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DM: Differential methylation

DMR: Differentially methylated regions

DOHaD: Developmental Origins of Health and Disease

EWAS: Epigenome-wide association studies

FC: Fold Change

FDR: False positive results

KEGG: Kyoto Encyclopedia of Genes and Genomes

LASSO: Least absolute shrinkage and selection operator

LDA: Linear Discriminant Analysis

LOG: Logistic regression

PAM: Partition Around Medoids

PANDA: Preferential Attachment-based common Neighbor Distribution derived Associations

PC aa: Diacyl phosphatidylcholines

PC ae: Acyl-alkylphosphatidylcholines

PCC: Pearson correlation coefficients

PPI: Protein-Protein Interaction

RBF: Radial Basis Function

RF: Random Forest

RPART: Recursive Partitioning and Regression Trees

SOV: Source of variance

SVD: Singular value decomposition

SVM: Supportive Vector Machine

TSS: Transcription start site

uHSCs: Umbilical cord blood hematopoietic stem cells

UMAP: Uniform Manifold Approximation and Projection

VLCAD: Very long-chain acyl-CoA dehydrogenase

WGCNA: Weighted Gene Co-expression Network Analysis
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Abstract

Background: Maternal obesity is a health concern that may predispose newborns to a high risk

of medical problems later in life. To understand the transgenerational effect of maternal obesity,

we conducted a multi-omics study, using DNA methylation and gene expression in the

CD34+/CD38-/Lin- umbilical cord blood hematopoietic stem cells (uHSCs) and metabolomics

of the cord blood, all from a multi-ethnic cohort (n=72) from Kapiolani Medical Center for

Women and Children in Honolulu, Hawaii (collected between 2016 and 2018).

Results: Differential methylation (DM) analysis unveiled a global hypermethylation pattern in

the maternal pre-pregnancy obese group (BH adjusted p<0.05), after adjusting for major clinical

confounders. Comprehensive functional analysis showed hypermethylation in promoters of

genes involved in cell cycle, protein synthesis, immune signaling, and lipid metabolism.

Utilizing Shannon entropy on uHSCs methylation, we discerned notably higher quiescence of

uHSCs impacted by maternal obesity. Additionally, the integration of multi-omics data-including

methylation, gene expression, and metabolomics-provided further evidence of dysfunctions in

adipogenesis, erythropoietin production, cell differentiation, and DNA repair, aligning with the

findings at the epigenetic level.

Conclusions: This study reveals the significant correlation between pre-pregnancy maternal

obesity and multi-omics level molecular changes in the uHSCs of offspring, particularly in DNA

methylation.
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Introduction

Maternal obesity has emerged as a primary health concern during pregnancy, with its prevalence

alarmingly increasing. According to a study by the Centers for Disease Control and Prevention,

the percentage of women experiencing pre-pregnancy obesity in the United States escalated from

26% to 29% between 2016 and 2019 1. Born to mothers with obesity, higher birth weight is

associated with a higher incidence of childhood cancers such as leukemia and neuroblastoma 2,3,

as well as greater risks of prostate and testicular cancers in men 4–6 and breast cancer in women 7.

Moreover, maternal obesity may have a transgenerational effect and set the stage for increased

chronic disease susceptibility later in the adulthood of offspring 8,9. The hypothesis of the utero

origin of diseases proposes that numerous chronic diseases have their origins in the fetal stage,

the earliest phase of human development 10,11. Some researchers have speculated higher stem cell

burdens in newborn babies born from obese mothers 12. In particular, a study showed increases in

cord blood CD34+CD38- stem cell and CD34+ progenitor cell concentrations with maternal

obesity 13, suggesting that the higher proportions of stem cells in cord blood may make the babies

more susceptible to obesity and cancer risks. However, so far little work provides the direct

molecular links as to how maternal obesity affects the cellular function and increases the disease

risk in offspring.

To seek answers in this area, we conducted an epigenome centered multi-omics study to directly

pinpoint the effect of maternal obesity in umbilical cord blood hematopoietic stem cells

(uHSCs). Epigenetics is chosen as the center of multi-omics integration, as it is both inheritable

and susceptible to modification by diseases. Thus it may serve as a plausible mediator in the

transmission of the effects of maternal obesity to offspring. We incorporate gene expression for

cord blood stem cells and metabolomics data from the cord blood serum as the downstream
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readout of epigenetics changes. By elucidating these molecular connections, we provide a

systematic understanding of how maternal obesity during pregnancy can influence the multiple

types of molecular profiles of newborns. Such knowledge may ultimately help develop early

therapeutic interventions at the molecular level to mitigate these transgenerational health risks

due to maternal obesity.

