverse testing datasets.  

In this manuscript, we developed a beta-binomial model to generate more accurate 
immunogenicity potential by considering the overall quality of each experimentally tested 
antigen in the training dataset. Using these optimized training datasets, we systematically 
bencharked well-established machine learning and deep learning, and encoding strategies on 
independent immunogenic disease datasets, to understand the different situations in which 
these methods boost, decrease or do not impact overall classification performance. From this 
extensive comparison analysis we found that a CNN model in combination with a physiometric-
aware encoding strategy balanced performance across diverse test datasets, while staying 
robust for different training dataset sizes. Indeed, we found that increasingly complex deep 
learning models, such as ResNet, could result in overfitting in this specific application. Our 
DeepImmuno-CNN model was able to significantly outperform two existing highly used 
immunogenicity prediction workflows, in terms of overall sensitivity and the top ranked hits, 
when applied to diverse real-world immunogenic antigen datasets, including cancer and COVID-
19 infection. From a neoantigen pre-screening perspective, DeepImmuno-CNN, is mostly likely 
to increase the sensitivity for detection of valid neoantigens, such as tumor-specific mutations or 
splicing neojunctions, from large-scale genomics assays to be tested in downstream assays. 
Using this optimized model, we were able to effectively identify the most salient residues for 
interactions between peptide-MHC and TCR, which were recapitulated and added to prior 
knowledge. Moreover, we developed a GAN modelling approach to accurately generate 
immunogenic peptides from random noise and demonstrated the biochemical interactions were 
learnable given sufficient training data.  

Despite these advances described herein, several challenges remain in the field of 
immunogenicity prediction. While our model significantly improves upon existing approaches in 
terms of sensitivity, precision and recall, it is noteworthy that all existing approaches remain 
challenged by lower than preferred specificity to select immunogenic antigens with high 
confidence. This limitation could be due to the fact that few disease antigens have been 
thoroughly tested for their ability to mount a T cell response in large patient cohorts to ensure 
reproducibility and HLA allele coverage. However, it is noteworthy that an indispensable 
component of epitope recognition is the sequence of the TCR, which has not been taken into 
consideration due to the fact that there exists few matched TCR sequencing data for forming a 
sufficiently powered training set [43,44]. In addition, a model incorporating TCR information is 
only applicable following sufficient deep TCR repertoire patient sequencing. Although new high 
throughput methods for single-cell TCR sequencing have been developed, such techniques are 
still infrequently performed in research and clinical settings. The increased use of such 
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techniques are likely to aid in the development of more accurate predictive models. In addition, 
neoantigen T-cell responses can significantly vary from patient-to-patient, due to a variety of 
factors including immune cell repertoire differences that impact diversity of activated T cell 
clones [45,46,47]. Hence, validated immunogenic epitopes may be ineffective in a subset of 
patients. The ambiguity of the definition of immunogenicity can account for part of the false 
positive predictions which might in fact be immunogenic for a set of patients. Integrating 
patients’ immune profiles information and identifying how active the host immune system is can 
be a valuable extension to current immunogenicity models. Beyond providing a rubric for the 
design of peptide-related models, we believe our approach can be significantly extended to 
encode additional variables, such as TCR sequence heterogeneity and can be generalized to 
address diverse sequence-predictive analyses, beyond immunogenicity.  
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