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Complex network models reveal 
correlations among network 
metrics, exercise intensity and role 
of body changes in the fatigue 
process
Vanessa Helena Pereira1, Maria Carolina Traina Gama1, Filipe Antônio Barros Sousa1, 
Theodore Gyle Lewis2, Claudio Alexandre Gobatto1 & Fúlvia Barros Manchado - Gobatto1

The aims of the present study were analyze the fatigue process at distinct intensity efforts and to 
investigate its occurrence as interactions at distinct body changes during exercise, using complex 
network models. For this, participants were submitted to four different running intensities until 
exhaustion, accomplished in a non-motorized treadmill using a tethered system. The intensities were 
selected according to critical power model. Mechanical (force, peak power, mean power, velocity and 
work) and physiological related parameters (heart rate, blood lactate, time until peak blood lactate 
concentration (lactate time), lean mass, anaerobic and aerobic capacities) and IPAQ score were 
obtained during exercises and it was used to construction of four complex network models. Such 
models have both, theoretical and mathematical value, and enables us to perceive new insights that 
go beyond conventional analysis. From these, we ranked the influences of each node at the fatigue 
process. Our results shows that nodes, links and network metrics are sensibility according to increase 
of efforts intensities, been the velocity a key factor to exercise maintenance at models/intensities 1 
and 2 (higher time efforts) and force and power at models 3 and 4, highlighting mechanical variables 
in the exhaustion occurrence and even training prescription applications.

A New Model of Fatigue
The aim of this study is to understand the fatigue process in physical exercise and how it affects the entire 
environment of contracting muscles to generate force, power, heat and metabolic rates that affect the 
equilibrium of the internal environment, the associated generation of mechanical energy, and the feel-
ings of fatigue1. The main physiological role of fatigue is to protect the body against traumatic effects of 
exercise1,2. Intensity, time, resistance, and type of exercise are variables that have different effects within 
bodily systems. How are exercise, fatigue, and complex networks related?

In the late XIX century, Mosso (1904) first suggested that fatigue at first glance seems like an imper-
fection of our body, but it is one of its most wonderful perfections3. How? When fatigue increases faster 
than the amount of effort, it minimizes the possibility of damage, thus its main function is protection. 
Both the brain and muscles change their functions during exercise, and fatigue is part of a complex con-
trol system or network, whose main goal is to protect the body from damage. These feelings of fatigue 
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are unique to each individual, and the mental decisions made by winners and losers, both in training and 
in competition, are the ultimate determinants of performance2. This means that the best way to analyze 
fatigue is through a complex dynamic model. Such observations could be made based mainly in the 
area of investigation called complex networks or network science, which has been successfully applied 
to investigate different systems with complex interactions, including biological systems4,5.

The “new science of networks” is an emerging field with ancient roots in the use of graph theory in 
1736 to resolve practical problems5,6. A network is a graph G = {N, M, f}, where N = {n1, n2,… nk} nodes; 
M = {m1, m2,… ml} links, and the mapping function is f: N x N. Here, f is expressed as a connection 
matrix C, which defines the network topology. In this paper, nodes represent factors relating to fatigue, 
and links represent interactions among these factors.

Each model that we propose here can be represented as a network. Performance can also be limited 
by several physiological, biochemical, environmental and psychological factors1,2. A more realistic model 
could be an exercise-induced global complex model, including changes at distinct levels, at distinct inten-
sities, in order to clarify interrelated factors and complex models closer to the real dynamic situation 
of fatigue occurrence. Others studies have tried to understand the sensation of fatigue in sedentary and 
trained individuals when subjected to a long, high-intensity exercise7,8 or high volume exercise9. There 
are physiological explanations related to the central nervous system10,11 and to mechanical failures linked 
to muscle capacity and individual energy12,13. However, none of these works have tried building and 
showing a model of interactions that represents the dynamic processes involved. Aimed to analyze this 
process, in the present study, we assume fatigue as non-maintenance of physical exercise assessed by 
individual time to exhaustion (or time limit–tlim) in different intensities.

