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ABSTRACT 
During the first hours after stroke onset neurological deficits can be highly unstable: some patients rapidly improve, 

while others deteriorate. This early neurological instability has a major impact on long-term outcome.  Here, we aimed 

to determine the genetic architecture of early neurological instability measured by the difference between NIH stroke 

scale (NIHSS) within six hours of stroke onset and NIHSS at 24h (ΔNIHSS). A total of 5,876 individuals from seven 

countries (Spain, Finland, Poland, United States, Costa Rica, Mexico and Korea) were studied using a multi-ancestry 

meta-analyses. We found that 8.7% of ΔNIHSS variance was explained by common genetic variations, and also that 

early neurological instability has a different genetic architecture than that of stroke risk. Seven loci (2p25.1, 2q31.2, 

2q33.3, 4q34.3, 5q33.2, 6q26 and 7p21.1) were genome-wide significant and explained 2.1% of the variability 

suggesting that additional variants influence early change in neurological deficits. We used functional genomics and 

bioinformatic annotation to identify the genes driving the association from each loci. eQTL mapping and SMR indicate 

that ADAM23 (log Bayes Factor (LBF)=6.34) was driving the association for 2q33.3. Gene based analyses suggested 

that GRIA1 (LBF=5.26), which is predominantly expressed in brain, is the gene driving the association for the 5q33.2 

locus. These analyses also nominated PARK2 (LBF=5.30) and ABCB5 (LBF=5.70) for the 6q26 and 7p21.1 loci. 

Human brain single nuclei RNA-seq indicates that the gene expression of ADAM23 and GRIA1 is enriched in neurons. 

ADAM23, a pre-synaptic protein, and GRIA1, a protein subunit of the AMPA receptor, are part of a synaptic protein 

complex that modulates neuronal excitability. These data provides the first evidence in humans that excitotoxicity 

may contribute to early neurological instability after acute ischemic stroke. 

 

 

 

RESEARCH INTO CONTEXT 
 

Evidence before this study: No previous genome-wide association studies have investigated the genetic 

architecture of early outcomes after ischemic stroke. 

Added Value of this study: This is the first study that investigated genetic influences on early outcomes after 

ischemic stroke using a genome-wide approach, revealing seven genome-wide significant loci. A unique aspect of 

this genetic study is the inclusion of all of the major ethnicities by recruiting from participants throughout the world. 

Most genetic studies to date have been limited to populations of European ancestry.  

Implications of all available evidence: The findings provide the first evidence that genes implicating excitotoxicity 

contribute to human acute ischemic stroke, and demonstrates proof of principle that GWAS of acute ischemic stroke 

patients can reveal mechanisms involved in ischemic brain injury. 
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Introduction 
Stroke is the second most common cause of death and the most common cause of disability, worldwide.1 Ischemic 

stroke, the most common subtype2, is caused by the occlusion of an artery in the brain, resulting in the abrupt 

development of cerebral ischemia and neurological deficits.3 During the first hours after stroke onset, neurological 

deficits can be highly unstable with some patients demonstrating rapid deterioration, while others rapidly improve.4 

In fact, early change in neurological deficits have a major influence on long-term outcome. NIH stroke scale (NIHSS) 

changes from baseline (within 6 hours of stroke onset) to 24 hours after acute ischemic stroke (ΔNIHSS) have a 

significant and independent association with favorable 90-day outcome, accounting for more than 30% of the 

explained variance.4-6 A number of mechanisms are thought to account for these early changes including fibrinolysis 

and reperfusion, hemorrhagic transformation, etiology, and endogenous neuroprotective mechanisms.7-14 

 

Prior genome wide association studies (GWAS), mostly in populations of European descent, have identified numerous 

loci associated with stroke risk. In 2018, the MEGASTROKE consortia performed one of the largest GWAS to date, 

combining most of the available GWAS for stroke risk in a unique multi-ancestry meta-analysis including 67,162 

cases and 454,450 controls. This analysis led to the discovery of 22 novel loci, bringing the total stroke risk loci to 32. 

Many loci were previously linked to other vascular traits (blood pressure, cardiac phenotypes, venous 

thromboembolism); while others had no obvious connection with stroke, warranting further investigation to identify 

potentially novel mechanisms.15 A similar approach, used to decipher the genetics of long term disability after 

ischemic stroke in 6,165 non-Hispanic Whites, identified one locus that was been not replicated so far.16,17 However, 

to date there have been no genetic studies examining early neurological change after ischemic stroke. 

 

To our knowledge, the Genetics of Early Neurological InStability after Ischemic Stroke (GENISIS) is the largest well-

characterized study for early outcomes quantified by ΔNIHSS.18 To increase the power to detect genetic associations, 

our study recruited patients from multiple diverse ancestry groups. We leveraged the GENISIS cohort using ΔNIHSS 

as a quantitative phenotype, to identify novel variants, genes and pathways associated with early neurological 

instability after ischemic stroke. 

 

Materials and Methods 
Study Design 

A detailed description of the acute ischemic stroke patients recruited from 21 sites from seven countries throughout 

the world, has been published elsewhere.6 Briefly, adult acute ischemic stroke patient with measurable deficit on the 

NIHSS that presented within 6 hours of stroke onset (or last known normal) were enrolled in the study after obtaining 

informed consent, including patients treated with tPA. Patients who underwent a thrombectomy, were enrolled in other 

treatment trials, or for whom consent and/or a blood sample could not be obtained were excluded. Demographics, co-

morbidities, acute treatment variables, imaging data and TOAST classification were collected.  

