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Abstract

Current stroke risk assessment tools presume the impact of risk factors is linear and cumu-

lative. However, both novel risk factors and their interplay influencing stroke incidence are

difficult to reveal using traditional additive models. The goal of this study was to improve

upon the established Revised Framingham Stroke Risk Score and design an interactive

Non-Linear Stroke Risk Score. Leveraging machine learning algorithms, our work aimed at

increasing the accuracy of event prediction and uncovering new relationships in an interpret-

able fashion. A two-phase approach was used to create our stroke risk prediction score.

First, clinical examinations of the Framingham offspring cohort were utilized as the training

dataset for the predictive model. Optimal Classification Trees were used to develop a tree-

based model to predict 10-year risk of stroke. Unlike classical methods, this algorithm adap-

tively changes the splits on the independent variables, introducing non-linear interactions

among them. Second, the model was validated with a multi-ethnicity cohort from the Boston

Medical Center. Our stroke risk score suggests a key dichotomy between patients with his-

tory of cardiovascular disease and the rest of the population. While it agrees with known

findings, it also identified 23 unique stroke risk profiles and highlighted new non-linear rela-

tionships; such as the role of T-wave abnormality on electrocardiography and hematocrit

levels in a patient’s risk profile. Our results suggested that the non-linear approach signifi-

cantly improves upon the baseline in the c-statistic (training 87.43% (CI 0.85–0.90) vs.

73.74% (CI 0.70–0.76); validation 75.29% (CI 0.74–0.76) vs 65.93% (CI 0.64–0.67), even in

multi-ethnicity populations. The clinical implications of the new risk score include prioritiza-

tion of risk factor modification and personalized care at the patient level with improved tar-

geting of interventions for stroke prevention.
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Introduction

Over 70% of strokes occur in people without prior history of adverse events, emphasizing the

importance of primary prevention [1]. Over the past four decades, several risk scores have

been introduced to identify individuals at high risk for cerebrovascular disease [2–4]. These

scores highlighted the benefit of introducing blood pressure treatment and other medication,

leading to the significant decline of stroke rates over the past 15 years [5, 6].

The Framingham Heart Study Stroke Risk Score (FSRS) is one of the most established and

respected standards for estimating 10-year stroke risk [2]. The Framingham Heart Study

started with the goal of observing a large population of adults over time to better understand

the factors that lead to cardiovascular and cerebrovascular disease. The original FSRS was

based on stroke data from the 1960s and 1970s, but its application on contemporary cohorts

showed overestimation of stroke risk [7, 8]. Recently, a Revised FSRS (R-FSRS) was introduced

to account for temporal trends using data from the offspring cohort and reflecting updated

stroke rate incidence [9].

These approaches apply traditional statistical tools such as the Cox Proportional Hazards

model [10], which assume a linear, log-linear, or logit-linear relationship between the risk fac-

tors and the prevalence of the disease. While useful, they presume that the variables in their

models interact in a mere additive fashion. The mathematical and medical realities, however,

suggest that the interaction of risk factors and markers of disease acuity are far from linear,

and that some variables gain or lose significance due to the absence or presence of other vari-

ables [11, 12]. In a logistic regression setting, interactions between risk factors can only be

incorporated via cross-multiplication to estimate the combined relative risk. However, this

approach requires a significant augmentation of the feature space while it does not generalize

to higher numbers of risk factors.

On that ground, we recognized the substantial benefit that algorithmic approaches and

machine learning could bring in this field. We propose the Non-linear FSRS (N-SRS) using

the clinical examination data from the offspring cohort of the Framingham Heart Study (FHS)

to estimate the 10-year stroke risk. To achieve our objective, we utilize novel Machine Learning

(ML) methods to predict the progression of cerebrovascular disease [13, 14]. Our model con-

siders a wider spectrum of potential risk factors that include the prescribed medical regimen at

the time of the examination. We suggest a new way of utilizing data from longitudinal studies

that allows the creation of a larger dataset that can boost the performance of ML methods with-

out introducing bias in the data. Our predictive algorithm is a tree-based method called Opti-

mal Classification Trees (OCT) that allows the physician to explore the exact model and assess

the interpretability of its results. Compared with other binary classification methods, such as

Neural Networks that are not explainable [15], OCT is comprehensible and can be easily visu-

alized in a tree form [16]. The final model optimally estimates the probability of stroke with

superior performance compared to other stroke risk scores. These findings were validated

with a separate multiethnic population of 17,527 individuals from an academic medical center.

Methods

The creation, evaluation, and validation of a new prediction model involves a series of analyses

that are necessary to prove its statistical significance. Our methodology comprised the follow-

ing steps:

1. Identification of the derivation and validation cohort and definition of inclusion criteria.

Observations were split into the training (75%) and the testing (25%) sets.
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2. Definition of stroke risk factors and outcomes and association with every participant visit

included in the data.

3. Imputation of missing values in independent variables using the MedImpute algorithm [14,

25]. Multiple computational experiments were conducted in order to select the most appro-

priate missing data imputation method.

4. Creation of the Non-linear Framingham Stroke Risk Score using the Optimal Classification

Trees algorithm. A risk profile analysis was conducted to validate its insights from the med-

ical literature. The latter was part of an iteration process in tandem with hyperparameter

tuning.

