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Gastrointestinal (GI) disorders are common in children with neurodevelopmental

disorders such as autism spectrum disorder (ASD). A limited understanding of

the biologic factors that predispose this population to GI disorders has prevented

development of individualized therapies to address this important medical issue. The

goal of the current study was to determine if elements of the salivary micro-transcriptome

could provide insight into the biologic perturbations unique to children with ASD-related

GI disturbance. This cohort study included 898 children (ages 18–73 months) with

ASD, non-ASD developmental delay (DD), or typical development (TD). The saliva

micro-transcriptome of each child was assessed with RNA-seq. Outputs were aligned to

microbial and human databases. A Kruskal Wallis analysis of variance (ANOVA) was used

to compare levels of 1821 micro-transcriptome features across neurodevelopmental

status (ASD, DD, or TD) and GI presence or absence. An ANOVA was also used to

compare micro-transcriptome levels among GI sub-groups (constipation, reflux, food

intolerance, other GI condition, no GI condition), and to identify RNAs that differed

among children taking three common GI medications (probiotics, reflux medication, or

laxatives). Relationships between features identified in ANOVA testing were examined

for associations with scores on the Autism Diagnostic Observation Schedule, 2nd

Edition (ADOS-2) and the Vineland Adaptive Behavior Scales. GI disturbance rates

were higher among children with ASD than peers with TD but were similar to

those with DD. Five piwi-interacting RNAs and three microbial RNAs displayed an

interaction between developmental status and GI disturbance. Fifty-seven salivary RNAs

differed between GI sub-groups–with microRNA differences between food intolerance

and reflux groups being most common. Twelve microRNAs displayed an effect of
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GI disturbance and showed association with GI medication uses and measures of

behavior. These 12 microRNAs displayed enrichment for 13 physiologic pathways,

including metabolism/digestion long-term depression, and neurobiology of addiction.

This study identifies salivary micro-transcriptome features with differential expression

among children with ASD-related GI disturbance. A subset of the RNAs displays

relationships with treatment modality and are associated with autistic behaviors. The

pathobiologic targets of the micro-transcriptome markers may serve as targets for

individualized therapeutic interventions aimed at easing pain and behavioral difficulties

seen in ASD-related GI disturbance.

Keywords: biomarkers, saliva, RNA, microRNA, autism (ASD), gastrointestinal

INTRODUCTION

Previous work has demonstrated that the salivary micro-
transcriptome (non-coding RNA and microbial RNA) could
be used to distinguish between children with autism spectrum
disorder (ASD) (ages 2–6 years) and peers with typical
development or developmental delay (1). These non-coding
RNAs have regulatory roles in metabolism, cell differentiation
and neuronal differentiation, by inhibiting gene expression
(2). Elements of the micro-transcriptomes are up- or down-
regulated by cells in response to the external environment (3),
which suggests that they may have a dynamic relationship
with other factors. Several non-coding RNA in saliva have
demonstrated that their levels are associated with adaptive and
autistic behaviors in children with ASD (4, 5), and are associated
with socialization and autistic behaviors in young children with
ASD (5). However, the relationship between non-coding RNA
and comorbid conditions in ASD is not yet known.

Children with ASD appear to more frequently experience GI
conditions than their neurotypical peers. Children with ASD
have been reported to be diagnosed with a GI problem almost
four times more often than children without ASD (6). The
range of reported prevalence of GI symptoms is from 9 to
91% (7), likely a result of different methods of GI assessment.
Constipation and diarrhea tend to be the most common GI
diagnoses in ASD (6), with constipation the most common (8).
Constipation can frequently be sufficiently severe to result in
emergency department visits and hospital admissions among
children with ASD (9).

Children with abdominal pain can also manifest difficult
and distressing behaviors such as irritability, social withdrawal,
stereotypy, and hyperactivity, as well as aggression and self-
injurious behaviors (7, 10, 11). Associated comorbid conditions
can include seizures, anxiety, depressed mood, attention-
deficit/hyperactivity disorder, oppositional defiant disorder, sleep
problems, as well as other problem behaviors (12–16). Problem
behavior may, itself, sometimes be an indicator of GI distress
in ASD, particularly among individuals with ASD with limited
language (7). Younger individuals with ASD and GI disturbances
display more externalizing behaviors such as aggression, and
older individuals with ASD display more internalizing symptoms
such as anxiety and depression (16). Stress reactivity as well as
anxiety and autonomic arousal are also critically interrelated to

severity of GI symptoms in ASD (17, 18). Many ASD patients
with GI disturbances, such as constipation, are less likely to
respond to first line therapies, such as stool softeners (19).
Therefore, a better understanding of the biologic processes
driving GI disturbances in patients with ASD might provide
mechanistic insights toward better treatments for GI pain and
related behaviors.