Methods

Overview of the maternal pre-pregnancy cohort with baby cord blood

In this study, baby cord blood samples from 72 pregnant women (34 obese; 38 non-obese) who

delivered at Kapiolani Medical Center for Women and Children in Honolulu, Hawaii

(2015-2018) were collected. The study was approved by the Western IRB (WIRB Protocol

#20151223). Patients meeting the inclusion criteria were identified from pre-admission medical

records with pre-pregnancy BMI > 30.0 (maternal obesity) or 18.5-25.0 (normal weight). All

participants involved in this study provided written informed consent before the collection of

cord blood samples. Pregnant women undergoing elected C-sections at >37 weeks gestation were

included, in order to minimize confounding events during the labor. Patient exclusion criteria

included pregnant women with preterm rupture of membranes, labor, multiple gestations,

pregestational diabetes, hypertensive disorders, cigarette smokers, infection of human

immunodeficiency virus or hepatitis B virus, and chronic drug use. Demographic and

phenotypic information was recorded, including maternal and paternal age, ethnicity, gestational

weight gain, gestational age, parity, and gravidity. For newborns, Apgar scores were documented
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at 1 minute and 5 minutes post-delivery. The Apgar score serves as a comprehensive assessment

of a newborn's health, with a normal range considered to be between 7 to 10 14.

Sample preparation and methylation profiling

The baby cord blood sample was collected in the operating room under sterile conditions at the

time of the C-section (Pall Medical Cord Blood Collection Kit containing 25ml citrate phosphate

dextrose). The umbilical cord was first cleansed with chlorhexidine swabs before cord blood

collection. The total volume of collected blood was measured and recorded before aliquoting to

conical tubes for centrifugation. The tubes were centrifuged at 200g for 10 min, and plasma was

collected. The plasma volume was replaced with 2% FBS/PBS. Negative selection reagents were

added to the blood and incubated for 20 min (Miltenyi Biotec, Auburn, CA). The cord blood was

diluted with an equal volume of 2% FBS/PBS. A 20ml aliquot of the diluted blood was layered

over a density gradient (15ml Lymphoprep) and centrifuged at 1200g for 20 min. The top layer

containing an enriched population of stem cells was collected, centrifuged at 300g for 8 min, and

then washed in 2% FBS/PBS. Red blood cells were lysed using ammonium chloride (9:1) with

incubation on ice for 10 min, washed twice, and then resuspended in 100µl of 2% FBS/PBS.

Cells were stained with Lineage FITC and CD34 APC for 45 min on ice, washed twice, and then

sorted using the BD FacsAria III. Hematopoietic stem cells (CD34+/CD38-/Lin-) were collected

and stored at -80°C until DNA/RNA extraction.

DNA and RNA were extracted simultaneously using the AllPrep DNA/RNA extraction kit

(Qiagen). DNA purity and concentration were quantified in Nanodrop 2000 and Picogreen assay.

Bisulfite conversion of 500 ng DNA was performed using the EZ DNA Methylation kit (Zymo),

followed by sample processing for Infinium HumanMethylation450 bead chips (Illumina)
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according to the manufacturer’s instructions. Bead chips were analyzed at the Genomics Shared

Resource at the University of Hawaii Cancer Center.

Bulk RNA sequencing

A total of 50 RNA samples were prepared for bulk RNA Sequencing. RNA concentration and

RIN score were assayed using Nanodrop 2000 and Agilent Bioanalyzer. A total of 200 ng of

high-quality RNA (RIN>7) was subjected to library construction (polyA) and sequenced on

HS4000 (2x100) at the Yale Center for Genome Analysis, Connecticut to obtain at least 25M

paired reads per sample.

Methylation data pre-processing

R version 3.6.3 was used for all downstream analyses. Raw intensity data (.idat) were extracted

using the ‘ChAMP’ package (version 2.16.2) in R 15–18. Quality control and processing were

performed following the ChAMP pipeline. Background controls were subtracted from the data,

and raw data that did not pass detection P-value of 0.05 were removed. For each CpG site, the

methylation score was initially calculated as the beta value, a fluorescence intensity ratio

between 0 and 1. CpG sites whose probes had known underlying SNPs and association with XY

chromosomes were removed from analysis due to potential confounding. After BMIQ

normalization 19, the batch effect due to non-biological technical variation caused by experiment

handling was removed using the ComBat function in the ChAMP package, confirmed by the

singular value decomposition (SVD) plot. The M-values for differential analysis were
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transformed from beta-values using lumi (ver 3.1.4) in R 20–23. A total of 410,765 CpG sites

remained for downstream analysis after probe filtering, normalization, and batch removal.

Source of variation analysis and confounding adjustment

To eliminate potential confounding factors of pre-pregnant maternal obesity among the 13

clinical factors, we conducted a source of variation analysis to identify the clinical factors that

significantly contribute to the methylation level variation, as done before 24,25. The variables with

F statistics greater than 1 (the error value) were determined as confounders and subjected to

confounding adjustment. These factors include the baby’s sex, net weight gain during the

pregnancy, maternal age, maternal ethnicity, paternal ethnicity, gravidity, and gestational age. To

adjust for confounding, a linear regression model is built using the ‘limma’ package to fit

methylation M values of each CpG site, using the confounding factors above. The remaining

residuals on the M values were considered to be confounding-adjusted for the subsequent

bioinformatics analysis of DNA methylation.