5. Training of other ML models using a varied set of supervised learning binary classification

algorithms, including Logistic Regression.

6. Discrimination and calibration performance evaluation of all ML models and the R-FSRS

for the testing sets of the derivation and validation cohorts. Separate results summary tables

and figures were created for each population.

7. Creation of an interactive web-based interface for the communication of the N-SRS model

to the clinical community.

Derivation cohort

Our study sample comprised the Framingham offspring and spouses of offspring cohort

enrolled in 1971 and reexamined approximately once every four years since then [17]. To be

included, participants were required to be stroke-free and above 40 years of age at each base-

line examination. We exclude younger patients following the paradigm of the R-FSRS model

[9]. ML methods perform significantly better as the number of the training sample size

increases. Thus, we considered for every participant each clinical examination as a distinct

observation. We applied the following inclusion criteria:

1. The participant had not experienced a stroke event prior to the date of the baseline clinical

examination. Patients with prior history of such adverse events receive specific treatment

and their future trajectory highly depends on the severity of their primary stroke. Thus, for

these cases we refer the reader to secondary stroke specific risk prediction tools [18].

2. The participant was not censored within 10 years from the time of the clinical examination.

For every observation we required that (a) either the participant experienced a stroke within

the defined time-frame or (b) the participant was censored after the lapse of 10 years.

This methodology of population sampling resulted in the inclusion of 4,385 unique partici-

pants, which translated in 18,793 distinct visits (Table 1 –Framingham Dataset 1 (FD1)). The

dataset was split into the training (75%) and testing (25%) population to allow for unbiased

evaluation of the algorithms’ performance. Note that visits from the same individual were only

included in one of the two sets. Thus, we avoided the introduction of bias in the algorithm

evaluation process.

Validation cohort

The stroke risk model was subsequently validated in a prospective multiethnic cohort of

17,527 patients from the Boston Medical Center (BMC), a private, not-for-profit, 487-bed, aca-

demic medical center located in Boston, MA, USA. We identified, using the Electronic Health

Records (EHR), a stroke-free population at baseline who satisfied the inclusion criteria without

PLOS ONE The non-linear framingham stroke risk score

PLOS ONE | https://doi.org/10.1371/journal.pone.0232414 May 21, 2020 3 / 20

https://doi.org/10.1371/journal.pone.0232414


censoring (Table 1 –BMC datasets). We retrieved each patient’s medical and family history

and formulated a dataset that measured the same characteristics as the Derivation Cohort.

Every observation in this population corresponds to a unique patient visit. However, no

patient was included more than once in the data set. At least 50% of the independent features

were known for all selected samples. Missing values were subsequently imputed using a ML

algorithm. Prior visits from the same database were used to identify demographic information

or data related to the medical and family history of the patient.

Definition of stroke risk factors

We used data collated from each clinical examination including all the risk factors considered

in the R-FSRS [9], as well as medication, previous treatment information, electrocardiogram

(ECG) results, and additional variables considered in other stroke risk scores [17, 19]. Consid-

ering the impact of managing blood pressure levels to the progression of cerebrovascular dis-

ease, we hypothesized that the inclusion of treatment specific variables could lead to more

personalized stroke risk estimation. A full list of all considered independent variables is pre-

sented in Table 2. Age, systolic blood pressure (SBP), high-density lipoprotein (HDL) level,

body mass index (BMI), hematocrit and fasting blood glucose were treated as continuous fea-

tures while the rest of the covariates where considered factor variables. SBP was recorded as

the mean of 2 physician recorded measurements made on the left arm of the seated subject,

using a mercury column sphygmomanometer and a cuff of appropriate width. Baseline CVD

was recorded as present if coronary artery disease, congestive heart failure or peripheral vascu-

lar disease had been documented in the participant at, or prior to, the clinical examination.

Current cigarette smoking was defined as smoking in the year prior to the baseline examina-

tion. We used SBP and DBP measurements to define a new variable called “Blood Pressure

Category” based on current American Heart Association (AHA) guidelines [20]. We utilized

the ECG results provided in each clinical examination of the FHS as additional covariates in

our model as well as medical treatment details (i.e. participant underwent CABG or PCI or

was under antihypertensive medication at the time et al.). Diabetic status was defined based on

Table 1. Baseline characteristics of the derivation and validation populations.

Dataset Name Parameter Value

Framingham Dataset 1 (FD1) Sample size 18,793

Number of participants 4,385

Number of stroke cases 1,013

Number of distinct participants with stroke 460

Proportion of female population 53.97%

Framingham Dataset 2 (FD2) Sample size 2,989

Number of stroke cases 221

Proportion of female population 54.26%

BMC—Caucasian Sample size 9,029

Number of stroke cases 909

Proportion of female population 58.63%

BMC–Black Sample size 2,862

Number of stroke cases 230

Proportion of female population 58.97%

BMC–Hispanic Sample size 5,636

Number of stroke cases 406

Proportion of female population 50.19%

https://doi.org/10.1371/journal.pone.0232414.t001
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the FHS data dictionary similarly to the ECG results. The status of antihypertensive medica-

tion was split in 2 levels (0 = no current prescription of antihypertensive treatment, 1 = cur-

rently or in the past under antihypertensive treatment). Detailed information about the

prevalence of all risk factors at baseline examinations for each cohort can be found at the Sup-

porting Information (S1 Table).