 

To accommodate the difference in the genetic architecture intrinsic to the country of origin, we performed a three-

stage analysis (Figure 1A). First, we used an additive model to perform a GWAS in each country individually, except 

for the United States, where the population was stratified into European and African ancestry cohorts. We then 

performed a fixed effects meta-analyses within the same ethnic cohorts. Finally, we used a multi-ancestry Bayesian 

meta-analysis to collapse all the ethnic backgrounds. Unlike a fixed effect meta-analysis, the Bayesian approach is 

able to account for population structure differences.19 Genetic loci that passed multiple test correction, a threshold set 

at Log Bayes Factor (LBF) > 5, were annotated using bioinformatics tools to identify the gene driving the genetic 

signal (Figure 1B). We used functional annotation, multi-tissue expression quantitative trait loci (eQTL) data, and 

summary-data-based Mendelian randomization (SMR) to map the genome-wide to specific genes. Single nuclei- 

RNA-seq data derived from cortex samples was used to determine potential correlation between the transcripts of the 

identified genes and determine in which brain cell types the genes are expressed.20 

 

The study was approved by the Institutional Review Boards at every participating site. Written informed consent was 

obtained from all participants or their family members. All research was performed according to the approved 

protocols and consents. 

 

Genotyping 

All participants were genotyped using Illumina SNP array technology. Samples were genotyped in seven batches 

during the GENISIS recruitment (see Supplementary Methods). Genotyping quality control and imputation were 
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performed separately for each genotyping round using SHAPEIT21 and IMPUTE2.22 For each genotyping batch, SNPs 

with a call rate lower than 98% and autosomal SNPs that were not in Hardy-Weinberg equilibrium (P<1×10-06) were 

removed from the dataset. The X chromosome SNPs were used to determine sex based on heterozygosity rates, and 

samples with discordant inferred sex and reported sex were removed. Only samples with call rate greater than 98% 

were considered to pass quality control. Finally, the genotype batches were merged in a single file to perform the 

analyses. 

 

Additional QC was performed in the merged dataset. We tested pairwise genome-wide estimates of proportion 

identity-by-descent, the presence of unexpected duplicates, and cryptically relatedness (PI-HAT>0.30). Of the pairs 

of these samples flagged, the sample with higher genotyping rate was kept for downstream analysis. Principal 

component analysis (PCA) was performed using HapMap as an anchor to remove ethnic outliers and keep the 

populations as homogeneous as possible for each of the participant countries. Principal components were also used to 

cluster and identify ancestry populations for US participants with European descent (EuA) and African-American 

descent (AfA). Samples outside two standard deviations from the center of the Non-Hispanic White or the Asian 

cluster were considered outliers for Spain, Finland and Poland. We confirmed the ethnicity of the AfA and Hispanic 

populations, however, due to the genetic heterogeneity present in these populations we did not remove the samples 

outside two standard deviations from the mean. 

 

Analysis of variance 

We used genome-wide complex traits analysis (GCTA) to determine the heritability of ΔNIHSS.23 GCTA estimates 

the amount of phenotypic variance in a given complex trait explained by all the SNPs and fits the effects of these 

SNPs as random effects in a linear mixed model. Because it relies on a large, homogeneous populations for accurate 

results, we only included the individuals with non-Hispanic White ancestry. 

 

Single Variant Analyses 

To mitigate the effects of genetic heterogeneity due to the diverse ancestry of participants enrolled in the GENISIS 

study, we used a multi-step study design (Figure 1A). First, we performed single variant analyses each participant 

country separately. We tested the association of SNPs across the genome with ΔNIHSS using an additive linear model 

with PLINK 1.9.24 Sex, age, and the two Principal Components calculated for each population were included in the 

model. Additional covariates include the SNP genotyping batch, TOAST classification (using dummy variables to 

incorporate all subtypes), and baseline NIHSS to adjust for stroke severity. Although baseline NIHSS was used to 

calculate ΔNIHSS, it does not fully explain the observed variance in ΔNIHSS; further, there is no multicollinearity 

between these two variables, permitting their inclusion in the model.25 Fifty four percent of study participants were 

treated with tPA, however treatment was not included as covariate. While tPA influences ΔNIHSS6, it has little impact 

on the genetic architecture of ΔNIHSS. The inclusion of tPA as covariate lead to highly correlated results when 

compared to a model without tPA (r2=0.96, Supplementary Figure 1). Second, we meta-analyzed the populations with 

similar ethnic backgrounds using with fixed effect meta-analyses using METAL.26 We performed two meta-analyses, 

one for the non-Hispanic Whites (Spain, Finland, Poland, and United States EuA) and one for the Hispanics (Costa 

Rica and Mexico). Finally, we analyzed the four available ethnicities non-Hispanic Whites (meta-analysis), Hispanics 

(meta-analysis), Asians (Korea) and African Americans (United States AfA) using MANTRA, a Bayesian-based 

multi-ancestry meta-analyses.19 Log Bayes Factor (LBF) greater than 5 was considered to be genome wide significant 

after multiple test correction. 