Heterogeneity across the autism spectrum has led to failures
in many of the early clinical trials attempting to target core
features of ASD (20). While micro-transcriptomes appear to
distinguish ASD patients from neurotypical controls (21), they
may also have particular value in helping to distinguish specific
subtypes of ASD, which might impact treatment. Because of the
significant adverse effects of GI disorders in ASD (6, 9), as well as
their interrelationships with behavioral disturbances (12–16), we
sought to examine differential micro-transcriptome expression
in ASD patients with and without GI disturbances, as well as
how this interrelates with behaviors. A greater understanding
of the downstream targets of the differentially expressed micro-
transcriptomes may help guide future personalized medicine
approaches to treatment of GI disturbances in ASD.

METHODS

Ethics
The study was approved by the Western Institutional Review
Board (IRB #20180172). Written consent was obtained for all
participants, and written informed assent was documented for
those capable of assent.

Participants
This case control study included a total of 898 children, ages
18–73 months, who were recruited from outpatient pediatric
clinics affiliated with seven academic medical centers: Penn State
University (n = 312), State University of New York (SUNY)
Upstate Medical University (n = 335), Missouri University (n =

108), Cincinnati Children’s Hospital (n = 45), Texas Children’s
Hospital (n = 54), University of California Irvine (n = 15);
and University of Iowa (n = 29). Participants were divided
into three groups based on neurodevelopmental status: autism
spectrum disorder (ASD; n = 503), non-ASD developmental
delay (DD; n = 205), and typical development (TD; n =

190). ASD status was determined by trained clinicians using
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DSM-5 criteria in association with standardized assessment
tools (i.e., the Autism Diagnostic Observation Schedule, 2nd
Edition; ADOS-2). DD participants included children referred
for initial ASD assessment who did not meet diagnostic criteria,
as well as children with negative ASD screening tools who
required early intervention services for delays in gross motor,
fine motor, language, or cognitive development (as reported by
parental survey and confirmed through review of the medical
record). TD participants included children recruited at the
time of their annual well child visits who did not exhibit
developmental delays on standard developmental surveillance
tools (e.g., Survey of Wellbeing in Young Children, Parents’
Evaluation of Developmental Status–Developmental Milestones,
Modified Checklist for Autism in Toddlers Revised). Participants
were further subdivided by presence (n = 184) or absence (n =

714) of gastrointestinal (GI) disturbance, based on: (2) parent
report of (a) constipation (n= 84); (b) reflux (n= 46); (c) chronic
diarrhea or abdominal pain (n = 22); (d) food intolerance (n =

45); (e) cyclic vomiting/dysphagia (n = 3); or (f) eosinophilic
esophagitis (n= 7). Note that total numbers of specific conditions
exceed the number of participants with a GI disturbance because
23 participants reported more than one type of GI disturbance.
Exclusionary criteria for all participants included Ward of the
State, g-tube dependence, active periodontal infection or acute
upper respiratory illness.

Measures
Participant Characteristics
The ADOS-2 was administered by trained raters to children with
ASD (n = 409), and children with DD (n = 121) in whom
ASD was suspected. The Vineland Adaptive Behavioral Scales
3rd Edition (VABS-III) was used to measure adaptive behavior,
communication, and social interaction for all participants.
Additionally, medical and demographic information including
sex, age, race, ethnicity, medical conditions, andmedications, was
collected through parental surveys and affirmed via review of the
electronic health record where available.