Definition of stroke

Stroke was modeled as a binary outcome and defined as an acute onset focal neurological defi-

cit of vascular etiology, persisting for more than 24 hours, concordant with the World Health

Organization (WHO) definition; both ischemic and hemorrhagic strokes were included as in

the original FSRS and updated R-FSRS. We used the FHS definition of stroke to specify the

outcomes in our dataset; detailed description is defined in previous work [2, 9, 21, 22].

Ethical oversight

All participants provided informed consent approved by the Institutional Review Board at the

Boston University Medical Center for the Framingham Heart Study. The Massachusetts Insti-

tute of Technology Institutional and Boston Medical Center Review Boards approved the

Table 2. Stroke risk factors considered in the N-SRS model.

Category Variable

Demographic Factors Age

Gender

Categorical Risk Factors Current cigarette smoking

Presence of Cardiovascular disease

Presence of Atrial Fibrillation

History of Transient Ischemic Attacks

History of Myocardial Infarctions

Diabetes mellitus

Blood Pressure Category

Medication and Treatment related Factors Antihypertensive medication

Statins

Nitrates

Diuretics

CABG

PCI

ECG results X-ray Enlargement

Left Ventricular Hypertrophy

Presence of T-Wave abnormality

Intraventricular Block

Atrioventricular Block

ST-Segment abnormality

U-Wave abnormality

Premature beats

Continuous Risk Factors SBP

HDL

BMI

Hematocrit

Fasting plasma glucose level

https://doi.org/10.1371/journal.pone.0232414.t002
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sharing of data between the two institutions with a research data use agreement. We did not

require informed consent by the patients of the Boston Medical Center database as we worked

with a HIPAA Limited Data Set.

Missing data imputation

Missing values were encountered in the majority of the included risk factors. Some partici-

pants did not answer the totality of the questionnaires in some of their visits. Moreover, earlier

examinations did not record some of the variables, such as echocardiogram results, and thus

they were unknown for a subset of the observations [23]. Employing imputation techniques

instead of complete case analysis, allows the inclusion of a wider set of features which other-

wise would have been omitted by the model [24]. We imputed missing values using a recently

developed ML method called MedImpute [14, 25]. The decision to use this algorithm was

based on a series of computational experiments that compared both the missing data imputa-

tion accuracy as well its effect on downstream predictive performance on these data. It lever-

ages the fact that the same participant could have been included multiple times in the dataset,

corresponding to various clinical examinations that satisfied the inclusion criteria. Compared

to multiple imputation approaches, such as MICE [26], MedImpute does not require pooling

results that affect the interpretability of the final data set. This methodology has been tested to

be robust to the particular missing data patterns which are frequently encountered in longitu-

dinal studies [25]. The algorithm outperformed in both imputation accuracy and downstream

prediction performance other standard imputation methods, such as mean [27], k-Nearest

Neighbors [28], OptImpute [29], MICE [26] (Supporting Information, S2 Table). MedImpute

reduced the mean absolute imputation error in the Framingham dataset by 5% and increased

the c-statistic in the testing set from 85.21% (MICE) to 87.43%. The authors of the algorithm

have also done further experiments using data from the Framingham Heart Study under dif-

ferent missing data regimens, including varying levels of missingness from 10% to 50%,

increasing number of observations per participant, and different missing data patterns (Miss-

ing Completely at Random, Missing Not At Random) [25]. The method was independently

applied to the training and testing sets of the Framingham population as well as the BMC

cohort.

Creating the N-SRS

The N-SRS utilizes the Optimal Classification Trees (OCT) algorithm, a novel machine learn-

ing method that places emphasis on both accuracy and interpretability [13, 30]. Through this

algorithm, we produce a predictive model for 10-year risk of stroke which adaptively changes

the splits on the variables, accounting for non-linear interactions among them. The stroke risk

is calculated via a series of questions whose order changes dynamically depending on the

response. The non-linearity effect is attributed to the absence of a fixed risk coefficient to each

independent covariate. The contribution of each feature to the overall score is conditional to

other patient characteristics and thus may vary significantly.

Decision tree methods construct a single tree that determines for each observation a single

path, or risk profile. This property renders the final output very easy to understand, and thus

appropriate for applications where interpretability is important. Its structure allows predic-

tions through a few decision splits on a small number of high-importance variables. This fea-

ture is not shared by other ML algorithms such as neural networks or gradient boosted

decision trees, which are opaquer and often characterized as “black box” methods [15, 31].

Traditional tree-based algorithms, such as CART [32], take a top-down approach to build-

ing a decision tree, applying a greedy heuristic recursively, starting with the full population in
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the top node and creating each subsequent split in isolation. The CART approach has been

criticized because each tree split is determined sequentially without reconsidering the possible

impact of future splits in the tree [33]. In practice, this typically leads to decision trees having

worse performance than alternative methods [34]. The OCT method was introduced to create

the entire decision tree at once through an optimization approach, resulting in more accurate

results than its predecessor method [30].

The selection of the final model involved an iterative process during which a risk profile

analysis was conducted for each path of the tree. Every path is associated with a unique set of

risk factors whose interaction and significance was validated from the medical literature.