 

Functional Annotation  
We annotated all the variants with suggestive associations (LBF>4) with ANNOVAR27 and SnpEff28 to identify the 

nearest gene and to determine if any variant is predicted to change protein sequence (non-synonymous variants) or 

could affect expression. We also confirmed if any of the SNPs were possible regulatory elements or DNA features 

using RegulomeDB.29  

DEPICT30 and FUMA31 were used to perform gene ontology and pathways analyses. We also leveraged brain single 

nuclei RNA expression data (http://ngi.pub/snuclRNA-seq/)20, to determine if the gene expression of the genes located 

in each identified loci was expressed in brain. For the ones expressed in brain, we also investigated if they were 

expressed in any specific brain cells (Figure 1B). Finally, we accessed blood RNA expression data taken at different 

times after stroke onset (3h, 5h and 24h) from the CLEAR trial32 (NCT00250991 at www.Clinical-Trials.gov) to test 

if the expression of genes located in the identified loci were associated with NIHSS or ΔNIHSS (NIHSS5h-NIHSS24h). 

We extracted the correlation between ΔNIHSS and gene expression (meausered using Affymetrix U133 Plus 2.0 

array).33 
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eQTL mapping, Mendelian Randomization and Colocalization 

To identify the most likely functional gene, we accessed available expression quantitative trait (eQTL) datasets: the 

Genotype-Tissue Expression (GTEx) Project V8 (accessed on 10/10/2019), the Brain eQTL Almanac (Braineac) and 

an in-house dataset that includes brain expression data for 613 brains34. We used the summary-data-based Mendelian 

Randomization (SMR)35 and colocalization36 to test for pleiotropic association between the expression level of a gene 

and a complex trait to evaluate if the effect size of a genetic variant on the phenotype is mediated by gene expression 

(Figure 1B). We tested GWAS-significant and -suggestive loci from the ΔNIHSS analysis in two datasets: selected 

GTEx tissues (brain anterior cortex, cerebellum, brain cerebellar hemisphere, substantia nigra, hippocampus, frontal 

cortex, and putamen) and the Westra et al. dataset37 derived from whole blood. Both SMR and colocalization require 

effect sizes and the respective standard error to test the causal relationship, but MANTRA does not provide effect 

sizes. As a consequence, we used the summary statistics from the joint analysis for all populations to perform these 

analyses that are correlated with the results from MANTRA (r=-0.57; p<1.07×10-05 – data not shown). To complement 

the Mendelian randomization analyses with the posterior probability of a variant being causal in both GWAS and 

eQTL studies accounting for the genetic heterogeneity and linkage disequilibrium (LD), we used eCAVIAR38 which 

will consider several variants within the GWAS significant loci to perform the test. 

 

Genetic Correlation 

We examined similarities in the genetic architectures of stroke early outcomes  (ΔNIHSS) and stroke risk15 using 

PRSice39, LDSC40 and GNOVA41 (Figure 1B). Briefly, PRSice calculates polygenic risk scores at different p value 

thresholds by weighting each SNP by their effect size estimates. SNPs present in one dataset, ambiguous SNPs (A/T 

or C/G) and all SNPs in LD are removed prior to polygenic risk score calculation. LDSC and GNOVA estimate the 

genetic covariance and the variant-based heritability for two sets of summary statistics, each one corresponding to one 

trait of interest. These two parameters are used to calculate the genetic correlation and covariance respectively between 

the two traits. We limited our comparisons to the non-Hispanic White population to keep the population genetically 

homogeneous and use the 1000 Genomes European population-derived reference dataset. We calculated the genetic 

correlation between the European ischemic stroke summary statistics of the MEGASTROKE15 study and the non-

Hispanic Whites meta-analysis summary statistics from the GENISIS study. We also determined if traits related to 

cardiovascular and general health (age at death42, lipid levels43 and body mass index (BMI)44) are genetically correlated 

to ΔNIHSS.  

 

Summary statistics of the GENISIS dataset used for these analyses are available upon request. Individual data for the 

full GENISIS dataset will be uploaded to dbGAP titled: “Genetics of Early Neurological Instability After Ischemic 

Stroke (GENISIS)”. 

 

Results 
The GENISIS study recruited 5,876 acute ischemic stroke patients from seven countries (Spain, Finland, Poland, 

United States, Costa Rica, Mexico and Korea). The mean patient age was 73 years; 45% of the patients were females; 

and 54% were treated with tPA. No significant differences in age or sex were found across sites. The distribution of 

TOAST classification of stroke etiology was also similar across sites. Significant differences were observed in baseline 

NIHSS and tPA treatment rates, likely due to differences in practices across the sites (Table 1).6 ΔNIHSS 

approximated a normal distribution, similar to that of each of the ethnic groups (non-Hispanic whites, Hispanics, 

African descent, and Asians) (Supplementary Figure 2). 

 

Identification of novel loci associated with stroke early outcomes 

We performed single variant analyses for each individual cohort separately; then we combined cohorts with similar 

ethnic backgrounds; finally, we performed a multi-ancestry meta-analysis with the four ethnic groups available in this 

study (Non-Hispanic Whites, Hispanics, Asians and African Americans) (Figure 1A). We identified seven GWAS 

significant loci (Figure 2A and Table 2) associated with ΔNIHSS. 