Saliva Collection and Processing
Saliva was obtained from all participants in a non-fasting state via
swab, targeting the base of the tongue and between the gums and
buccal mucosa as locations for the collection using an Oracollect
RNA swab (DNA Genotek, Ottawa, Canada). Nucleic acid
extraction was performed using the Qiagen miRNeasy Microkit
(Cat. No. 217084), a QIAzol based purification method. The
RNA sequencing process included using an Illumina TrueSeq
Small RNA Prep protocol for library construction, followed
by sequencing on an Illumina flow-cell and a NextSeq 500
instrument (Illumina; San Diego, CA, United States). Sequencing
outputs were a binary base call (BCL) sequence file per sample,
which was then converted to a FASTQ file, a text-based format
that includes detected bases and associated quality scores (i.e.,
confidence in correct detection). Alignment and quantification
of known RNA sequences for each collected specimen was
done using the Bowtie1 aligner (22) to the following reference
databases: miRBase v22 (23), piRBase v1 (24), RefSeq v90 (25),
and hg38. Quantification of the detected sequences yielded
counts of known human micro-ribonucleic acids (miRNAs),

long non-coding transcripts (small nucleolar RNAs), and piwi-
interacting RNA (piRNAs). To determine microbial RNAs
present in the sample, the leftover sequences that did not
align to hg38 were aligned to the NCBI microbial database
using k-SLAM, an efficient aligner used in metagenomic data.
Aligned sequences were then assigned to microbial genes,
which were quantified to a microbial identity (e.g., genus,
species, strain). Prior to analysis and count normalization, low
count RNAs were removed from further analysis so that only
reliably expressed RNAs were interrogated. Tabulated counts
of each RNA were compared to the total counts detected in
that RNA category, and RNAs that did not account for at
least 0.01% of the total were dropped. Following abundance
filtering, the remaining RNAs were quantile normalized and
mean-center scaled.

Statistics
The primary goals of the study were to: (2) identify human
and microbial RNA levels in saliva that were associated with
GI disturbance; (3) investigate whether these relationships were
impacted by child developmental status; and (4) determine
if specific RNA “biomarkers” displayed unique expression
patterns in particular GI disturbances (e.g., constipation) or
with particular treatments (e.g., probiotics). A two-way analysis
of variance (ANOVA) was used to compare levels of 1821
RNA among the 898 participants based upon two factors: (2)
neurodevelopmental status (ASD, DD, or TD); and (3) GI
status (presence or absence of any GI condition). Interactions
between neurodevelopmental status and GI status were reported.
A one-way Kruskal Wallis rank sum test was used to identify
RNAs that differed among GI sub-groups (constipation, reflux,
food intolerance, other GI condition, no GI condition), and to
identify RNAs that differed among those taking three common
GI medications (probiotics, reflux medication, or laxatives).
Finally, given the potential associations between underlying
GI disturbance and child behaviors, relationships between
RNAs identified in ANOVA testing, as well as the all one-
way Kruskal Wallis testing were examined for associations
with scores on the ADOS-2 and Vineland using Spearman
Rank Testing. Benjamini Hochberg multiple testing correction
was applied to all analyses. Functional analysis of candidate
miRNAs (features displaying an interaction effect between
neurodevelopmental status and GI disturbance, as well as
relationships with treatment or behavior) was performed in
DIANAmiRPATH software v3.0 (26). The microT-cds algorithm
(0.95 microT Threshold) was used to identify pathways over-
represented by putative messenger RNA targets by Fisher Exact
Test with Benjamini Hochberg multiple testing correction.
Additionally, the rates of different demographic features were
tested in the population. To test for differences in age by
diagnosis (ASD, DD, TD) or presence of a GI disturbance,
a one-way ANOVA was used. To test for differences in
rates of sex, race, ethnicity, GI disturbance, constipation,
reflux, food intolerance, chronic abdominal pain, diarrhea,
or eosinophilic esophagitis, a chi-squared test was used
yielding the chi-squared test statistic (x) and the associated p-
value (p).
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TABLE 1 | Participant characteristics.

All (n = 898) ASD (n = 503) DD (n = 205) TD (n = 190)

Age, months (SD) 44 (16) 44 (16) 43 (15) 47 (18)

Sex, # male (%) 663 (73) 399 (79) 147 (71) 117 (61)*

White, # (%) 691 (76) 373 (74) 160 (78) 158 (83)*

Black, # (%) 115 (12) 72 (14) 29 (14) 14 (7)*

Asian, # (%) 22 (2) 17 (3) 3 (1) 2 (1)

Other race, # (%) 100 (11) 55 (10) 25 (12) 20 (10)

Hispanic, # (%) 99 (11) 70 (13) 18 (8) 11 (5)*

GI disturbance, # (%) 184 (20) 114 (22) 50 (24) 20 (10)*

Constipation, # (%) 84 (9) 57 (11) 20 (9) 7 (3)*

Reflux, # (%) 46 (5) 35 (6) 10 (4) 1 (0.5)*

Food intolerance, # (%) 45 (5) 23 (4) 11 (5) 11 (5)