Running in a non-motorized treadmill is a type of laboratory exercise used to acquire accurate values 
of power, with high reproducibility, that can be applied to the analysis of fatigue, muscle recruitment 
patterns, measurement of power, velocity and force, as well as correlations between these variables and 
kinematics14–16. This exercise model is efficient to measure variables such as mechanical power, consid-
ering the running specific gestures and not the ones on the cycle ergometer17,18. Besides, through the 
modern techniques of computer monitoring and signal capture, it becomes possible to determine the 
individual aerobic and anaerobic measurements19,20.

From the available literature, there are no reports of complex models being constructed to represent 
the variables measured in the exercise situations studied here. Therefore, this study is the first to combine 
network analysis with a critical power model to analyze exhaustion occurrence. Recently, the need for 
studies on the theory of complex networks to expand a new field, the physiological networks, has been 
proposed, since the topology of networks has been shown to be directly related to bodily/physiologic 
functions, across different sleep stages21. However, research studies focused on the exercise process to 
understand the development of fatigue as a complex network model, capable of considering different 
levels of exercise efforts, are not available in the literature. Thus, the main aim of the present study is to 
analyze the exhaustion at different intensity efforts and to investigate its occurrence as interactions at 
distinct body changes during exercise, using complex network models.

This is the first study to propose a complex network model of exercise performed at distinct intensi-
ties. We show that exercise is a dynamic process combining mechanical and physiological factors with 
theoretical and mathematical foundations. Changes at mechanical and physiological levels are repre-
sented as a complex network. Furthermore, the complex network model shows how these interaction 
patterns and the places of the nodes in the structure can reveal the role of each parameter/node in body 
changes.

Results
Mechanical and physiological variables involved in the fatigue process.  The proposed model 
has the measurements, calculations and format shown in Fig. 1. Connectivity (links) varies at four dif-
ferent exercise intensity levels (four tests). The parameters were separated into two groups: mechanical 
(force, peak power, mean power, velocity and work) and physiological related responses (heart rate, 
blood lactate, time until peak blood lactate concentration (lactate time), lean mass, anaerobic capacity 
and aerobic capacity) and IPAQ score.

Table 1 and 2 shows the mean values and standard deviations of the variables measured on the fatigue 
process, at four intensities in distinct scenarios, significances tests and comparisons, which revealed con-
sistent differences between intensities. By developing a software program in Java language, we built four 
different complex networks based on influences. Also, using this program we calculated the following 
network properties and measurements: Degrees, Eigenvalues and Betweenness centrality of each node. 
Nodes and links are entered into the Java program as follows:

A node is a measurable attribute, as shown in Fig. 1. A link is an influence: node A is linked to node 
B if A is an influence on B, denoted A → B. The correlation coefficient of link A → B is a measure of the 
influence of node A on node B. Correlations were normalized by dividing them by the maximum corre-
lation value over all links. Connection matrix C: matrix N ×  N of links connecting nodes: C(i, j) = corre-
lation result calculated between two measurements (nodes). C is symmetric when links are bidirectional, 
e. g. i ́  j. Then C(i, j) = C(j, i). If C is non-singular, its eigenvector V = {v1, v2,…vk} where vi are eigenvalues 
corresponding with nodes ni. Then the solution to [C-VI] = 0, where I is the identity matrix, yields the 
eigenvalues V. The degree of a node is the number of connecting links. The betweenness centrality of 
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node A is the number of shortest paths passing through node A as determined by counting all the short-
est paths from all nodes to all other nodes.

Links represent the presence of moderate or high level of correlations between nodes. These correla-
tions are bidirectional, which means possibility of influence in both directions. Let influence vector S(0) 
initially be defined as the initial state of nodes N. Then the next state S(1) = C x S(0), S(2) = C x C x S(0) = C2 

Figure 1.  Proposed complex network model. The nodes are measurements of changes in body systems 
at the mechanical (blue) and physiological (red) related levels and IPAQ score (red) during four different 
intensities of exercise tests.