Bioinformatics analysis of differential methylation (DM)

A moderated t-test from the ‘limma’ R package (version 3.42.2) 26 was used for detecting DM

CpG sites between healthy controls and cases with M values. The p-values were adjusted for

multiple hypotheses testing using Benjamini-Hochberg FDR. CpG sites with FDR <0.05 were

considered statistically significant. To minimize the effect of the gestational age, CpG sites

located within the gestational-age-related differentially methylated regions (DMR) were

removed. A total of 130 DMRs related to gestational age were identified using linear regression

analysis performed with bumphunter 27 across eight public datasets including a total of 248
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patients.: GSE31781 28, GSE36829 29, GSE59274 28,30, GSE44667 31, GSE74738 32, GSE49343 33,

GSE69502 34, and GSE98224 35,36. The complete list of DMRs was included in Supplementary

Table 1. Hypermethylation and hypomethylation states were defined by the values of log2 Fold

Change (log2FC) of M values in cases compared to controls: hypermethylation if bigger than 0,

and hypomethylation if less than 0. Corresponding genes and feature locations of these

differential CpG sites were annotated using IlluminaHumanMethylation450kanno.ilmn12.hg19

(ver 0.6.0) 37 .

KEGG pathway enrichment analysis

‘gometh’ function from R package “missMethyl” (version 1.26.1) 38–41 was used for KEGG

pathway enrichment 42–44 with DNA methylation data. DM sites were used for pathway

enrichment within five supergroups from KEGG pathways: Metabolism, Genetic Information

Processing, Environmental Information Processing, Cellular Processes, and Organismal Systems.

Pathways with adjusted p-values less than 0.05 were considered significant. Pathway scores for

protein pathways (KEGG: Transcription, Translation, Folding, sorting and degradation) and

immune pathways (KEGG: Immune system) were calculated with averaged beta values from the

promoter region CpG sites.

Weighted co-expression network analysis

Firstly, we adjusted all beta values with clinical confounders, then summarized the DM CpG

sites at the gene level by averaging the beta values in the promoter regions (those in the TSS200

and TSS1500 promoter regions). Next, we transformed adjusted beta values to adjusted M values

for the downstream adjacency matrix construction. We used adjusted M values for the weighted
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gene co-expression network analysis (WGCNA) with R package ‘WGCNA’ (version 1.70-3) 45,46.

The soft threshold for the weighted adjacency matrix with an adjusted R2>0.8 was 7. The

topological overlap matrix was constructed for hierarchical clustering. Modules were identified

by the dynamic tree-cut algorithm. The networks were exported to Cytoscape with an edge

weight greater than 0.03 in each module. The genes with the highest betweenness and degree in

the WGCNA network were identified as the hub genes for different modules.

Protein-protein interaction network analysis

For the protein-protein interaction (PPI) network analysis, DM genes are used as the inputs and

were mapped on the STRING database (version 10) 47. Significantly functionally associated

protein pairs were identified using PANDA (Preferential Attachment based common Neighbor

Distribution derived Associations) (version 0.9.9) 48. KEGG pathways associated with these

protein pairs (in terms of genes) were found using PANDA. The bipartite network graph was

visualized using Cytoscape (version 3.8.1) 49.

Stemness score computation

The stemness score was based on Shannon entropy and scaled plasticity, as proposed previously

50. Shannon entropy has been widely applied in developmental biology, particularly in stem cell

research 51–53. The formulas are shown below:

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =
𝑖=1

𝑁

∑

−
𝐶𝑝𝐺
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𝑙𝑜𝑔
𝐶𝑝𝐺

𝑖

𝑖=1

𝑁
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𝑖
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⎝

⎞
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𝑆𝑡𝑒𝑚𝑛𝑒𝑠𝑠𝑆𝑐𝑜𝑟𝑒 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦−𝑚𝑖𝑛(𝐸𝑛𝑡𝑟𝑜𝑝𝑦)
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N is the total number of CpG sites. CpG is represented by the beta value on each CpG probe.

The stemness score was calculated for all samples using all remaining 410,765 CpG sites after

the preprocessing. A Wilcoxon rank test was performed between the stemness scores of the

healthy and maternally obese groups.

Bulk RNA-seq data processing

The Illumina universal adapter regions of raw RNA-seq data were first trimmed using BBMap

(version 38.91) 54. All raw sequences passed the quality control using fastqc (version 0.11.8) 55.

The trimmed .fastq files were aligned by STAR (version 2.7.0f) 56 to the human Ensembl genome

(Homo_sapiens.GRCh38.dna.primary_assembly.fa) and Ensembl annotation

(Homo_sapiens.GRCh38.94.gtf). The gene expression counts were calculated using featureCount

57 from Subread (ver 1.6.4) 58.

Differential expression (DE) of RNA-Seq data

The statistically significant DE genes between healthy controls and maternally obese cases were

found adjusting for the same clinical confounders for methylation analysis using the ‘DESeq2’

(version 1.26.0) 59 and ‘limma-voom’ function from ‘limma’ package 26. The p-values were

adjusted for multiple hypotheses testing using BH adjustment. Genes with adjusted p-values less

than 0.05 were considered statistically significant.