Chronic abdominal pain or diarrhea, # (%) 22 (2) 16 (3) 6 (2) 1 (0.5)

Cyclic vomiting or dysphagia, # (%) 3 (0.3) 0 (0) 3 (1)* 0 (0)

Eosinophilic esophagitis, # (%) 7 (0.7) 4 (7) 3 (1) 0 (0)

The number of participants with specific GI disturbances exceeds the total number of participants with any GI disturbance (n = 184) because 22 participants reported more than one
GI disturbance. *Denotes significant difference (p < 0.05) compared with ASD group on chi-square testing.

RESULTS

Participants
Participating children had an average age of 44 (±16) months.
They were mostly Caucasian (691/898, 76%), non-Hispanic
(799/898, 89%), and male (663/898, 73%) (Table 1).

There were more males in the children with ASD (399/503,
79%) than in the children with TD (117/190, 61%) (p =

0.00000177, x = 22.83). There were fewer children with ASD
who reported White race (373/503, 74%) than children with
TD (158/190, 83%) (p = 0.0125, x = 6.24). More children
with ASD reported Black race (72/503, 14%) and Hispanic
ethnicity (70/503, 13%), compared to children with TD (14/190,
7%; 11/190, 5%, respectively) (p = 0.0134, x = 6.12; p =

0.00297, x= 8.82, respectively). There was no difference between
ASD/DD/TD groups in age (p = 0.0588). There were limited
differences between ASD/DD groups in sex (p= 0.029, x= 4.79),
and no differences in reported White race (p = 0.276, x = 1.19),
Black race (p = 0.954, x = 0.00335), or ethnicity (p = 0.0603,
x = 3.53).

A higher proportion of children with ASD reported GI
disturbance (114/503, 22%) than children with TD (20/190, 10%)
(p = 0.000307, x = 13.03). Among children with ASD, reported
rates of constipation (57/503, 11%) and reflux (35/503, 6%) were
higher than reported rates among children with TD (7/190,
3%; and 1/190, 0.5%, respectively) (p = 0.00416, x = 8.21; p
= 0.0025, x = 9.14, respectively). There were no differences
between children with ASD and children with DD in rates of
constipation (p = 0.78, x = 0.077), reflux (p = 0.46, x = 0.54),
food intolerance (p = 0.86, x = 0.031), chronic abdominal pain
(p = 0.77, x = 0.085), diarrhea (p = 0.797, x = 0.066), or
eosinophilic esophagitis (p = 0.415, x = 0.664). There was no
difference in age (p = 0.205), sex (p = 0.87, x = 0.0255), White
race (p = 0.909, x = 0.0132), Black race (p = 0.395, x = 0.723),
and limited differences in ethnicity (p= 0.041, x= 4.15) between
children with/without GI disturbance.

Impact of GI Disturbance on Saliva RNAs
Among the 1821 RNA features interrogated, 28 displayed
a significant difference (adj p < 0.05) between children
with/without GI disturbance (Table 2A). These RNA features
included four mature miRNAs and 24 small non-coding
RNAs, but no microbial RNAs. There were eight RNA
features that displayed a significant interaction effect between
neurodevelopmental status (ASD/DD/TD) and presence/absence
of GI condition (Table 2B). These RNA features included five
piRNAs and three microbial RNAs (Figure 1). The piRNAs
tended to display similar saliva levels across ASD/DD/TD
groups without GI disturbance, but were lower among children
with ASD and GI disturbance, relative to peers with TD and
GI disturbance.

Differences in Saliva RNA Levels Among GI
Phenotypes
There were 57 RNA features that differed between GI phenotypes
(Table 3). These RNA features included 12microbial RNAs, three
piRNAs, and 42 miRNAs. The largest differences tended to occur
in miRNA levels, and were most common between children with
reflux and food intolerance (Figure 2).

Effect of Medications on Saliva RNAs
Levels of 65 RNA features differed among children with
GI disturbance on probiotics (n = 22) and children
with GI disturbance not taking probiotics (n = 162)
(Supplementary Table 1). These RNA features included 37
miRNAs, 75 piRNAs, one small non-coding RNA, and one
microbial RNA. Levels of 53 RNA features differed among
children with GI disturbance on laxatives (i.e., polyethylene
glycol; n = 39) and children with GI disturbance not taking
laxatives (n = 145). These RNA features included 15 microbial
RNAs, seven small non-coding RNAs, four piRNAs, 27 miRNAs.
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TABLE 2A | Transcripts with significant differences between children with and

without GI disturbances.