MEAN PARAMETERS VALUES AT EXERCISE INTENSITIES

1 2 3 4

Power (W) 247.84 ±  47.46 294.46 ±  40.18 412.71 ±  93.75ab 512.42 ±  105.25abc

Peak Power (W) 380.34 ±  48.91 445.23 ±  48.79 585.19 ±  123.14ab 784.63 ±  96.00abc

Force (N) 120.05 ±  11.32 136.65 ±  17.53 161.86 ±  25.30ab 187.90 ±  27.55abc

Velocity (m/s) 2.11 ±  0.33 2.19 ±  0.38 2.54 ±  0.40 2.77 ±  0.56ab

Time limit (s) 626.08 ±  149.27 462.67 ±  133.29a 236.64 ±  97.24ab 173.75 ±  62.68ab

Work (kJ) 162.45 ±  56.04 135.48 ±  45.02 92.00 ±  25.03ab 77.73 ±  16.15ab

Peak Lactate (mmol/L) 12.20 ±  3.38 12.52 ±  4.49 15.12 ±  5.00 15.34 ±  5.49

Lactate Time (s) 819.41 ±  287.44 709.33 ±  260.12 583.30 ±  219.01 433.75 ±  251.68a

Heart Rate (bpm) 180.11 ±  10.54 179.00 ±  9.82 180.00 ±  9.53 179.55 ±  8.42

Table 1.   Mean and ±  standard deviations of parameters at each test intensity (1, 2, 3, 4). a Substantial 
difference between intensity 1, b intensity 2 , c intensity 3. (One-way ANOVA followed by Student-Newman-
Keuls test, n =  9, P <  0.05).

MEAN CALCULATIONS FROM SAMPLE

Aerobic 
capacity (W)

Anaerobic 
capacity (kJ)

Lean mass 
(%)

IPAQ score 
(a.u.)

139.26±  47.14±  91.49±  2106.66± 

43.65 26.06 3.24 1162.06

Table 2.  Mean and standards deviations that characterize sample and became nodes to watch behavior in 
models dynamics over intensities.
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x S(0), etc. Therefore, S(t) = Ct x S(0). But, since VI can be substituted for C, because [C-VI] = 0; S(t) = [VI]t x 
S(0). Therefore, the state of node i, represented by si, is asymptotic to si = vi

t x si(0). Obviously, si approaches 
infinity if vi > 1, and approaches zero if vi < 1. Nonetheless, vi may be interpreted as the influence of node 
ni on the network. Thus, vi is a measure of the influence of ni on, or importance to, the network5,22.

We define each model as a network with different intensity of effort obtained from Table I. The 
four intensities and each test were differentiated according to elastic number (3, 4, 5 and 6 elastics for 
intensities 1, 2, 3 and 4, respectively), then the individuals must win theses resistances making force till 
exhaustion. Each intensity gave us feedback for next intensities. They were tethered and oriented to keep 
velocity and place in the treadmill, but force was determinant parameter of intensities. The four models 
are shown in the Figs. 2, 3, 4 and 5, respectively. Each one shows how fatigue evolves with effort intensity 
(1, 2, 3 and 4). The force was measured directly and used a high frequency of signals capture (1000 Hz). 
This parameter was capable of distinguishing intensities and depends only on the individual’s perfor-
mance. All them keep the location in the treadmill and the position of the belt (between waist and hip). 
This allowed us to reproduce in the laboratory conditions similar to field tests, as in prior studies23–25.

In model 1, Fig.  2, along the 28 connections, the node that has more connections (hub node) is 
velocity; which means its influence over the other nodes is probabilistically greater. The mean time until 
exhaustion was 626 seconds, the greatest time comparing all 4 models, explained by the smaller effort 
expended. Analyzing the eigenvalues, which point to a possible convergent point of the entire system, 
velocity is also the greatest node. The higher betweenness centrality shows the flow behavior considering 
the structure of the network, and the node that shows the greatest number of paths was peak lactate time 
(lactate time), a physiologic-related measure. Model 2, Fig. 3, shows 31 connections, at 462 seconds of 
mean time limit. The hub, the maximum eigenvalue and the main betweenness centrality nodes were 
the same: velocity.