Correlation analysis between bulk RNA-seq and methylation data

A subset of 47 patients have done both methylation and RNA-seq assyas. Differential expression

analysis was done on the bulk RNA-seq data using the ‘limma’ package, with a threshold of BH
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adjusted p<0.05 to be differential genes. Pearson correlation coefficients (PCC) were calculated

between gene expression and methylation beta values from the promoter regions, among the

same patients. As mostly a negative correlation between gene expression and DNA methylation

in the promoter region is expected, genes with a high negative correlation (PCC<-0.2) were used

for pathway enrichment using TOPPFUN 60–62. Top genes of interest were selected with the

absolute value Fold Change>1.5 in gene expression and gene-methyl correlation <-0.3 for hyper-

and hypo-methylated CpG sites.

Metabolomics analysis

Metabolomics data were acquired from a previously published study involving 87 patients in the

same cohort from three batches (metabolomics workbench study ID ST001114) 63. Targeted

metabolites were generated with LC-MS, and untargeted metabolites were generated with

GC-MS. After removal of compounds missing in more than 10% samples, a total of 185

metabolites remained, including 10 amino acids (AA), 40 acylcarnitines (AC), 35 acyl/acyl

phosphatidylcholines (PC aa), 38 acyl/alkyl phosphatidylcholines (PC ae) and 62 untargeted

metabolites. The raw metabolite data were log transformed, standardized, normalized using

variance stabilization normalization (VSN), and batch corrected with ComBat function in sva

pacakge64. Differential metabolites were identified by limma, with clinical confounders

adjustment.

Multi-omics integration on metabolomics, epigenomics, and transcriptomics

A subset of 42 patients have the matched methylation, gene expression, and metabolomics data.

We applied multi-omics integration with Data Integration Analysis for Biomarker discovery
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using Latent cOmponents (DIABLO) implemented in the mixomics package 65. DIABLO finds

the correlated consensus latent variables among different omics in the supervised manner. Top

DIABLO features for each omic were selected based on the loading values. We integrated the

pathway level methylation, gene, and metabolite interaction using pathview 66.

Results

Overview of study design and cohort characteristics

This study aims to investigate the transgenerational effect of pre-pregnancy maternal obesity on

offspring. A total of 72 patients who elected to deliver full-term babies through C-sections were

recruited from Kapiolani Medical Center for Women and Children in Honolulu, Hawaii from

2016 to 2018. Among them, 38 deliveries are in the healthy control group and 34 are cases with

pre-pregnancy maternal obesity. We excluded natural virginal births, to avoid its potential

confounding effect on multi-omics profiles. We also carried out stringent recruitment selection

criteria, including matching the mothers’ ages as much as possible, as well as similar net

gestational weight gain to minimize its confounding effect over maternal pre-pregnancy maternal

obesity. The overall study design is shown in Figure 1. Briefly, upon collecting the blood

samples, umbilical cord blood hematopoietic stem cells (uHSCs) were enriched by FACS sorting

with CD34+CD35-LIN- markers (seeMethods). We extracted DNA and RNA from these

uHSCs for Illumina 450k array based DNA methylation and bulk RNA-Seq sequencing

respectively. The plasma from these cord blood samples was subject to untargeted metabolomics

assays using GC-MS and targeted metabolomics assays using LC–MS 63. Given the rationale

that DNA methylation could be the mediator for exerting the transgenerational effect of maternal
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obesity 67,68, we carried out multi-omics data integration analysis in the DNA methylation-centric

manner.

The demographic details and clinical information of these patients are summarized in Table 1.

The distributions of the most representative variables are shown in Figure 2. Among categorical

demographic variables, the distribution of baby sex had no statistical difference between obese

and health groups, whereas the ethnicity distributions among mothers and fathers, parity and

gravidity are statistically different (P<0.05) between the two groups (Figure 2A-2E). Besides

maternal pre-pregnancy BMI, other maternal parameters such as maternal age, gestational week,

net weight gain and hemoglobin are also not statistically significantly different between the two

groups per study design (Figure 2F-2I, Table 1). While mothers of Asian ethnicity are the

majority in the control group, NHPIs account for the majority of the maternal-obese group,

revealing the health disparity issue known in the state of Hawaii 69. Moreover, the control group

has lower parities and gravidities, compared to the cases. Babies born to obese mothers show

significantly higher (P<0.05) body weights compared to the control group, as expected 70. Other

parameters including the baby gender, head circumference, body length, and APGAR score at 5

min after birth are not statistically significantly different between case and control groups

(Figure 2J-2M).

Global hypermethylation pattern revealed by CpG level methylation analysis

For scientific rigor, it is critical to adjust for confounding in DNA methylation association

analysis 71. Thus we performed the source of variance (SOV) analysis on the beta values of the

DNA methylation with respect to physiological and phenotypic information, in order to assess
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potential confounding factors systematically 24,25,71. As shown in Figure 3A, marginal F-statistics

in the SOV analysis show that the dominating contribution to DNA methylation variation is

maternal pre-pregnancy obesity status, confirming the quality of the study design which aimed to

minimize other confounders’ effect. The other minor confounding factors include baby sex,

maternal age, maternal ethnicity, net weight gain during pregnancy, paternal ethnicity, gravidity,

and gestational age (F-statistics>1). After adjusting these factors by linear regression, all have

reduced F-statistics of less than 0.5 (Figure 3B) except maternal pre-pregnancy obesity,

confirming the success of confounding removal.