Transcript P-value Critical value

hsa-miR-224-5p 0.000493513 3.52E-04

hsa-miR-27a-3p 0.000602833 7.04E-04

hsa-miR-27b-3p 0.000609137 0.001056338

hsa-miR-151a-5p 0.001025943 0.001408451

NR_029493.1 0.000202054 3.79E-04

NR_002579.1 0.001114037 7.58E-04

NR_000007.1 0.0019312 0.001136364

NR_003689.1 0.001943995 0.001515152

NR_145802.2 0.002630256 0.001893939

NR_002439.1 0.002949461 0.002272727

NR_003688.1 0.003909225 0.002651515

NR_002744.1 0.005420832 0.003030303

NR_023363.1 0.005674379 0.003409091

NR_023364.1 0.005674379 0.003787879

NR_023365.1 0.005674379 0.004166667

NR_023366.1 0.005674379 0.004545455

NR_023367.1 0.005674379 0.004924242

NR_023368.1 0.005674379 0.00530303

NR_023369.1 0.005674379 0.005681818

NR_023370.1 0.005674379 0.006060606

NR_023372.1 0.005674379 0.006439394

NR_023373.1 0.005674379 0.006818182

NR_023374.1 0.005674379 0.00719697

NR_023375.1 0.005674379 0.007575758

NR_023376.1 0.005674379 0.007954545

NR_023377.1 0.005674379 0.008333333

NR_023378.1 0.005674379 0.008712121

NR_023379.1 0.005674379 0.009090909

TABLE 2B | Transcripts displaying a significant interaction effect between

neurodevelopmental status and the presence/absence of GI condition.

Transcript name P-value Critical value

piR-hsa-6148 0.000493282 2.89E-04

piR-hsa-6145 0.000565113 5.78E-04

piR-hsa-6147 0.000566969 8.67E-04

piR-hsa-6146 0.000571064 0.001156069

piR-hsa-6144 0.000591411 0.001445087

Jeotgalibaca 3.31E-05 3.70E-04

Methylophilus sp. TWE2 0.000209947 2.20E-04

Jeotgalibaca sp. PTS2502 0.000398509 4.41E-04

Relationship of GI-Related Saliva RNAs
and Child Behavior
There were 224 RNA features that displayed a significant
relationship (adj p < 0.05) with at least one measure of child
behavior on the VABS or the ADOS-2 (Supplementary Table 2).
These RNA features included 47 miRNAs, 69 piRNAs, 16
small non-coding RNAs, and 92 microbial RNAs. The largest

number of relationships were observed between RNA features
and Vineland Communication Scores (n= 132).

Functional Implications of Saliva miRNA
Candidates
There were 12 salivary miRNAs that displayed relationships
with GI disturbance, GI medications, and child behavior
(miR-1307-5p, miR-141-3p, miR-142-5p, miR-148a-5p, miR-
186-5p, miR-200a-3p, miR-200a-5p, miR-23a-3p, miR-23b-3p,
miR-28-3p, miR-532-5p, and miR-769-5p). Together, these 12
miRNAs display enrichment for 13 KEGG pathways, including
several implicated in metabolism/digestion (steroid biosynthesis,
porphyrin metabolism, drug metabolism, ascorbate metabolism,
lysine degradation, calcium reabsorption, and thyroid hormone
signaling), and neurobiology (long-term depression, morphine
addiction) (Table 4).

DISCUSSION

In this cohort study of 898 children, rates of GI disturbance
were higher among children with ASD than peers with TD, as
expected (6), but were similar to those with DD. There were
five piRNAs and three microbial RNAs in saliva that displayed
an interaction between developmental status and GI disturbance
(Figure 1). These features may serve as biomarkers for the
unique pathophysiology leading to elevated GI disturbance in
children with ASD. There were many salivary RNAs whose
levels differed between GI disturbance phenotypes–with miRNA
differences between food intolerance and reflux groups being
most common. Levels of 12 salivary miRNAs that displayed
an effect of GI disturbance were also associated with GI
medications and measures of child behavior (miR-1307-5p, miR-
141-3p, miR-142-5p, miR-148a-5p, miR-186-5p, miR-200a-3p,
miR-200a-5p, miR-23a-3p, miR-23b-3p, miR-28-3p, miR-532-5p,
and miR-769-5p).