Model 3 in Fig. 4 shows a higher number of connections, 32. The node which has more connections 
(hub node) is now force, showing an increased contribution of the mechanical characteristics in the 
fatigue process. The mean time until reaching fatigue was 236 seconds, almost half as much time as the 
second model. The node with the maximum eigenvalue changed too; it is now Peak Power, showing its 
dependence and convergence point to time variations. The betweenness centrality node was force, that 
is, the flow of information and the probabilistic effects are the same variable. The fourth model, at Fig. 5, 
shows 30 connections, the hub node was Power and the mean time until fatigue was 173 seconds, almost 
a quarter as much time as the first model. In relation to eigenvalues, the higher one was Power, too. The 
main betweenness centrality node changed, and it is now Peak Power. The results are summarized in 
Fig. 6.

Figure 2.  Proposed complex network model of influences, intensity/model 1.
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Figure 3.  Proposed complex network model of influences, intensity/model 2.

Figure 4.  Proposed complex network model of influences, intensity/model 3.
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Discussion
From the conception, development, construction, and analysis of each model based on each response 
obtained by four distinct effort intensity scenarios, we made the network metrics and observe that 
mechanical variables, performance-related to subjects (velocity, force and power), appear most com-
monly as hubs, i.e., these mechanical nodes are the most influential nodes. In our point of view, changes 
and variations in these specific mechanical responses have greater influence on other nodes/parameters, 
as they are more interrelated and connected with the entire network. Comparing models and analyzing 
lower intensities, velocity had the main probabilistic influence. Analyzing higher intensities, force and 
power probabilistically had the greatest influences over all network.

This findings confirms the reality and validity of the model. Such nodes, subdivided into mechanical, 
can be linked to muscular fatigue and are studied by other authors12,13,26. We know that peripheral infor-
mation processing helps to reach high level of fatigue27. When we measure the eigenvalues and interpret 
the results, we can see that the variables that are directly or indirectly physiological, i. e., by analyzing 
the tendency of convergence of the model, there is a dependency on physiological-related variables (e.g. 
lactate time), notably when effort is smaller. When analyzing an increase in amount of effort, we observe 
that the time until fatigue gets shorter, and the dependency is focused on the nodes directly connected 
to the main one responsible for muscle strength generation.

Because of these observations, we can say that peak lactate time as another physiologically important 
variable, that should be considered in fatigue analysis. Smaller effort over a longer time can make the flow 
of information between body systems pass through changes in variables related to time and displacement, 
mainly velocity, which is reflected in maximum degrees and eigenvalues in models 1 and 2. Moreover, 
when we analyze greater effort, the flow information seems to pass by force and power. This leads us to 
point out that the dependence of the oscillations is also related to time and an evolutionary dependence 
on the mechanical variables (force and power) of the systems. This observation reinforces the idea of a 
complex dynamic system of interactions that changes the fatigue behavior, not just the idea of less force, 
longer time until fatigue28 or fatigue specifically related to the strategy adopted by individuals29.

Our idealized models are based on the existence of correlations between the chosen and measured 
variables. Correlations were used to quantify the connection between nodes (variables). Low correlation 
indicate low or non-existent contribution of participation. High correlation indicated strong contribution 
or participation. Correlations were shown for several network models to demonstrate the relevance of 
the network analysis. This approach is similar to the approach of others network analysis21,30,31 where the 
emphasis was on parameters of greatest contributions.

Figure 5.  Proposed complex network model of influences, intensity/model 4.
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Explanations of these key contributions can also be related to Physics. Velocity is a measure that 
involves displacement under time. In the first two models, velocity is highlighting itself. Thus, what mat-
ters the most at smaller efforts and longer time is the displacement. Force involves mass and acceleration. 
In model 3, force is highlighting itself. Acceleration involves velocity variation under time. When efforts 
start to be greater, under time reduction, velocity variation is more important.