Next, we conducted differential methylation (DE) analysis on the confounding adjusted DNA

methylation data (Methods). We observed a global hypermethylation pattern in pre-pregnancy

obese samples, with 10,254 hypermethylated vs. 5394 hypomethylated CpG sites (Figure 3C).

The top 20 differentially hypermethylated and hypomethylated CpG sites are reported in Table 2,

respectively. These CpG sites are related to a wide variety of biological functions, including

inflammation (CD69, ADAM12), transcription factors (ZNF222, HMGN4, LHX6, TAF3),

proliferation and apoptosis (HDAC4, DHRS4, LRCH3, SAFB2, CRADD, EBF3, PRKAR1B).

Some top DM CpG sites are associated with obesity directly, including HDAC4 72 and PLEC173.

We further examined the distributions of these differentially methylated sites, relative to the CpG

island regions and promoter proximity. (Figure 3D-E). A big fraction (38.7%) of the DM sites

are located in CpG islands 74,75, significantly higher than that from the Illumina 450K annotation

(P<2E-16). CpG islands are more frequent in the hypermethylated sites (41.3%) as compared to

these in the hypomethylated sites (33.6%), consistent with the global hypermethylation pattern.
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Relative to gene localization, DM sites are most frequent (32.1%) in the promoter regions

(including 16.8% and 15.3% in TSS200 and TSS1500 respectively) as expected.

Functional analyses reveal the association between maternal obesity and cell cycle, immune

function and metabolic changes in the cord blood of offspring

To investigate the biological functions related to the epigenome alternation, we conducted

systematic analysis of DM sites employing multiple methods: KEGG pathway enrichment

analysis, Weighted Gene Co-expression Network Analysis (WGCNA), and Protein-Protein

Interaction (PPI) network analysis.

KEGG pathway enrichment analysis on hypermethylated CpG sites identified five significant

pathways with FDR<0.05 (Figure 4A), including the cell cycle, ribosome, nucleocytoplasmic

transport, ribosome biogenesis in eukaryotes, and mTOR signaling pathway. Cell cycle,

ribosome, and nucleocytoplasmic transport pathways are essential to normal cell functioning.

mTOR signaling pathway coordinates the nutrient-mediated metabolism, immune responses and

cell cycle progression, and dysregulation of mTOR could lead to various diseases such as cancer

and obesity 76. There was no significantly enriched pathway emerging from hypomethylated CpG

sites. The maternally obese group shows significantly higher methylation levels in KEGG

protein synthesis and immune system pathway collections compared to the control group,

indicating repression in immune response as well as translation and protein synthesis (Figure

4B-C). Similarly, we further explored the differential potential, or stemness, of umbilical cord

Hematopoietic Stem Cells (uHSCs). We first confirmed the homogeneity of uHSCs by

single-cell RNA sequencing UMAP plot (Supplementary Figure 2). We calculated the cell
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stemness scores using the DNA methylation beta values similar to others 77. uHSCs derived

from the maternally obese group exhibit significantly elevated stemness scores (P<0.01) in

comparison to the control group (Figure 4D), confirming the results in KEGG pathway analysis.

Next, we applied WGCNA to cluster co-regulation of gene-level methylation, by averaging CpG

sites to affiliated genes (seeMethods). Five co-expression modules are identified, using the

M-values adjusted for clinical confounders (Supplementary Figure 1A), and all modules show

positive correlations with maternal obesity except one. The largest turquoise module (Figure 4E)

is related to cell cycle, protein synthesis, and transport and vesicle trafficking pathways through

pathway enrichment analysis. Some hub genes in this module are identified, including INTU,

ANAPC7, and AGBL5. These genes were reported essential for maintaining cell polarity

(INTU)78, proliferation (ANAPC7) 79 and glycemic control (AGBL5) 80. The brown module

(Figure 4F) is enriched with immune response pathways, in which TLR6 is identified as a hub

gene. The other yellow module is related to ion homeostasis, and the gray module is related to

the p53 pathway, apoptosis, cell senescence, and ER stress (Supplementary Figure 1B). The

only negatively correlated blue module is associated with axon guidance and VEGF signaling

pathway (Supplementary Figure 1B).

Furthermore, we examined the PPI network, using the gene-level DNA methylation as surrogates

(Figure 4G). The PPI analysis identifies 14 unique pathways (FDR < 0.05) predominantly

associated with hypermethylated CpG sites in the TSS200 and TSS1500 regions. The top five

largest pathways included ribosome, proteasome, cell cycle, axon guidance, RNA polymerase,

and neuroactive ligand-receptor interaction. Taken all three types of systematic analyses together,
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cell cycle, immune function and protein synthesis are ubiquitously highlighted, suggesting that

these biological functions in cord blood stem cells are negatively impacted by maternal obesity.