We trained other well-established ML algorithms (i.e. CART, Random Forest, XGBoost) on

the derivation population data to have a fair comparison of the OCT performance in addition

to the R-FSRS results [32, 35, 36]. Logistic regression with L1 regularization (Log.Reg) is also

employed to specify the performance of a linear model using the same features, data format

and missing data imputation as the N-SRS [37]. We used 10-fold cross-validation to set the

parameters for each model. The OCT maximum depth was set to eight and the minimum

bucket to 20 observations.

Measurement of model performance

The OCT algorithm performance and its ability to predict 10-year risk of stroke was measured

using the c-statistic, also known as the Area Under the Curve (AUC). The AUC measures the

ability of a model to discriminate between the outcomes of interest, incorporating both sensi-

tivity and specificity, and has been used as a measure of model success in multiple prior risk-

scoring development efforts [38]. We report the average performance across five random par-

titions of the data with replacement in the derivation population. For each random split, a dis-

tinct training sample was used to create the predictive models. Their performance was

subsequently evaluated on both the testing sets of the Framingham cohorts as well as the BMC

validation cohort. Confidence intervals (95%) were calculated for the bootstrapped results. We

also report the average sensitivity, specificity, precision, negative predictive value, positive pre-

dictive value for all cohorts and methods when the probability threshold is set to 0.5. In addi-

tion, we compare the Hosmer-Lemeshow calibration χ2 statistic to measure how closely the

outcomes predicted by a given model approximate the observed outcomes [39].

We used three different datasets to measure the performance of the prediction models,

including the R-FSRS. In the first set of experiments, we evaluated each model’s outcomes

using the testing set of the Framingham Dataset 1 (FD1). The FD1 includes all the clinical

examinations of the offspring cohort that satisfied the inclusion criteria but did not participate

in the model training process. The Framingham Dataset 2 (FD2) comprises of the observations

that the R-FSRS used for its development (Table 1 - FD2). We carefully split the dataset such

that observations used in the FD2 are only part of the testing set of FD1. As a result, all

reported metrics refer to out-of-sample results. The FD2 does not include any samples from

the FD1 training set. We subsequently compared the performance of the N-SRS with the

R-FSRS on the validation cohort (Table 1 - BMC) against the same metric.

Statistical analysis

Our analysis was performed using Julia 1.0 and R version 3.5 [40, 41].

The user-friendly interface

Leveraging the tree nature of the final N-SRS, we built a dynamic online application as the

user-friendly interface of the algorithms for use by clinical providers [42]. The application is in
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the form of an interactive questionnaire. The questions are adaptive corresponding to risk fac-

tors; the subject of each new question depends on the answer to the prior question. When all

questions are answered, the user receives the final risk estimate of stroke for the particular

patient. The software follows the same interface as the POTTER score, which has been already

implemented at the Massachusetts General Hospital, for the estimation of emergency surgery

mortality and morbidity risk, with great success [43]. Due to its format, the application could

be integrated into an EHR environment, pulling the most available variables directly from the

database in an automated fashion. Once integrated into the EHR, the user would only be

required to answer questions that cannot be pulled in automatically. If there is full EHR auto-

mation, the risk would be calculated at once.

Results

A comprehensive decision-making algorithm was designed, and a user-friendly model, the

Non-linear Framingham Stroke Risk Score (N-SRS) was created using the training set of FD1;

a total of 14,195 clinical examinations (75%) from the Framingham offspring cohort. Fig 1 pro-

vides a visualization of our model in a tree structure. While each node of the tree model reveals

important information regarding the associated risk of patients, it should not be considered in

isolation. On the contrary, the final risk profile of individuals should be based on the full path

until the final “leaf” node of the tree model. Thus, we identify 23 different stroke risk profiles,

all of which highlight the effect that these factors might impose in the risk of stroke while intro-

ducing new non-linear relationships when combined. Each profile follows a different path of

the tree and is affected only by the risk factors that appear in that path (Fig 1).

N-SRS performance on the Framingham datasets

Table 3 demonstrates the superior performance of the N-SRS compared to the R-FSRS calcula-

tor and other established ML methods in both the FD1 and FD2. Notice, that the OCT

approach is significantly more accurate compared to the R-FSRS approach leading up to a 15%

Fig 1. A visualization of the N-SRS tree-based model.

https://doi.org/10.1371/journal.pone.0232414.g001
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AUC improvement in DF1 and 9% in DF2 populations, both for male and female. Moreover,

the results indicate equivalent performance with respect to other less interpretable ML meth-

ods (XGBoost, Random Forest) in the testing set since the absolute difference in the AUC is

less than 1%. The Log.Reg models achieve better performance compared to the R-FSRS

improving the out-of-sample discrimination metric by 9.37% and 3.55% in FD1 and FD2

respectively. Non-linear ML methods, though, demonstrate superior predictive power that is

up to 7.81% (5.06%) higher in the FD1 (FD2) cohorts. The ranking of the methods in terms of

downstream performance remains intact between the two datasets. Similar conclusions are

also reflected on the sensitivity, specificity, precision, negative and positive predictive value

metrics. Receiver Operator Curves (ROCs) are included in the Supporting Information (S1

Fig).