In model 4, power is the more relevant node. Power is a result of work under time. Work is a result 
of force and displacement under time. Force involves mass and acceleration, which involves velocity 
variation32. In other words: P = W /T, where P is power, W is work and T is time. W = S.D, where S is 
force and D is displacement. Then, P = (S.D)/T. But, S =  ma, where m is mass and a is acceleration. Then, 
P = (maD)/T. a = v/T where v is velocity variation and  T is time variation. Therefore, P = (mvD)/(TT). 
Thus, we have P = Sv. Thus, the evolution of effort (effort becoming greater and time becoming shorter) 
involves more mechanical variables (power as a result of force and velocity). In the first models, force 
and velocity seem to show their importance singly and separately. Looking at all this, these models show 
consistency, because Physics facts can be confirmed by the network metrics and other works.

Considering the applicability of our results in training prescription, when the goal is increase per-
formance in long runs, the focus should be on individuals training to improve velocity. It is a fact that 
running distances of 3000 m are commonly performed in velocities above the aerobic capacity33. That 
way, runners specialized in such distances should practice to improve the velocity which they could 

Figure 6.  (a) Mean time limit and ± s.d. in which time until fatigue was inversely proportional to effort 
intensity, a Substantial difference between intensity 1, b intensity 2 , c intensity 3. (One-way ANOVA followed 
by Student-Newman-Keuls test, n =  9, P <  0.05). (b) Max degree distribution, hub nodes that are more 
correlated and therefore connected to others. (c) Max eigenvalues, at lower efforts (Models 1 and 2), velocity 
had major contributions; at higher efforts, force and power had greater value and contribution. (d) Max 
Betweenness, which considers the flow of information across nodes; the betweenness centrality was greater 
in model 3, with the main mechanical contribution; in model 4, Peak Power was the most influential. Max 
degree distribution: it appoints the major influent nodes, with the greater number of connections (hub 
nodes); Max Eigenvalue: the maximum eigenvalue of a network meaning the gravitational pull exerted 
by each node on the overall network. Higher eigenvalues mean more influence over other body systems. 
An eigenvalue greater than 1.0 means the network is unstable, though; an eigenvalue of zero means the 
node has no influence. The betweenness centrality: the amount of control exerted by links over the flow of 
information, expressed in terms of paths.
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tolerate in 7 to 10 minutes – time durations similar to model 1 and 2. Also, results of the present inves-
tigation indicate that at greater effort and shorter time, force and power are the main protagonists. Thus, 
at running distances that would last 2 to 4 minutes (800 m to 1500 m), athletes should focus their training 
on improving force and power. This hypothesis is in accordance with the studies linking resisted train-
ing to performance improvement in shorter running distances34. Such variables and their relationships, 
specially force and velocity, also has been investigated and demonstrated in exercise35,36 and our net-
work metrics results reinforces such previous results, including the importance of studying parameters 
across a range of distinct intensities. All these interpretations and models proposed in this work show 
great promise as a new framework for exercise physiology analysis. These findings agree with the sports 
sciences evidence so far.

We can see that changes happen according to time and effort intensity, but in a new way of analysis 
and in a richer range of interpretations, not seen before, with larger contribution variables over a range of 
exercise intensities. Moreover, the time until peak blood lactate concentration (lactate time) is important 
and contributes positively to the fatigue models. In most cases, different from what was done here, blood 
lactate is isolated analyzed37 but, interestingly, the network approach did not show blood lactate as a key 
factor for fatigue, similarly to other studies38 Also, we analyzed time to reach peak lactate, and show that 
it is a convergent point of the system.

These models can be applied to analyze performance in other types of exercises to better manage time 
fatigue in athletes from different sports. The network metrics show sensibility in parameters behavior 
over a range of intensities. These findings extend the analysis of fatigue that considers specific causes 
or even no communication with various bodily systems, changes and reveals the need to build complex 
models that allow the study of an entire environment of changes to understand the ways of exhaustion 
occurs. Here, we did not study a small section of the changes to obtain the answers to what happens in 
the whole body. Instead, we are showing the need to better represent and understand the global context 
of changes in which fatigue occurs.

In summary, our results suggested the interesting complex network analysis to study different exer-
cise intensities. Additionally, the nodes, connections and network metrics show sensibility according to 
efforts intensities, been the velocity a key factor to exercise maintenance at models/intensities 1 and 2 
and force and power at models 3 and 4. This work therefore provides the potential emergence of a new 
approach: body systems/changes represented by measurable parameters and responses that can show a 
larger complex network that better represents what is happening in the whole body during many types 
of activities in our daily lives.