 

Three independent loci were identified in chr2. The first locus, tagged by rs58763243 (MAFG=0.07; LBF=6.51), was 

located in a region comprised by several long non-coding RNAs and microRNAs (Supplementary Figure 3A). For 

this locus, all of the populations contributed to the association with negative betas, indicating that the minor allele was 

associated with lower (or more negative) ΔNIHSS. In addition this locus reached genome-wide significance in the US 

AfA population and was nominally significant in the Finnish population (Supplementary Figure 3B).  
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The second locus, rs13403787 (MAFA=0.16; LBF=5.57), was also located on chr2 in a region with more than 20 genes 

between two recombination sites (Supplementary Figure 3C). The minor allele was associated with higher (or more 

positive) ΔNIHSS in all cohorts (Supplementary Figure 3D). The last genome wide significant locus in chr2 was 

rs72958644 (MAFT=0.04; LBF=6.34), located in a region that includes ADAM23, CREB1, DYTN, NRP2, MDH1B, 

among many others (Figure 2C). The signal is driven by the Non-Hispanic Whites (meta-analysis p=3.44×10-08), but 

virtually all ethnic groups contributed to this association, as the directionality was consistent across Hispanic, non-

Hispanic White and AfA ethnic groups (Figure 2D and Supplementary Table 1). However, the SNPs in this locus were 

monomorphic in the Asian population. We observed a trend for positive correlation between ΔNIHSS with the 

genotype in this locus (R2=0.005, p=0.04; Supplementary Table 2). 

 

Four additional loci were identified outside chr2. One locus at 4q34.3, rs12641856 (MAFT=0.05; LBF=5.50), in a 

region that includes four genes (LINC00290, MGC45800, MIR1205 and TENM3; Supplementary Figure 3E). The 

signal was driven mainly by the Korean cohort (p=1.38×10-07) (Supplementary Figure 3F). The locus identified on 

chr5 is located on a region containing nine genes (LOC101927134, GRIA1, FAM114A2, SAP30L, SAP30L-AS1, 

MFAP3, GALNT10, HAND1 and MIR3141; Figure 2F). The minor allele for the top hit in this locus, rs114248865 

(MAFT=0.05; LBF=5.29) was associated with greater (more positive) ΔNIHSS across all cohorts, and was significant 

in the Spanish (p=8.41×10-07) and Finnish cohorts (p=0.03; Figure 2G). Another locus on chr6, tagged by rs6930598 

(MAFT=0.06; LBF=5.30), was located in a region with the genes PARK2, PACRG, MAP3K4, AGPAT4, AGPAT4-IT1 

and LOC101929239 (Supplementary Figure 3G). The variants in the region were significant in the Mexican and 

Korean cohorts but the direction of effect was not consistent (Supplementary Figure 3H). Moreover, the MAF for 

these variants ranged between 16% in the AfA population to 6% in the Asian and Finnish populations, suggesting that 

the region is very polymorphic depending on ethnicity. Thus, even though the locus is important for ΔNIHSS, it is 

possible that it is not the causal variant. Finally, we identified a locus on chr7, tagged by the variant rs10807797 

(MAFG=0.34; LBF=5.70), and located in a gene rich region with 15 genes, including TWISTNB, MACC1, TMEM196, 

ABCB5, RPL23P8 (Supplementary Figure 3I). This locus is tightly encompassed by two recombination sites. The top 

signal was significant or suggestive in all populations except the Polish and Mexican cohorts. Consistently, the 

direction of effect was the same in all cohorts except the Mexican cohort (Supplementary Figure 3J, Supplementary 

Table 1). 

 

Genetic contribution to early outcomes after ischemic stroke 

We used GCTA to quantify the phenotypic variance explained by common SNPs. Because GCTA exploits LD patterns 

to calculate the explained variance, we restricted our analysis to non-Hispanic Whites. Due to founder effects present 

in the Finnish population, we also removed this cohort from the variance calculation (Final N=4,573). GTCA revealed 

that common genetic variants explained 8.7% of the variance of ΔNIHSS (p=0.001), confirming that genetic variants 

and genes are implicated on stroke outcomes. Next we determine what proportion of the genetic component is 

explained by the GWAS signals. 

The SNPs comprised within the 7 genome-wide significant loci, defined as 500 bp upstream or downstream of the top 

signal, explained 2.1% of the total variance (p=1.80×10-06) of ΔNIHSS, or just 24.1% of the genetic component of 

ΔNIHSS. This suggests that there are additional loci associated with ΔNIHSS yet to be discovered. Thus, studies with 

larger sample size and more statistical power are needed to identify these additional loci.  

 

Functional Annotation of the Genome-Wide Significant Loci 

Identifying the likely causal gene from each loci driving the association is a multi-step process (Figure 1B). We first 

annotated the suggestive variants (LBF>4), but none of them were predicted to change the protein sequence, comprise 

a regulatory element, or affect the chromatin architecture. Next, we explored publicly available datasets to investigate 

if any of the SNPs with suggestive LBFs were eQTLs (Supplementary Table 3). We performed gene-based analyses 

(Supplementary Table 4) and Mendelian Randomization (MR) analyses to identify possible causal relationships 

between gene expression and ΔNIHSS (Supplementary Table 5). Summary results can be found in Figure 3. 