The 12 salivary miRNAs that displayed relationships with
GI disturbance, GI medications, and child behavior may serve
as examples of biologic targets for personalized diagnostic
and therapeutic approaches in children with ASD-related GI
disturbance. Putative targets of these 12 miRNAs include
transcripts that code for key regulators of both metabolism
(e.g., steroid biosynthesis, porphyrin metabolism, ascorbate
metabolism, calcium reabsorption, thyroid hormone signaling)
and neurobiology (e.g., long-term depression). Intriguingly,
exogenous steroids, porphyria, hypercalcemia, hypothyroidism,
and depression are all associated with constipation and/or
abdominal pain. It is possible that the 12 miRNAs contribute to
sub-clinical perturbations in these physiologic pathways, in so-
much-as they lead to GI pain without causing other overt clinical
symptoms. For example, rodent models have demonstrated that
restoration of miR-148a expression in the lower GI tract may
reduce colitis (27), while elevations in miR-200a may lead to
irritable bowel-like symptoms through inhibition of serotonin
and cannabinoid transporters (28).

Our understanding of the nature of GI disturbances in ASD
is only beginning to emerge. Numerous pathways, including
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FIGURE 1 | Transcript abundance displaying significant interaction between neurodevelopmental status and presence/absence of GI condition. The whisker box plots

represent normalized abundance of microbial RNAs and piRNAs that displayed a significant interaction between neurodevelopmental status (ASD/DD/TD) and

presence/absence of any GI condition. These features may provide insight into the unique biology underlying the heightened prevalence of GI conditions in children

with ASD. Significance levels: p-val < 0.001 (*), p-val < 0.0001 (**). For all features shown, the adjusted p-value (FDR) <0.05.

autonomic arousal (17, 18), serotonin dysregulation (29), and
perturbations in gene expression (30) have all been implicated
in this process. The micro-transcriptome features identified in
this study provide a single mechanism through which each
of these pathways may converge (Figure 3). For example,
recent research has found that stress reactivity, anxiety, and
autonomic arousal are interrelated with the severity of lower
GI symptoms in ASD (17, 18). One miRNA identified in
this study, miR-142-5p, has been previously implicated in
anxious behavior following prolonged stress (31). Whole blood
serotonin levels have also been associated with lower GI
symptoms in ASD (29). Here, we identify one miRNA (miR-
23a-3p) implicated in ASD-related GI pathology, which has
previously been shown to change in depressed patients treated
with selective serotonin reuptake inhibitors (32). Specific genes,
in particular polymorphisms of the Mesenchymal Epithelial
Transition (MET) receptor kinase gene, are also associated with
GI symptoms in ASD (30). The MET receptor has been shown
to modulate miRNA expression (33), and the MET transcript is

a putative target of two miRNAs in the present study (miR-23a-
3p, miR-23b-3p).

Immunological factors have also been found to be associated
with GI symptoms as well as behavior in ASD (34, 35).
The unique immunologic patterns associated with ASD may
contribute to specific alterations in the microbiome profile that
have been reported in children with ASD and GI symptoms (36).
Evidence of this nature has even led to efforts at interventions
based on the microbiome in ASD (37, 38). In the present study,
we identify several miRNAs that are implicated in immune
development. For example, miR-28 has been shown to modulate
T-cell differentiation and cytokine expression (39), while miR-
200a-3p and miR-141-3p have been found to work together to
modulate differentiation of interleukin-producing T-helper cells
(40). We found minimal overlap between the specific microbes
identified in this study, and those of previous GI microbiome
studies (36). This may be because the current investigation
examines microbial RNA levels in saliva, as opposed to the more
traditional 16S approach, using stool samples.
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TABLE 3 | Transcripts significantly different between GI phenotypes.