Multi-omics analysis reveals disruptions in cell cycle and metabolic pathways

To systematically investigate the epigenetic, transcriptomic, and metabolomic alterations induced

by maternal obesity, we performed multi-omics integration analysis on this cohort. We

employed DIABLO, a supervised integration method that extracts features associated with

maternal obesity, based on the correlations in the embedding space 65. Figure 5A-C shows that

methylation data provide the clearest separation between obese and control groups, confirming

the value of the earlier DNA methylation centered analysis.

The top 25 features from each omic with the highest feature weights (loadings) following

integrated canonical correlation analysis are demonstrated in Figure 5D-F. The methylation

features with the highest weights related to maternal obesity include CpG sites involved in

cell-cycle control, glucose metabolism, and adipogenesis (FOXO181), DNA repair (LIG3,

SMUG1), erythropoietin pathway and differentiation (EPO, CSNK2A1, CSF1), which are

hypermethylated in the obese group. Hypomethylation of LEP (encoding leptin) was also

observed as a top feature, aligning with prior findings that maternal obesity is associated with

elevated maternal leptin levels, a known marker of adipose tissue 82. These featured CpG sites

indicate repression in fat metabolism and DNA repair and reduced differentiation potential. In

the transcriptomic space, many genes related to mRNA splicing (SRRM1, IGF2BP1, IGF2BP2,
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CNOT4) have increased expression levels due to maternal obesity. Among the metabolite

features, essential sugars (glucose, xylose), poly-unsatuated fatty acids (oleic acids, DHA,

arachidonic acid), and phosphatidylcholine (PCs) are mostly decreased in the obese group;

whereas most acylcarnitines (C) are elevated. The metabolic changes show an overall

accumulation of saturated fatty acid, but repression on fat breakdown, glucose and unsaturated

fatty acid generation. As poly-unsatuated fatty acids (eg. arachidonic acid) have important

anti-inflammatory effects, the results indicate a pro-inflammatory environment in offspring born

of pre-pregnant obese mothers.

Discussion

Maternal obesity is one of the most urgent health concerns worldwide. Pre-pregnancy maternal

obesity could cause various pregnancy-related complications and predispose offspring to

cardiometabolic complications and chronic diseases in the long term 9. Multiple cross-continental

large cohort meta-analyses have shown that maternal obesity is directly associated with

offspring’s risk of obesity, coronary heart disease, insulin resistance, and adverse

neurodevelopmental outcome based on longitudinal observational studies 9,83,84. To directly

ping-point the molecular level changes in offspring by maternal pre-pregnancy obesity, we used

cord blood stem cells as the studying material, which serve as a great surrogate revealing

newborn's metabolism and immune system changes at the time of birth 85. The current study

expands previous effects and investigates the direct impact of maternal obesity on uHSCs

programming, the progenitor of immune cell population, using a multi-omics (epigenetic, gene

expression, and metabolite) analysis approach from a unique multi-ethnic cohort.
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Centered around methylation changes, three complimentary functional analysis approaches

(KEGG, WGCNA, and PPI) consistently demonstrated that maternal obesity impacts multiple

bilogical functions including hypermethylation in promoters of genes involved in cell cycle,

ribosome biogenesis, and mTOR signaling pathways. Moreover, mTOR signaling pathway also

plays a crucial role in metabolism and cell cycle regulation, disruption in this pathway leads to

insulin resistance and long-term diseases 86. We observed a significant increase in stemness

scores among uHSCs affected by maternal obesity, aligning with expected downregulation in the

cell cycle gene expression due to observed hypermethylation in the promoters of these genes.

Higher stembess scores indicate enhanced quiescence, shift the balance between stem cell

maintenance and differentiation towards the former. Unlike adult HSCs, fetal/neonatal HSCs

typically exhibit higher proliferation and self-renewal capabilities, crucial for blood cell

regeneration and innate immune system development 87. Our findings provide strong epigenetic

evidence that maternal obesity compromises the maturation processes in neonatal uHSCs, which

may predispose newborns to immunological disorders.

The subsequent multi-omics integration analysis expanded conclusions from methylation

analysis to additional metabolomics readouts that are also linked to biological functions eg. cell

cycle and inflammatory pathway. We thus propose the conceptual model to illustrate the effect of

maternal pre-pregnancy obesity (Figure 6). Maternal obesity leads to nutrient deficiency with

lower levels of essential amino acids and fatty acids in the newborn blood and disrupts the lipid

metabolism homeosis in offspring. These metabolite changes further induce cell membrane

instability and repress cell cycle progression, cell proliferation88, enhancing the dysregulation of

these functions preexisting at the methylation level. Lipid dysregulation may also enhance the
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pro-inflammatory environment, which in turn induces complications in offspring later in life,

such as cardiovascular diseases. Such proposed model is also consistent with and further

strengthens previous studies at the metabolomics or epigenome levels. For example, previous

metabolomics studies of cord blood showed metabolic derangement predisposes newborns to

cardiometabolic and endocrine diseases, and disrupt the normal hormone function and neonatal

adiposity 82,89. Previous epigenome-wide association study (EWAS) with cord blood found a

strong association between DNA methylation pattern and postnatal BMI trajectory until

adolescent 90.