Most importantly, the N-SRS is able to better estimate the true risk of stroke, at different

levels of risk. Its Hosmer-Lemeshow calibration χ2 statistic is 1.96/2.75 (FD1/FD2) for 8.05/7.3

the N-SRS and R-FSRS respectively. We constructed calibration curves for our models, where

best performance is represented by a slope of 45˚. The R-FSRS models suffered a decline in cal-

ibration, especially at medium risk predicted probabilities. The N-SRS classifier appeared to

have the best calibration across all levels. The calibration curves are depicted in Fig 2 for the

N-SRS and R-FSRS. The reader can find the corresponding graphs for Log.Reg, CART, Ran-

dom Forest, and XGBoost in the Supporting Information (S2 Fig).

N-SRS performance on the validation cohort

Table 4 shows an overview of the results for the N-SRS, R-FSRS, and other ML methods on the

Validation Cohort. The non-linear approach (N-SRS) improves the aggregated stroke risk

Table 3. Comparison of the N-SRS, the R-FSRS, and other machine learning methods performance on the testing set of the Framingham datasets. Reported metrics

include sensitivity, specificity, precision, negative predictive value (NPV), and positive predictive value (PPV) at the probability threshold of 0.5. The Table also presents

the overall c-statistic (AUC) and calibration χ2 results.

A) Framingham Dataset 1 (FD1)

N-SRS R-FSRS (both genders) R-FSRS (men) R-FSRS (women) Log. Reg CART Random Forest XGBoost

Sensitivity 0.9142 0.8510 0.8461 0.8554 0.8933 0.8802 0.9175 0.9167

Specificity 0.7238 0.6902 0.6890 0.7043 0.7102 0.7099 0.7161 0.7354

Precision 0.9408 0.9620 0.9353 0.9758 0.9701 0.9736 0.9605 0.9412

NPV 0.0592 0.0380 0.0647 0.0242 0.0423 0.0380 0.0863 0.0588

PPV 0.9408 0.9620 0.9353 0.9758 0.9621 0.9736 0.9137 0.9412

AUC 0.8743 0.7374 0.7188 0.7552 0.8065 0.7981 0.8829 0.8846

AUC 95% CI 0.8569–0.9014 0.6976–0.7619 0.6765–0.7636 0.7081–0.8102 0.772–0.8351 0.7676–0.8287 0.8578–0.9081 0.8643–0.9048

calibration χ2 1.96 8.05 11.98 5.44 2.88 3.04 1.43 1.58

B) Framingham Dataset 2 (FD2)

N-SRS

R-FSRS (both genders)

R-FSRS (men) R-FSRS (women) Log. Reg CART Random Forest XGBoost

Sensitivity 0.8948 0.8533 0.8605 0.8487 0.8763 0.8504 0.8938 0.8934

Specificity 0.5097 0.4217 0.4066 0.4800 0.4867 0.2505 0.4994 0.5110

Precision 0.9693 0.9617 0.9531 0.9712 0.9688 0.9393 0.9816 0.9700

NPV 0.3973 0.2233 0.2321 0.1933 0.2576 0.1704 0.3804 0.4053

PPV 0.9693 0.9617 0.9531 0.9712 0.9401 0.9486 0.9535 0.9700

AUC 0.8238 0.7488 0.7281 0.7677 0.7754 0.6884 0.8216 0.8260

AUC (95% CI) 0.791–0.8558 0.7145–0.7831 0.6775–0.7788 0.7149–0.8204 0.738–0.8119 0.6435–0.7333 0.7881–0.8536 0.7938–0.8567

calibration χ2 2.75 7.3 12.1 4.1 6.5 20.34 2.81 2.7

https://doi.org/10.1371/journal.pone.0232414.t003
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AUC by 16.17% for men and 10.59% for women upon the R-FSRS. Similar results are also

recorded in the ethnicity-specific populations. We notice that both stroke risk scores are less

accurate in the BMC dataset compared to FD1 and FD2 (-7.09% N-SRS, -8.00% R-FSRS).

However, the N-SRS is more robust to other sources of data. Its performance is less affected

compared to the R-FSRS. The performance of other ensemble ML algorithms is equivalent to

the N-SRS providing an edge of 0.8–0.91%. The Log.Reg models improve upon the R-FSRS by

5.55% but is still weaker than the N-SRS by 3.38%. Table 5 shows that the predictive accuracy

of our model remains the same between the Caucasian and the Black population (~74.5%) and

gets slightly negatively impacted in the Hispanic population (72.8%). All other ML models

achieve higher performance in the Caucasian sample compared to other ethnicity sub-

populations.

The calibration statistic demonstrates an edge of N-SRS (7.12) over the R-FSRS for both

women (35.98) and men (37.42), following a similar trend to what was shown for the Framing-

ham datasets. Fig 2 shows that the R-FSRS is associated with poor identification of true risk for

groups higher than 30%. The corresponding graphs for Log.Reg, CART, Random Forest, and

XGBoost are available in the Supplementary material (S2 Fig). In terms of sensitivity and sensi-

tivity, we found that the N-SRS model achieved up to 89% and 40%, respectively while R-FSRS

achieved 84% and 36.6%.