Methods
Nine individuals (mean age, weight, height and fat percentage of 24 ±  4 years, 78.5 ±  9.1 kg, 179 ±  8 cm, 
9 ±  3.5%, respectively) ran on a non-motorized treadmill tied by elastic cable (tethered running) were 
analyzed at four intensities. This study was approved by the Research Ethics Committee of University 
of Campinas, School of Medical Sciences (protocol no. 07716512.1.0000.5404), in accordance with the 
Declaration of Helsinki. Verbal and written informed consent was obtained from all participants, which 
reported physical activity at least three times a week. Also, they signed a free and informed consent 
form, that contains information about procedures, confirming voluntary participation and consent to 
the use of data for further scientific publications, and certify the non-use of any illegal substances. The 
participants were instructed to keep a light diet and well hydrated and perform the last meal at least two 
hours before tests, do not consume beverages containing alcohol at least 24 hours before tests and caffeine 
at least 4 hours before tests; besides they could not practice strenuous exercises during the experimental 
period. All tests were executed in a laboratory environment. The mean temperature was 23 °C (controlled 
by air conditioning) and relative humidity ranged from 30 to 40% (Thermo hygro decibelimeter lux dig-
ital multimeter, THDL 400, Instrutherm). Six visits at laboratory all necessary for data collection and a 
minimum interval of 24 hours among tests was observed. In the first day, the anthropometric assessment 
and adaptation to ergometer were carried out. Values of height, weight (scale model Toledo® 2098 column 
1.0 m) and body fat (skinfold scientific Sanny®) were obtained used a specific protocol39. The individ-
ual adaptation process consisted to 30 s races at different velocities, varying of mild, moderate, intense 
and very intense. After this adjustment, four days were used for the application of standard protocol to 
determine the critical power model parameters. Before each test, all participants were submitted to warm 
up for 5 minutes composed by a running at 7.0 km/h, using the motorized treadmill (Model Super ATL, 
Inbramed, Brazil). Volunteers ran on a non-motorized treadmill tethered by a steel cable attached to an 
elastic system. The resistance imposed by the increase of the elastic force from the elastic in the system 
number (3, 4, 5 and 6 elastics differentiated intensities 1, 2, 3 and 4, respectively) and measured by a 
force pickup signal system. The duration of tests were planned considering the critical power model, that 
foresee aerobic and anaerobic determination from the relationship between intensity and time to achieve 
the exhaustion (time limit). We fixed a zone of 2 to 10 min40–42 for four intensities and each intensities 
test were differentiated according to elastic number, them the individual must win theses resistances 
making force until exhaustion. Each intensity gave us feedback for next intensities. However, we not fixed 
the velocities. They were tethered and oriented to keep velocity and place in the treadmill, but force was 
determinant parameter of intensities. The exhaustion criteria were defined by an apparatus developed by 
our research group. This apparatus was capable to inform both the participant and the evaluator about 
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the maintenance of exercise. For example, when the subject did not sustain the initial position, the equip-
ment fired a beep and, if they were not able to restore the necessary force to maintain the target position 
for more than five seconds, the time limit was reached. Additionally, the participants received constant 
verbal encouragement. Mechanical measures (force, velocity, power, work) were captured via signals 
(LabView Signal Express 2009 National Instruments®), by a hall-effect sensor with 1000 Hz acquisition, 
calibrated before each test, modulated (USB-6008, National Instruments®) and subsequently transferred 
to MatLab (R2008a MatLab®, MathWorkstm), using specific technical details avaiable43.