 

Gene-based analyses using FUMA suggested that DYTN (p=2.86×10-05, Z=4.02) and ADAM23 (p=1.59×10-04, Z=3.60) 

were the genes driving the association at 2q33.3. Several variants in the ADAM23 region were strong eQTLs for this 

gene in multiple tissues, based on the GTEx data (esophagus mucosa: p=1.90×10-06; Cultured Fibroblasts: p=3.70×10-

05). Several SNPs in this region were also eQTLs for NDFUS1 (thyroid p=1.20×10-04) although with less significant 

p-values than those for ADAM23. The variant was also significant in an independent dataset from the Braineac eQTL 

study, where rs13422013 (LFB=4.05) was also associated with ADAM23 gene expression (thalamus p=7.60×10-04) 

and NRP2 (cerebellum p=4.40×10-04). MR analyses indicated that ADAM23 (p=0.05) and not NRP2 (p>0.05) was the 
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gene driving the association in this locus. Human brain single nuclei RNA-seq data indicate that ADAM23 expression 

is enriched in neurons (p<2.20×10-16); compared to all the other brain cell types. More specifically, its expression is 

enriched in excitatory neurons (Figure 2E). 

 

Gene-based analyses using FUMA revealed that GRIA1 located in 5q33.2 was the gene most likely driving the 

association in that region (p=0.03, Z=1.83). However, Braineac identified several eQTLs for GALNT10 (p=3.60×10-

04) in the occipital cortex, but GALNT10 did not reach statistical significance in the gene-based analysis. GTEx portal 

and the protein atlas reveals that GRIA1 is mainly expressed in brain tissue. While GALNT10 is also expressed in the 

brain, it has higher expression in other tissues. The human brain single nuclei RNA-seq data confirmed that both 

GRIA1 and GALNT10 are expressed in divergent brain cell types (Figures 2H and Supplementary 4A). GRIA1 is 

highly-expressed in neurons compared to other cell types (p<2.20×10-16), but not expressed in oligodendrocytes 

(p<2.20×10-16) or astrocytes (p<2.20×10-16). In contrast, GALNT10 is expressed in microglia, oligodendrocytes and 

astrocytes, but expression in neurons is low (p<2.20×10-16). GRIA1 expression was also nominally associated with 

ΔNIHSS in the CLEAR trial dataset (p=0.002, r2=0.22). 

 

Of the remaining five loci, we were able to map four (Supplementary Results). Briefly, eQTL analysis, revealed that 

2q31.2 was likely to be driven by DFNB59, and 4q34.3 by MGC45800. No eQTLs were identified in 6q26, however, 

the locus falls within the boundaries of PARK2. Finally, 7p21.1 contains several eQTLs for TWISTNB and ABCB5 

(Supplementary Results). 

 

Pathway analyses  

Gene ontology and pathway analyses using DEPICT and summary statistics for ΔNIHSS revealed consistent 

suggestive associations with functions relating to the brain and central nervous system. The top tissue enrichment 

from DEPICT identified the central nervous system (p=4.9×10-03), including the brain (p=4.9×10-03) and some brain 

regions: occipital lobe (p=1.52×10-03), parietal lobe (p=5.31×10-03), and hippocampus (p=5.07×10-03; Supplementary 

Table 6). The most significant pathways in the gene-set enrichment were the AKAP5 protein-protein interaction 

subnetwork (p=5.11×10-04), the CAMK1D protein-protein interaction subnetwork (p=5.27×10-04), the RALA protein-

protein interaction subnetwork (p=6.32×10-04) and neurotransmitter uptake (p=6.74×10-04; Supplementary Table 7). 

Several genome-wide significant candidate genes fell within these networks, including AGPS (2q31.2, LBF=5.57) in 

the RALA subnetwork and GPRS1 (2q33.3, LBF=6.34) in the CAMK1D subnetwork. AKAP5, expressed almost 

uniquely in brain (GTEx portal and the protein atlas.), interacts with post-synaptic density protein 95 (PSD-95) in 

dendritic spines and modulates synaptic transmission.45-47 Both CAMK1D and RALA, expressed in most tissues 

(CAMK1D demonstrates higher expression in brain), are involved in signal transduction functions. MAGMA gene-

set analyses revealed the gene-set “meissner_brain_hcp_with_h3k4me3_and_h3k27me3” (p=9.41×10-06, 

Supplementary Table 8). Unfortunately, there is no function associated with this gene set that has been described in 

animal models. Together these results indicate that our unbiased genetic screening has identified genes that are largely 

expressed in the brain and in some cases involved in pathways associated with neuronal and synaptic function.  

 

Unique genetic architecture of early outcomes after stroke 

We examined the genetic architecture of ΔNIHSS for shared genetic variation and variance with other cardiovascular 

and aging-related traits, including stroke risk, age at death, plasma lipid levels and body mass index using PRSice 

(Supplementary Table 9 and Figure 5), LDSC (Supplementary Table 10) and GNOVA (Supplementary Table 11). 

Supported by a previous report18, PRSice did not reveal any genetic overlap between the genetic architecture of 

ΔNIHSS and stroke risk. Similarly, no overlap with age at death, lipid levels, or BMI was found. LDSC was unable 

to calculate the heritability estimate for ΔNIHSS. GNOVA, was successful at estimating the heritability for ΔNIHSS, 

and revealed significant covariance with stroke risk, but only when correcting for sample overlap (p=4.67×10-05, 

correlation=0.80) and age at death (p=9.26×10-04, correlation=1). However, the heritability estimate for ΔNIHSS for 

overlap with lipid levels and body mass index was negative, likely due to the low number of variants included in the 

analyses. Because both GNOVA and LDSC require larger sample sizes, the results of these analyses were 

inconclusive.  