Discussion

To the best of our knowledge, this is the first validated non-linear, interpretable stroke risk

predictor that outperforms the established R-FSRS, providing additional insightful informa-

tion. Overall, our results demonstrate the superior capability that sophisticated ML methods

and data utilization can bring in adverse event prediction when coupled with data from large

population cohorts. In our ever-changing medical landscape, linear models that entail an addi-

tive effect for each known risk factor do not answer many practical questions faced by patients.

Patients with multiple medical comorbidities may not be reflected with traditional risk stratifi-

cation scores such as the FSRS. The NSRS methodology has introduced novel risk factors that

Fig 2. Calibration plots for all models on the Derivation cohort. Fig 2A refers to the testing population of FD1 and

Fig 2B to FD2. The plots show the relation between the true class of the samples and the predicted probabilities.

Samples were binned to their class probabilities generated by the model. The following intervals were defined: [0,10%],

(10,20%], (20,30%], . . . (90,100%]. The event rate for each bin was subsequently identified. For example, if 4 out of 5

samples falling into the last bin are actual events, then the event rate for that bin would be 80%. The calibration plot

displays the bin mid-points on the x-axis and the event rate on the y-axis. Ideally, the event rate should be reflected as a

45˚ line.

https://doi.org/10.1371/journal.pone.0232414.g002

Table 4. Comparison of the N-SRS, the R-FSRS, and other machine learning methods performance on the Validation cohort. Reported metrics include sensitivity,

specificity, precision, negative predictive value (NPV), and positive predictive value (PPV) at the probability threshold of 0.5. The overall c-statistic (AUC) and calibration

χ2 results are also presented. The results refer to the aggregated population.

N-SRS R-FSRS (both genders) R-FSRS (men) R-FSRS (women) Log. Reg CART Random Forest XGBoost

Sensitivity 0.8986 0.8403 0.8411 0.8396 0.8576 0.8402 0.9055 0.9076

Specificity 0.4019 0.3663 0.3786 0.3565 0.3733 0.3599 0.4078 0.4092

Precision 0.9395 0.9320 0.9329 0.9313 0.9349 0.9348 0.9407 0.9455

NPV 0.2771 0.1815 0.1882 0.1762 0.2026 0.1805 0.2811 0.2818

PPV 0.9395 0.9320 0.9329 0.9313 0.9345 0.9317 0.9421 0.9446

AUC 0.7403 0.6491 0.6246 0.6735 0.7065 0.6829 0.7482 0.7501

AUC (95% CI) 0.7149–0.771 0.6266–0.6716 0.5931–0.6555 0.6411–0.7058 0.6772–0.7558 0.6484–0.7175 0.7198–0.7801 0.7202–0.7856

calibration χ2 7.12 36.66 37.42 35.98 25.03 35.76 6.67 6.52

https://doi.org/10.1371/journal.pone.0232414.t004
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are associated with stroke incidence. Moreover, a “one size fits all” approach may not work for

a particular patient. Although correlative, the superior interpretability of the model can allow

for better patient education when addressing risk factor modification strategies.

Khosla et al and colleagues have previously demonstrated the superiority of ML over cox-

hazard methods for stroke prediction with an AUC as high as 0.777 utilization patient data

from 5201 patients from the cardiovascular heart study between 1989–1999. Several novel risk

factors were identified using this methodology including total medications, maximal inflation

level, general health and any ECG abnormality [44]. In contrast to this paper, our methodology

utilized interpretable OCT and utilized a robust data set (the Framingham heart study) there-

fore risk factors where more specific (T-wave abnormality on EKG as compared to “any ECG

abnormality) making its utility more relevant.

Other novel ML methods have evaluating stroke risk in specific high-risk populations.

Letham et al., developed and interpretable and accurate model for stroke risk prediction in

patients with atrial fibrillation utilizing the Bayesian Rule List (BRL) model in contrast to the

established linear prediction scores; the CHADS2 and CHA2DS2-VASc risk scores [45]. In

this study, claims data from the MarketScan Medicaid Multi-State Database was utilized to

study a patient with diagnosis of atrial fibrillation (one year of observation time prior to the

diagnosis and one year of observation time following the diagnosis) yielding 12,586 patient

with 1786 (14%) suffering a stroke within a year of the atrial fibrillation diagnosis. The BRL

performance had a higher performance by AUC as compared to the CHADS2, CHA2DS2--

VASc and CART methods (0.756 vs. 0.721, 0.677 and 0.704) respectively. However, as known

with claims data and coding, the true interpretability of this methodology is questionable. For

example, the BRL states: “if cerebrovascular disorder then stroke risk 47.8% (44.8%–50.7%)

else if transient ischemic attack then stroke risk 23.8% (19.5%–28.4%) else if occlusion and ste-

nosis of carotid artery without infarction then strokerisk15.8% (12.2%–19.6%)”. These terms

are non-specific and descriptive at best and do not mean anything from a physician perspec-

tive. The terms transient ischemic attack and occlusion and stenosis of carotid artery without

infarction are both similar clinically, and interchangeable from a coding perspective and can-

not be used to risk stratify adequately.

Primary prevention targeting stroke risk factors have been effective in reducing stroke mor-

bidity and mortality in generalized populations [46]. However, they do not consider the poten-

tial to predict which of the risk factors would affect each individual and lead to stroke

occurrence; a key element in practical disease prevention, targeted therapy and the most com-

pelling finding of our study. Our approach introduces tree-based decision rules where the

Table 5. Comparison of the N-SRS, and the R-FSRS performance on the Validation population using the c-statistic. Detailed results are shown for the main ethnicity

groups.