Transcript P-value Critical value

hsa-miR-28-3p 4.80E-06 0.001056

hsa-miR-1307-5p 8.54E-06 0.002113

hsa-miR-200a-3p 3.33E-05 0.003169

hsa-miR-141-3p 3.77E-05 0.004225

hsa-miR-23a-3p 4.43E-05 0.005282

hsa-miR-23b-3p 5.02E-05 0.006338

hsa-miR-142-5p 1.31E-04 0.007394

hsa-miR-224-5p 1.70E-04 0.008451

hsa-miR-769-5p 3.36E-04 0.009507

hsa-miR-148a-5p 3.74E-04 0.010563

hsa-let-7b-5p 7.27E-04 0.01162

hsa-miR-27a-3p 7.42E-04 0.012676

hsa-let-7a-5p 8.19E-04 0.013732

hsa-let-7c-5p 0.001301 0.014789

hsa-miR-532-5p 0.001603 0.015845

hsa-miR-192-5p 0.002351 0.016901

hsa-miR-186-5p 0.002528 0.017958

hsa-miR-106b-3p 0.003164 0.019014

hsa-miR-200a-5p 0.003643 0.02007

hsa-miR-151a-3p 0.003758 0.021127

hsa-let-7e-5p 0.004643 0.022183

hsa-miR-181a-5p 0.005052 0.023239

hsa-miR-25-3p 0.006292 0.024296

hsa-miR-29c-3p 0.006425 0.025352

hsa-miR-10b-5p 0.00701 0.026408

hsa-miR-22-3p 0.007061 0.027465

hsa-miR-501-3p 0.008192 0.028521

hsa-miR-24-3p 0.009503 0.029577

hsa-miR-27b-3p 0.011937 0.030634

hsa-miR-182-5p 0.0138 0.03169

hsa-miR-3074-5p 0.016482 0.032746

hsa-miR-26b-5p 0.021226 0.033803

hsa-let-7f-5p 0.023545 0.034859

hsa-miR-125b-5p 0.02362 0.035915

hsa-miR-375-3p 0.02457 0.036972

hsa-miR-374a-5p 0.024781 0.038028

hsa-miR-92a-3p 0.029143 0.039085

hsa-miR-148a-3p 0.029199 0.040141

hsa-miR-425-5p 0.029741 0.041197

hsa-miR-222-3p 0.030985 0.042254

hsa-miR-30e-5p 0.035843 0.04331

hsa-miR-30b-5p 0.038612 0.044366

piR-hsa-15023 9.83E-05 8.67E-04

piR-hsa-28405 5.27E-04 0.001734

piR-hsa-17560 0.002069 0.002601

Mycobacterium kansasii 2.13E-06 6.61E-04

Streptomyces albulus 3.08E-04 0.001322

Staphylococcus simulans 8.04E-04 0.001982

Actinomyces radicidentis 0.001163 0.002643

Sneathia amnii 0.001933 0.003304

Lysinibacillus sphaericus 0.002427 0.003965

(Continued)

TABLE 3 | Continued

Transcript P-value Critical value

Candidatus Azobacteroides 0.002545 0.004626

pseudotrichonymphae

Cellulomonas gilvus 0.00321 0.005286

Actinobacillus succinogenes 0.003283 0.005947

Capnocytophaga haemolytica 0.00522 0.006608

Corynebacterium singulare 0.006309 0.007269

Streptococcus dysgalactiae 0.007484 0.00793

As further research begins to reveal a clearer understanding
of the pathways implicated in ASD patients with GI symptoms,
including those specific to the ASD/GI population, we can
begin to understand why some patients with ASD appear to
respond less reliably to treatment than others with similar
GI symptoms (7). Examining the downstream targets of
miRNA differentially expressed in those with ASD and
GI symptoms would likely contribute substantially to this
understanding. Fortunately, with the ability to rapidly, and
non-invasively measure miRNA in saliva (21), such information
can readily be obtained from large populations. Development
of such targeted approaches may provide opportunities for
personalized treatment of gastrointestinal symptomatology,
and lead to down-stream improvement in related behaviors
(7, 10, 11), by impacting anxiety, mood, sleep, and
attention (12–16).