 

Discussion 
The first 24 hours after stroke onset is a period of great neurological instability, which may reflect brain tissue at risk 

for infarction but with the potential for salvageability.4,48-50 Not only is early neurological change common, it is 

influenced by known mechanisms involved in early deterioration/improvement, and has a strong influence on long-

term functional outcome.6 Here, we performed a GWAS using ΔNIHSS as a quantitative phenotype in 5,876 acute 
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ischemic stroke patients. We found that ΔNIHSS is heritable: common SNPs account for 8.7% of its variance. We 

have found seven genome-wide significant loci that are related to ΔNIHSS. However, they explain only 2.1% of the 

variance, indicating that 6.6% of the variance is explained by genes below the genome-wide significant threshold. 

Through functional annotation, we have linked each locus to specific genes, some of which are uniquely expressed in 

the brain. 

 

Of all the loci showing association with ΔNIHSS, functional annotation analyses strongly suggest functional genes 

for two of the seven loci: ADAM23 for 2q33.3 and GRIA1 for 5q33.2. ADAM23 belongs to the ADAM (a disintegrin 

and metalloproteinase) family of proteins, defined by a single-pass transmembrane structure with a metallopeptidase 

domain (some inactive). This protein family is involved in cell adhesion, migration, proteolysis and signaling.51 

ADAM23 is a transmembrane member without catalytic domain, and is involved in cell-cell and cell-matrix 

interactions.51,52 Previous studies have shown that ADAM23 is expressed in pre-synaptic membranes, linked by the 

extracellular protein LGI1 to post-synaptic ADAM22.53,54 We found that ADAM23 was expressed primarily in 

excitatory neurons of the cerebral cortex, based on our human brain single-nuclei transcriptomics dataset20, and 

confirmed by the Human Transcriptomic Cell Types dataset from the Allen Brain Map.55 Several lines of evidence 

suggest that ADAM23 is important for pathological synaptic excitability: 1) adam23 is a common risk gene for canine 

idiopathic epilepsy;56-58 2) mutations in its binding partner, LGI1, cause the neurological syndrome, ADPEAF 

(autosomal dominant partial epilepsy with auditory features)59; 3) autoimmunity against LGI1 (as seen in limbic 

encephalitis) results in seizures and encephalopathy.60 

 

Indeed, ADAM23 is also known to be a binding partner (via ADAM22 and PSD95) of the protein product of another 

one of our genome-wide significant associated genes, GRIA1, which encodes for the α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor subunit 1 (AMPAR1).54 It has long been known that AMPA receptors, along with 

other glutamate receptors, are mediators of excitotoxic neuronal death, hypothesized to play an important role in 

ischemic brain injury.61,62 The failure of numerous older clinical trials examining the efficacy of anti-excitotoxic drugs 

has cast doubt on the relevance of excitotoxicity in human acute ischemic stroke, although questions about the quality 

of these early clinical trials have been raised.63-66 Thus, the association between ADAM23 and GRIA1 with ΔNIHSS 

provides the first genetic evidence that excitotoxicity may contribute to ischemic brain injury in humans. 

 

The plausible roles that ADAM23 and GRIA1 play in acute brain ischemia mechanisms lend support to the idea that 

GWAS using ΔNIHSS as a quantitative phenotype can identify novel mechanisms and potential drug targets to 

mitigate neurological deterioration or enhance early improvement after stroke. From the CLEAR dataset, 32,33 

expression levels of GRIA1 in peripheral blood of ischemic stroke patients was associated with ΔNIHSS between 5h 

and 24h post stroke onset, supporting a link between increased expression of GRIA1 and improved outcomes. In 

addition to the two genes discussed above, our GWAS identified five other loci—the functional genes remain to be 

identified. Acute ischemic stroke patients are extremely well-phenotyped, as part of standard of care, with both clinical 

assessments and structural/physiological imaging. Thus, there is great potential for additional quantitative phenotypes 

to expand understanding of the genetic architecture of acute ischemic stroke, promising to identify novel mechanisms 

and drug targets. Larger and more comprehensive genetic studies of acute ischemic stroke are needed. 

 

There are several limitations to this study. GENISIS enrolled a heterogeneous group of stroke patients without regard 

to underlying etiology, stroke localization and genetic and environmental background. Although we have previously 

demonstrated that etiology (TOAST criteria) has little influence on ΔNIHSS, it is likely that mechanisms involved in 

neurological instability may depend on etiology. Stroke localization may also be an important determinant of 

mechanisms involved in neurological instability. For example, mechanisms in cortical strokes may differ from those 

in subcortical or brainstem strokes. False positive findings due to the characteristics of the population is possible, but 

by using MANTRA we were able to correct by population heterogeneity. Future studies might aim to enroll a more 

homogeneous cohort of stroke patients to increase power to discover more genetic variants that associate with 

neurological instability. Finally, most of the patients in GENISIS were enrolled prior to the thrombectomy treatment 

era, and patients that underwent thrombectomy were excluded from the study to reduce heterogeneity. As a result, 

genetic interactions with reperfusion are largely unexplored.  