BMC–White BMC–Black BMC–Hispanic

Model AUC 95% CI AUC 95% CI AUC 95% CI

N-SRS 74.30% 0.7149–0.771 75.80% 0.7345–0.767 72.79% 0.6889–0.7671

R-FSRS (both genders) 64.91% 0.6266–0.6716 64.85% 0.6304–0.6666 61.04% 0.5601–0.6587

R-FSRS (women) 67.35% 0.6411–0.7058 65.22% 0.628–0.6764 61.06% 0.5548–0.6663

R-FSRS (men) 62.46% 0.5931–0.6555 64.49% 0.6181–0.6717 61.01% 0.5621–0.6587

Log.Reg 71.55% 0.6823–0.7402 69.77% 0.6823–0.7402 70.46% 0.6765–0.7359

CART 69.01% 0.6627–0.7134 66.41% 0.6272–0.6609 66.10% 0.6286–0.6934

Random Forest 75.08% 0.7162–0.7855 73.14% 0.7139–0.749 70.80% 0.6807–0.7354

XGBoost 77.32% 0.7582–0.7881 74.88% 0.7133–0.7842 74.27% 0.7187–0.7667

https://doi.org/10.1371/journal.pone.0232414.t005
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number of variables required to determine the stroke risk profile is not fixed by our precon-

ceived understanding of comorbidities and attributable risk [46].

The N-SRS model was developed using the Framingham data, a well-established longitudi-

nal data set in contrast to static datasets typically utilized for risk prediction [47]. The model

established several key branching points in the tree that confirm the medical validity of this

model as well as novel points uncovering new medical insights that had not been evaluated for

stroke risk in the past. It also demonstrates the correlation of interplay between risk factors

and weighted relevance they may possess in contrast to the binary effect they carry.

The model was validated using an external independent cohort comprised of diverse eth-

nicities. Our results revealed a superior performance of the N-SRS over the R-FSRS in the

training and validation population for both women and men. Additional experiments show

that other less transparent non-linear algorithms achieve equivalent performance. Logistic

regression models using the same data pre-processing and training sample improve upon the

N-SRS but do not outperform more sophisticated ML methods. We hypothesize that the per-

formance of the latter is improved compared to the R-FSRS due to the higher sample size,

larger number of features, and the application of an advanced missing data imputation algo-

rithm. Since the accuracy of the N-SRS was higher and more robust to populations from other

ethnicities, our model can be generalized with higher degree of confidence compared to the

existing stroke risk score. We believe that the increased accuracy of N-SRS is due to the intro-

duction of a larger sample size, new risk factors, and new missing data imputation and binary

classification methodologies.

Our proposed way of leveraging the longitudinal study data avoids the induction of bias in

the model due to its clear delineation between the training and the testing population. We

strictly require that observations from the same individual belong in at most one of these two

sets, avoiding potential natural boosts in the downstream performance. Moreover, our results

from the multi-ethnicity validation cohort of the BMC demonstrate that the N-SRS generalizes

better than its predecessor (R-FSRS).

The main benefit of using decision trees over other methods is their interpretability which,

in applications such as healthcare. This attribute is not only essential but often preferred over

the maybe higher accuracy that other, non-interpretable, methods may offer [48]. In our mod-

els, we show that less transparent, “black-box” algorithms have comparable performance to

our suggested model. The latter offers the physician the opportunity to evaluate the risk profile

itself and assess the correlation of risk factors relevant for each patient. It also addresses con-

cerns related to the transparency and fairness of the model [49].

Known findings that appeared as branching nodes in the N-SRS include patients with the

lowest stroke risk profile being non-diabetic with HDL levels > 39.1 mg/dl and non-hyperten-

sive with an approximately 1% 10-year stroke risk. In contrast, patients with history of cardio-

vascular disease, diabetes and hypertension carry a 90% stroke risk over 10 years (Fig 1). Of

note, these modifiable risk factors weigh heaviest and are independent of other concomitant

factors or non-modifiable ones such as age or gender. In fact, the relevance of gender was only

pertinent in a subset of patients with no cardiovascular disease or diabetes but with hyperten-

sion and low HDL levels.

Note that in some cases to characterize the risk of stroke for certain profiles of the popula-

tion only three to two variables might be relevant. For people with no history of cardiovascular

disease and diabetes, smoking affects dramatically their risk projection increasing the overall

stroke score from 29.73% to 82.66% (Fig 3). We notice also that for patients with prior history

of cardiovascular disease diabetes is the defining factor of their stroke risk increasing it to

71.05% from 31.95% (Fig 3). The presence or absence of any other risk factor does not influ-

ence the overall prediction of the ML algorithm.
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An illustration of novel findings includes the relevance of T-wave abnormality on ECG and

hematocrit levels in a patient’s 10-year stroke risk profile. For example, the association of

Fig 3. Deep-dives in insightful risk profiles of the N-SRS model.

https://doi.org/10.1371/journal.pone.0232414.g003
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major and minor ST-T wave abnormalities on ECG and associated stroke risk has been previ-

ously evaluated in a small cohort of Japanese patients but found to be only relevant in men

with minor ST changes and both genders for major ST changes based on the small sample size.