This study harnesses, to our knowledge, the largest sample
of the salivary micro-transcriptome in ASD. Its inclusion
of children with non-ASD developmental delay as part
of the control group is a relative strength. Inclusion of
participants from multiple geographic sites also promotes
generalizability of the findings. However, there are several
limitations which should be noted. First, GI disturbances
were identified through parent report and review of medical
records but were not specifically assessed by physicians
as part of the study. Second, we acknowledge that “GI
disturbance” is a somewhat artificial distinction that groups
together loosely related pathology that occurs in the GI tract.
Important physiologic differences exist between conditions
such as constipation and reflux, and these underlying biologic
differences may have served to enhance false negative findings
in the initial analyses. For this reason, we performed secondary
analyses of the GI sub-phenotypes. However, this approach
also has a trade-off of reducing the study’s substantial
sample size. Third, there are several pre-analytic factors
which may potentially confound this study’s findings, including
batch effects and sample collection factors. We note that
all samples were run on the same sequencing machine,
using the same library preparation procedure, performed
by the same laboratory technician. Although this analysis
did not control for sample collection parameters, such as
collection time, prandial status, or prior tooth-brushing, we
have previously assessed the impact of many of these factors
on the saliva microtranscriptome (21). We note that none of
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FIGURE 2 | The most significant (12) transcripts differing between GI phenotypes. The whisker box plots represent normalized abundance of miRNAs and microbial

RNAs that displayed a significant difference between children without a GI condition (orange), children with constipation (green), food intolerance (blue), reflux (pink), or

another GI condition (brown). Significance levels–p-val <0.001 (*), p-val <0.0001 (**).

TABLE 4 | KEGG pathway enrichment.

KEGG pathway p-value #Genes #miRNAs

Steroid hormone biosynthesis 3.04E-12 7 2

Hippo signaling pathway 5.03E-07 15 9

Gap junction 0.001139 10 7

Porphyrin and chlorophyll metabolism 0.005067 9 3

Endocrine and other factor-regulated calcium reabsorption 0.005067 6 7

Drug metabolism–cytochrome P450 0.007162 8 4

Glycosphingolipid biosynthesis–lacto and neolacto series 0.009386 4 5

Ascorbate and aldarate metabolism 0.016999 7 2

Lysine degradation 0.025194 5 7

Proteoglycans in cancer 0.026807 22 9

Thyroid hormone signaling pathway 0.027249 10 7

Long-term depression 0.030698 6 4

Morphine addiction 0.034341 9 7

the microbial features and very few of the miRNA features
identified in this study have demonstrated relationships with
pre-analytic factors.

We recognize that the salivary transcriptome serves as a
proxy for the primary pathologic site of most GI disturbances,
the lower GI tract. However, several studies have reported
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FIGURE 3 | Putative micro-transcriptome links between biologic mechanisms and physiologic pathways involved in gastrointestinal pathophysiology. The conceptual

diagram connects biologic pathways that have been previously implicated in Autism Spectrum Disorder (ASD)-related gastrointestinal (GI) pathology with putative

micro-transcriptome features (i.e., microRNAs and microbes). Micro-transcriptome features were included based on their associations with the biologic pathways of

interest in the existing literature. Collectively, the microRNAs display target enrichment for several clinical findings (i.e., thyroid hormone signaling, long-term

depression, etc.), that are known contributors to GI disturbance.

significant overlap between saliva and stool micro-transcriptome
features (41–43). Unlike the stool microbiome, we note
that the saliva microbiome can be repeatedly sampled on
demand and has shown resilience to antibiotic treatments
(44). These characteristics make saliva an attractive source
for sampling GI-related biology (particularly in patients with
conditions such as reflux, eosinophilic esophagitis, or cyclic
vomiting). Our previous work with parents of children with
ASD has shown that they overwhelmingly prefer saliva as a
clinical biofluid (45). Additionally, we note that association
analyses between salivary transcriptome elements and ADOS
scores rely solely on ASD and DD participants for whom
these assessments were available. The lack of TD participants
in this analysis could have impacted the findings. Finally,
we must also consider the possibility that some of these
markers may be caused by the downstream effects of the
gastrointestinal symptoms or treatments, rather than serving a
mechanistic role, but this would not diminish their potential use
as biomarkers.

This is, to our knowledge, the first effort to examine the
salivary RNA profile associated with GI symptoms in ASD, in

a large population study. With the increased understanding of
the critical importance of subtyping for meaningful precision
medicine approaches in ASD (20), as well as the importance
of GI symptomatology in behavioral issues in ASD (7, 10,
11), and the potential for mechanistic understanding through
examination of the downstream targets of differentially regulated
miRNAs, this is an important future direction of investigation.
A subset of the micro-transcriptome features identified in this
study displays relationships with treatment modality and are
associated with autistic behaviors. The pathobiologic targets of
these micro-transcriptomemarkers may serve as novel targets for
individualized therapeutic interventions aimed at easing pain and
behavioral difficulties seen in ASD-related GI disturbance.
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