In summary, this newborn study demonstrates the direct impact of maternal pre-pregnancy

obesity and on newborn blood at the multi-omics level, which includes increased cell cycle

arrest, impairment in the uHSC differentiation capacity, more inflammation and disruption in

lipid metabolism.
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Figure legends

Figure 1. Overview of the study design and analysis. In the preparation step, cord blood

plasma samples are collected for metabolome profiling and stem cell sorting. DNA and RNA

extraction assays are performed on the enriched stem cells for the methylation and RNA-seq

analyses. Downstream analyses are mainly focused on the methylation data. Bulk RNA-seq data

were used for validations for methylation discoveries. (Created with BioRender.com)

Figure 2. Mother and newborns statistics of the multi-ethnic cohort from Hawaii. (A-E)

Categorical variables including baby sex, maternal ethnicity, paternal ethnicity, parity and

gravidity between control and obese groups are shown in the barplots. P-values using Chi-square

test are annotated comparing control and obese groups. (F-I) The distributions of maternal age,

gestation age, maternal net weight gain during pregnancy, and maternal hemoglobin between

control and obese groups are compared. Mean and standard deviation are shown in boxplot.

P-values using t-test are annotated. (J-M) The distributions of baby weight, baby head

circumference, baby length, and APGAR score after 5 minutes of delivery between control and

obese groups are compared. Mean and standard deviation are shown in boxplot. P-values using

t-test are annotated.

Figure 3. DNA methylation analysis on uHSCs.

(A-B) Source of variance plot before and after confounding adjustment. F-statistics are reported

for each clinical factor. F statistics greater than 1 are considered to have confounding effects in

addition to the case/control difference due to pre-pregnancy maternal obesity. (C) Volcano plot of
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-log(BH adjusted p-values) against logFC. The cutoff line for adjusted p-value < 0.05 is shown

as the red horizontal line. The hyper/hypo threshold is shown as a blue vertical line where

logFC=0. Non-significant methylation CpG sites after the differential analysis were shown in

gray. Significant CpG sites are colored. After the removal of gestational age-related CpG sites,

10,254 CpG sites are hypermethylated and 5,394 sites are hypomethylated. (D-E) Normalized

location distribution of differentially methylated CpG sites according to their CpG features in

terms of isle regions and gene regions based on the chip annotation. Isle regions include shelf,

shore, island, and open-sea. Gene regions include gene body, intergenic region (IGR), TSS200,

TSS1500, 5’UTR, 3’UTR, and 1st Exon.

Figure 4. Pathway and network analysis. (A) KEGG pathway enrichment for

hypermethylated CpG sites from promotor region. Enriched KEGG pathway names, adjusted

p-values (-log10 transformed), and the size of enriched gene list are reported for CpG sites from

TSS200+TSS1500 regions. The red dotted line shows the threshold cutoff for FDR at

-log10(0.05). (B-C) Boxplots of averaged beta values for KEGG protein pathway collection and

immune pathway collection with Wilcoxon P-values. (D) Violin plots of cell entropy scores

between control and obese groups with Wilcoxon P-values. (E-F) WGCNA network analysis

results. WGCNA modules are shown for both the control and the obese group. The top two

modules with largest degrees are turquoise and brown modules. Each node represents a gene.

Genes co-expressed in each module are annotated. (G)Protein-protein interaction (PPI) network.

Bipartite graphs represent enriched KEGG pathways and associated genes with significant PPIs.

Red nodes represent genes with hypermethylated CpG sites. Blue nodes represent genes with

hypomethylated CpG sites. Yellow nodes represented the enriched KEGG pathways. Number of
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inter-pathway PPIs are annotated in the rectangular boxes.

Figure 5. Multi-omics integration analysis

(A-C) Omics-specific sample plots from DIABLO showing the separation of obese and control

samples in methylation data, gene expression data, and metabolomics data respectively. (D-F)

Importance plot of top 25 features in methylation, gene expression and metabolomics modalities

with the highest loadings extracted from the embedding space. The color represents the condition

which features contribute the most.

Figure 6. A proposed model of maternal obesity’s impact on neonatal development.

Tables

Table 1. Summary statistics of the study cohort.

Control (n=38) Case (n=34)

Maternal Age 31.3±5.6 31.6±4.9

Gestational Week 38.9±0.5 39.0±0.3

Net Weight Gain 32.0±11.6 30.9±14.6

Hemoglobin 11.6±1.6 11.0±1.4

Maternal
Ethnicity

Asian 21 8
Caucasian 11 4
NHPI 6 22

Paternal
Ethnicity

Asian 19 11
Caucasian 11 2
NHPI 8 21
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Baby Sex
Female 17 21
Male 21 13

Parity

0 7 3
1 21 7
2 9 11

More 1 13

Gravidity

1 6 2
2 15 5
3 13 8
4 3 6
5 1 4

More 0 9
Demographic and clinical statistics are reported for the control and maternally obese groups.