Furthermore, stroke risk was reduced after adjusting for hypertension [50]. Therefore, the

applicability is minimal in evaluating preventative strategies and guiding patient education or

intervention. In the N-SRS model, T wave abnormalities were pertinent in some scenarios. A

characteristic case refers to patients with history of cardiovascular disease, non-diabetic, with

0–1 MI events, and HCT levels of<38.2% where the 10-year stroke risk changes from 32% to

65% in the absence or presence of T-wave abnormalities respectively (Fig 3).

Such assessments of risk factors and their respective weighted relevance could not be estab-

lished by linear methodologies and can explain innumerable circumstances where patients

may have or lack traditional risk factors and either develop strokes or not. This is the key to

personalizing a customized approach to primary prevention.

For instance, the N-SRS shows that the 10-year stroke risk is actually dramatically impacted

by smoking changing from 5% to 77.5%. If this patient was not hypertensive in the first place,

her 10-year stroke risk would be 2.5% and smoking would not drive this number (Fig 3). This

validated risk prediction can highly impact the patient and provider understanding of stroke

risk factor associated with incidence for effective guided counseling given the precious

resources and time available to practitioners and patients.

Although this is the first validated interpretable machine learning model applied to stroke

for 10-year risk prediction, similar applications in other disease entities provided insights

obscured by traditional linear methodology and therefore influence personalized care. Bertsi-

mas and colleagues recently evaluated outcomes of 13 different medication regimen therapies

in over 10,000 patients with type 2 diabetes and predicted change in target glycated hemoglo-

bin A1c levels [51]. In this model, patients where a suggested change in therapy based on the

machine algorithm was made, a predicted reduction by close to 0.5% points in Ac1c was

observed. Similar mortality and morbidity risk calculators have also been introduced in the

areas of elective surgery, oncology, and transplantation with great success [34, 43, 52]. Such

ML-based algorithms can drive personalized medicine and influence outcomes.

We have created an interactive web-based interface through a series of short specific yes

and no questions (link) to improve efficiency and usability of the N-SRS decision-tree (Fig 4)

[42]. A user’s answer to the first question will dictate what the next grouping the results into 23

categories of risk profiles. Each interaction with the application corresponds to a unique deci-

sion-tree node and is based on the specific patient characteristics.

As a second phase of this study, we intend to prospectively follow a patient population in

the primary care setting utilizing the N-SRS to guide preventative strategy. In this prospective

study, we will not only be able to study real-time prospective stroke risk, but also a completely

novel experience of personalized stroke risk assessment care and intervention. This has not

been effectively studied in patients at risk for cerebrovascular disease and opens many poten-

tial possibilities for other cerebrovascular diseases other than stroke.

Limitations

The key limitation of our model is the use of input data solely from the FHS which is a Caucau-

sian population. Moreover, there is potentially lack of generalizability to populations from

other geographic regions in the United States as well as internationally, and socioeconomically

different populations from those of the FHS or BMC. Even though we validate our results in a

multi-ethnicity population, we believe that we will need to retrain our algorithm with data

from other longitudinal studies and not only EHR.
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The validation population is based solely on hospital records and as a result it tends to be

sicker than the Framingham cohort. Each observation corresponds to a unique patient visit.

Thus, the presence of a patient in the data set is mostly correlated with how detailed was the

clinical examination during the visit and if there was any family or personal history recorded

in the past at the same clinic.

In addition, we would like to stress that our data is not independent and identically distrib-

uted. However, we believe that no bias has been introduced in the training process since both

the accuracy and the calibration of the N-SRS is significantly higher than the R-FSRS in both

the Framingham 2 dataset and the validation cohort from BMC. Another limitation refers to

causality between the variables and the outcomes, which is still not proven despite the high

Fig 4. An example illustrating the user-friendly interface of N-SRS. Due to its interactive nature the answer to a question dictates the next

question. In this specific example, whether the provider answer yes to no to the question regarding CVD takes the algorithm and questions in

a different direction.

https://doi.org/10.1371/journal.pone.0232414.g004
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degree of association connectivity between the two. The performance of N-SRS has not been

directly compared to other stroke risk functions, such as the CHADS2 or the CHA2DS2-VASc

score for atrial fibrillation stroke risk [53]. Future work could leverage other validation popula-

tions to relate the N-SRS predictive performance with these studies.

We also acknowledge prospective validation of this model would outperform validation of

blinded data sets, and provide insights beyond performance such as adoption among health-

care providers, interpretability for patients and effects on primary prevention strategies and

counseling. A prospective trial design is currently under evaluation.

Conclusions

We have developed N-SRS, an accurate stroke risk calculator that outperforms, in accuracy

and user-friendliness, the existing stroke risk prediction tool. N-SRS might prove useful as an

evidence-based, adaptive, and interactive risk calculator tool for primary prevention of stroke.

Further studies are needed to explore the ability of N-SRS to predict the occurrence of stroke

in other populations. Future work will focus on defining the N-SRS risk levels that warrant

therapeutic treatment for primary stroke prevention similar to that available for the primary

atherosclerotic cardiovascular disease prevention.
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