Aerobic and anaerobic capacities were obtained by hyperbolic critical power model: a hyperbolic 
relationship between power output and the time that the power output can be sustained; the power 
asymptote of the relationship, CP (critical power), can be sustained without fatigue. Time to exhaustion 
can be predicted for any power output ≥  CP from the hyperbolic relationship that includes anaerobic 
work capacity (AWC): Tlim = AWC/ (P–CP).44,45. To determine the blood lactate responses, 25 μL blood 
samples were collected from the earlobe using a heparinized capillaries, in five moments (rest, after 
five minutes of warming, after exhaustion, and 5th and 8th minutes after exhaustion), maintained in 
Eppendorf tubes (400 μL of trichloroacetic acid at 4%, 2 to 8 °C), determined at 340 nm (calibration of 5, 
10, 15 and 30 mM, Engel & Jones, 1978). Peak lactate values were determined at a specific time for each 
individual, originating peak lactate time. The heart rate was recorded at rest and after test (Polar® mon-
itor RS800CX). To build the models, each variable measured was represented as a node of the network 
(mechanical: peak power, velocity, force, work and power; physiological: heart rate, blood lactate, peak 
lactate time, aerobic capacity, anaerobic capacity and lean mass) and IPAQ score. To estimate the physical 
activity level of the participants, IPAQ instrument was used. This instrument corresponds to a compen-
dium of physical activity46 converted into metabolic equivalents/min/week. According to characteristics 
of this questioner, it was applied only in a one moment of experimental period (first visit to laboratory).

For construction of the models, first we considered not only the proposition, but the theoretical and 
mathematical foundation to build the networks. We considered a measurement of the maximum number 
of variables that could reveal the occurrence of changes in various bodily systems in order to consider 
them as quantified node in a network. Then, we studied the best way to interrelate, i.e. to connect, each 
node. We then considered the calculation of correlations between sets of data available for each variable/
node measured, by Pearson correlation. Whenever the result of the calculated correlation was considered 
as moderate or high, we set up the connection/link between such nodes. For this purpose, an algorithm 
was built with classes and functions in Java language, which received as vector data sets in a main func-
tion, passing them to the function built correlation, performing the calculations of correlations, from 
the set of data collected from each variable in each exercise intensity. After obtaining the values, a third 
function was constructed to check the type of correlation in relation to the range of values found. If the 
result was less than 0.3 or − 0.3, correlation was considered weak, if greater than 0.3 and less than 0.7 or 
less than − 0.3 and greater than − 0.7, it was considered moderate, and when less than − 0.7 or greater 
than 0.7, it was considered high. The results were then displayed on screen, with double precision and 
printed with the intensity of effort: we showed the variables tested, the value found and the type of cor-
relation observed. After such calculations and checks, high and moderate correlations were selected to 
establish connections and we noted their values for inclusion in the networks. Using the network analysis 
software, we then built the models.

Nodes were included and appointed by the addition class. All nodes were defined as neutral influ-
ences on the network, because the idea was to observe the behavior without defining it or to list positive 
or negative importance in the fatigue dynamics. Then, the links based on the values obtained by the 
Java functions and resulting correlations were inserted. Each link is also weighted with the result of 
the correlation value: for example, if the correlation had a score of 0.75, such link was weighted at 75% 
influence. Moreover, as the Pearson correlation shows the same result for both directions, we performed 
the suitability of the software for the weighted network that had all bidirectional links, i.e., exercised 
influence in both directions; since one node and the other one have no relation of cause and effect but 
are correlated, the result was a two-way weighted network. This weight was defined because, at most 
real-world networks, not all links show the same capacity. Actually, links are associated with weights 
that are different in terms of their intensity, capacity or flow47. This means that the models try to be as 
close as possible of what is really happening, mathematically grounded. After the networks were built, 
the simulation was run to calculate the degree of the nodes and then displayed on screen. The program 
displays the results with the degree of each node and points to the node with the highest degree, i.e. the 
higher number of connections (hub node) which therefore have greater energy of influence. After that, 
there were calculations functions for eigenvalues of nodes. The program calculates every node eigenvalue 
and shows the eigenvalues of each node, highlighting the node of maximum eigenvalue. This measure 
helps the understanding of nodes influence, such as other research in complex systems48. Furthermore, 
there was a simulation of the betweenness centrality of the nodes, in which the system calculates and 
shows the betweenness centrality of each node and points to the node of greatest betweenness centrality, 
indicating the proximity of this in relation to the other nodes. Each network construction, simulation 
and calculation was made for each model representing a different exercise intensity.
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