 

Summary 
In conclusion, we identified seven novel loci associated with early neurological instability after ischemic stroke. Two 

of these loci were linked to genes, ADAM23 and GRIA1, involved in synaptic excitability at glutamatergic synapses. 
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These results provide some of the first evidence that excitotoxic mechanisms are relevant to acute ischemic stroke in 

humans. Moreover, these results provide proof of principle that GWAS using ΔNIHSS, a quantitative phenotype of 

early neurological instability, may reveal underlying mechanisms involved in ischemic brain injury.  
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Figure Legends 
 

Figure 1. Study design. Summarized description of the multi-step approach used to account for the genetic 

heterogeneity intrinsic to the multi-ancestry nature of the GENISIS study (A). We performed single variant analysis 

in each of the participating countries separately. Then we meta-analyzes all the non-Hispanic whites (blue) and 

Hispanic (green) ethnicities. Finally we analyzed the non-Hispanic whites, Hispanics, Korea (orange) and US 

participants with African Descent (US AfA – yellow) using a Bayesian model. The variants with genome-wide 

significant or suggestive results were annotated using sequential steps to elucidate the gene driving the association 

(B). We performed gene-based and pathway analyses, we collected the information available in publicly available 

datasets and we performed Mendelian randomization. We also performed genetic architecture overlap tests to 

examine overlap with known genetic risk factors. 

 

Figure 2. Association and annotation results. A. Manhattan plot shows Log Bayes factor (LBF) values from the 

multi-ancestry meta-analysis in each genomic location. The red line indicates the GWAS significant threshold 

(LBF>5) and the blue line the GWAS suggestive threshold (LBF>4). The genome-wide significant loci are 

highlighted. Local Manhattan plots are shown for rs72958644 (C) and rs114248865 (F) along with the 

corresponding forest plots (D and G), showing the contribution of each population to the overall signal. As part of 

the functional gene mapping, we accessed an in-house single nuclei dataset (B) to describe the expression patterns in 

human brain cortical cell populations of the driving genes identified for rs72958644, ADAM23 (E) and 

rs114248865, GRIA1 (H). 

 

Figure 3. Gene prioritizing summary. Summary table showing the seven genome-wide significant loci from the 

multi-ancestry analysis (first column), the total number of genes identified in each of the locus (second column) and 

gene name for genes for which we have found some kind of evidence (third column). We have included the results 

from the gene-based analyses, the presence of any eQTL in GTEx portal or Braineac for any of the genome-wide or 

suggestive variants, if the gene is differentially expressed in any bran region according to the snRNAseq data and 

the results from Mendelian randomization using Westra dataset (whole blood) or GTEx portal (all tissues). Black 

dots indicate that the gene was not found, red is that it was found but was not significant, yellow it was moderately 

significant (0.05<p<1×10-03) and green shows a significant association (p<1×10-03). 
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Table 1. Demographic Characteristics of the GENISIS cohort by country 

 
Spain 

(N=3,419) 

Finland 

(N=490) 

Poland 

(N=356) 

US-EuA 

(N=798) 

Costa Rica 

(N=141) 

Mexico 

(N=63) 

Korea 

(N=285) 

US-AfA 

(N=324) 

GENISIS 

(N=5,876) 

Age 

(years)* 

76.0 

(66.0-83.0) 

68.0 

(58.0-76.0) 

71.0 

(63.0-80.0) 

70.0 

(60.0-79.0) 

67.0 

(56.0-78.0) 

67.0 

(50.5-75.5) 

69.0 

(58.0-78.0) 

63.0 

(54.0-74.3) 

73.0 

(62.0-81.0) 

Sex 

(Females, %) 

1,554 

(45.5%) 

193 

(39.4%) 

159 

(44.7%) 

337 

(42.2%) 

57 

(40.4%) 

28 

(44.4%) 

91 9 

(31.9%) 

169 

(52.2%) 

2,588 

(44.0%) 

Baseline NIHSS* 
10.0 

(5.0-17.0) 

5.0 

(2.0-9.0) 

6.0 

(3.0-12.0) 

6.0 

(3.0-8.2) 

13.0 

(9.0-18.0) 

11.0 

(6.0-14.5) 

4.0 

(2.0-8.0) 

7.0 

(4.0-12.0) 

8.90 

(4.0-15.0) 

tPA Treatment (%) 48.32% 48.37% 59.55% 73.81% 100% 46.03% 28.07% 75.62% 54.20% 

ΔNIHSS 2.77±5.42 2.34±5.68 2.12±3.40 2.11±5.98 6.00±7.14 3.40±4.90 1.17±3.40 2.37±6.29 2.56±5.52 

TOAST Classification** (%):          

Cardioembolic 38.32% 41.63% 29.21% 37.72% 21.28% 23.81% 30.53% 29.01% 36.50% 

Large Artery 17.17% 16.53% 12.36% 13.03% 39.01% 25.40% 24.56% 8.64% 16.76% 

Small Vessel Disease 9.15% 6.73% 3.09% 13.16% 12.77% 14.29% 17.89% 16.98% 10.14% 

Other 2.46% 8.16% 2.81% 3.13% 2.13% 15.87% 13.68% 3.09% 3.76% 

Undetermined 32.90% 26.94% 52.53% 32.96% 24.11% 20.63% 13.33% 42.28% 32.83% 

Values are expressed as mean±Standard Deviation. *Values expressed as median (95% confidence interval). EuA: European American Ancestry, AfA: 

African American Ancestry. 