Table 2. Top 20 hypermethylated CpG sites and top 20 hypomethylated CpG sites.

CpG Gene Island Group logFC P.Value adj.P.Val Type

cg12303
247

SYT11 OpenSea 3'UTR 2.188 2.44E-05 6.09E-03 Hyper

cg16818
768

PSMG1 Island TSS1500 1.605 2.15E-05 5.74E-03 Hyper

cg05995
465

HDAC4 OpenSea 5'UTR 1.604 1.65E-03 4.65E-02 Hyper

cg01937
701

DHRS4 Island TSS200 1.592 1.96E-10 2.45E-05 Hyper

cg22243
583

DLEU1 S_Shore Body 1.522 2.53E-06 2.01E-03 Hyper

cg16927
136

RPL35A OpenSea TSS1500 1.507 2.39E-10 2.45E-05 Hyper
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cg08899
199

ST7 S_Shore Body 1.4 7.34E-07 1.13E-03 Hyper

cg05054
115

DHRS4 Island TSS200 1.389 6.66E-08 3.73E-04 Hyper

cg12878
710

LRCH3 Island TSS200 1.387 1.27E-06 1.48E-03 Hyper

cg05130
022 HMGN4

N_Shore TSS200 1.386 1.51E-04 1.45E-02 Hyper

cg05643
303

HOXC8 Island TSS200 1.345 2.70E-05 6.34E-03 Hyper

cg07449
543

CHORD
C1

S_Shore TSS200 1.342 6.32E-05 9.53E-03 Hyper

cg25016
112 DENND

3

OpenSea Body 1.314 1.22E-03 4.01E-02 Hyper

cg09552
166

MSL2 N_Shore TSS200 1.296 2.30E-05 5.92E-03 Hyper

cg01003
902

SAFB2 Island TSS200 1.269 1.04E-08 1.42E-04 Hyper

cg110284
45 FAM96A

N_Shore TSS1500 1.265 1.97E-04 1.65E-02 Hyper

cg10317
138 ADAM1

2

N_Shore Body 1.229 5.06E-04 2.60E-02 Hyper

cg09757
277

ZNF222 S_Shore 5'UTR 1.229 9.88E-08 4.27E-04 Hyper

cg041173
38 CRADD

N_Shore 5'UTR 1.209 1.66E-03 4.67E-02 Hyper

cg07354
583

CD69 OpenSea Body 1.205 5.94E-07 1.02E-03 Hyper

cg04043
455

EBF3 S_Shelf Body -2.031 6.12E-04 0.029 Hypo

cg20784 N_Shore Body -1.812 1.96E-05 0.005 Hypo
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950 PLEC1

cg09976
051

AGA N_Shore Body -1.516 1.67E-04 0.015 Hypo

cg13862
711 LHX6

Island Body -1.469 1.65E-03 0.047 Hypo

cg16434
331 SLC39A

11

OpenSea Body -1.411 9.52E-08 0 Hypo

cg05636
467

EBF3 S_Shelf Body -1.335 1.65E-03 0.047 Hypo

cg16858
146

TAF3 S_Shelf Body -1.33 3.15E-05 0.007 Hypo

cg24796
644 MDGA1

Island Body -1.242 1.48E-05 0.005 Hypo

cg110640
39 PRKAR1

B

Island 5'UTR -1.227 1.58E-03 0.046 Hypo

cg06833
656 TBCD

OpenSea Body -1.219 2.68E-06 0.002 Hypo

cg25430
507 NXPH2

S_Shore TSS1500 -1.152 2.08E-06 0.002 Hypo

cg03485
608 NXPH2

N_Shore Body -1.152 2.72E-06 0.002 Hypo

cg00928
596 MIR365-

1

OpenSea TSS200 -1.148 7.32E-05 0.01 Hypo

cg12601
963

NCRNA
00200

Island Body -1.132 2.58E-06 0.002 Hypo

cg22772
691 SLC12A

7

S_Shelf Body -1.123 1.79E-04 0.016 Hypo

cg02584
267

EBF3 OpenSea Body -1.121 2.39E-04 0.018 Hypo
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cg19282
259

NCRNA
00200

Island TSS200 -1.104 3.49E-06 0.002 Hypo

cg08010
094 NXPH2

S_Shore TSS1500 -1.094 1.04E-03 0.037 Hypo

cg06916
001 MIR365-

1

OpenSea TSS200 -1.088 5.74E-05 0.009 Hypo

cg03721
387 KRTAP2

4-1

OpenSea 3'UTR -1.04 4.29E-06 0.003 Hypo

logFC, p-values, BH adjusted p-values, and CpG annotations are reported for the top 20

differentially hypermethylated CpG sites ordered by the adjusted p-values by ‘limma’ packages.

Hypermethylated CpG sites are defined as logFC>0, whereas hypomethylated CpG sites are

defined as logFC<0.
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