**TOAST classification criteria 67 
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Table 2. Summary Statistics for the Multi-Ancestry Meta-Analysis top hits by cohort 
SNP rs58763243 rs13403787 rs72958644 rs12641856 rs114248865 rs6930598 rs10807797 

MAF* 0.070 0.158 0.035 0.074 0.054 0.100 0.579 

Effect Allele G A T A T T A 

Chr:Position 2:7762999 2:178129146 2:207515652 4:182609865 5:153073742 6:162515526 7:19995629 

 Beta P Beta P Beta P Beta P Beta P Beta P Beta P 

Non-Hispanic 

Whites 

Cohorts 

Spain -0.393 0.188 0.716 5.05×10-05 1.609 1.00×10-06 -0.185 0.438 1.230 8.41×10-07 -0.311 0.126 0.531 4.80×10-05 
Finland -1.308 8.03×10-03 0.248 0.580 0.955 0.183 -0.136 0.782 1.509 0.029 -0.396 0.486 0.634 0.018 

Poland -0.360 0.527 0.458 0.427 1.664 0.053 0.499 0.403 NA NA 0.395 0.531 0.130 0.701 

US EuA -0.847 0.084 NA NA 0.792 0.141 -0.659 0.212 0.064 0.928 -0.139 0.781 0.530 0.069 

Non-Hispanic White META -0.640 2.34×10-03 0.639 5.23×10-05 1.430 3.44×10-08 -0.170 0.367 1.143 02.79×10-07 -0.246 0.153 0.509 8.98×10-07 

               

Hispanic 

Cohorts 

Costa Rica 0.485 0.691 2.812 0.053 2.862 0.211 0.872 0.685 1.760 0.381 -0.561 0.698 1.880 0.019 
Mexico -0.058 0.953 2.897 0.102 NA NA NA NA 0.370 0.847 -4.864 2.66×10-03 -0.881 0.298 

Hispanic META 0.159 0.836 2.847 0.010 2.862 0.207 0.872 0.684 1.032 0.455 -2.576 0.014 0.574 0.319 

               

Additional 

Cohorts 

Korea -0.282 0.456 0.841 3.23×10-03 NA NA 3.654 1.38×10-07 NA NA 2.615 1.34×10-06 0.487 0.092 

US AfA -6.555 6.59×10-08 NA NA NA NA NA NA NA NA -0.512 0.381 0.424 0.378 

                

 Effect
†
 LBF

‡
 Effect LBF Effect LBF Effect LBF Effect LBF Effect LBF Effect LBF 

MANTRA** -+-- 6.51 +++? 5.573 ++?? 6.343 -++? 5.495 ++?? 5.289 --+- 5.300 ++++ 5.697 

*MAF=Minor Allele Frequency;† Direction of effect are showed in the following order: Non-Hispanic Whites, Hispanic, Korea and US AfA; ‡Log Bayes Factor; NA=Not Available due 

to MAF below the inclusion threshold (0.03) 
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Figure 1. Study design. Summarized description of A. the multi-step approach used to account for the genetic heterogeneity intrinsic to the multi-ancestry nature of the GENISIS 

study. We performed single variant analysis in each of the participating countries separately. Then we meta-analyzes all the non-Hispanic whites (blue) and Hispanic (green) 

ethnicities. Finally, we analyzed the non-Hispanic whites, Hispanics, Korea (orange) and US participants with African descent (US AfA – yellow) using a Bayesian model. The 

variants with genome-wide significant or suggestive results were annotated using B. sequential steps to elucidate the gene driving the association. We performed gene-based and 

pathway analyses, we collected the information available in publicly available datasets and we performed Mendelian randomization. We also performed genetic architecture 

overlap tests to test if there was any overlap with known risk factors. 
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Figure 2. Association and annotation results. A. Association plot for ΔNIHSS. Manhattan plot shows LBF values from the multi-ancestry meta-analysis in each genomic 

location. The red line indicates the GWAS significant threshold (LBF>5) and the blue line the GWAS suggestive threshold (LBF>4). The genome-wide significant loci are 

highlighted. Local Manhattan plots are shown for C. rs72958644 and F. rs114248865 along with the corresponding forest plots, D and G, showing the contribution of each 

population to the overall signal. As part of the functional gene mapping, we accessed B. an in-house single nuclei data to describe the expression patterns in brain parietal lobe cell 

populations of the driving genes identified for E. rs72958644, ADAM23 and H. rs114248865, GRIA1. 
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Figure 3. Gene prioritizing summary. Summary table showing the seven genome-wide significant loci from the multi-ancestry analysis (first column), the total number of genes 

identified in each of the locus (second column) and gene name for genes for which we have found some kind of evidence (third column). We have included the results from the 

gene-based analyses, the presence of any eQTL in GTEx portal or Braineac for any of the genome-wide or suggestive variants, if the gene is differentially expressed in neurons 

according to the snRNAseq data and the results from Mendelian randomization using Westra dataset (whole blood) or GTEx portal (all tissues). Black dots indicate that the gene 

was not found, red is that it was found but was not significant, yellow it was moderately significant (0.05<p<1×10-03) and green shows a significant association (p<1×10-03). Shape 

indicates the direction of effect, round positive, diamond negative and hexagon unknown. 
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