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Abstract: Heparin and its derivatives are saving thousands of human lives annually, by successfully
preventing and treating thromboembolic events. Although the mode of action during anticoagulation
is well studied, their influence on cell behavior is not fully understood as is the risk of bleeding and
other side effects. New applications in regenerative medicine have evolved supporting production of
cell-based therapeutics or as a substrate for creating functionalized matrices in biotechnology. The
currently resurgent interest in heparins is related to the expected combined anti-inflammatory, anti-
thrombotic and anti-viral action against COVID-19. Based on a concise summary of key biochemical
and clinical data, this review summarizes the impact for manufacturing and application of cell
therapeutics and highlights the need for discriminating the different heparins.

Keywords: heparin; cell therapy; regenerative medicine; biomaterials; human platelet lysate; extra-
cellular vesicles

1. Introduction

The discovery of heparin more than one hundred years ago happened as an unex-
pected coincidence. At the beginning of the 20th century, William Howell and co-workers
were studying a pro-coagulant ‘thromboplastic substance’ [1] consisting of phospholipids
and tissue factor. Literally, investigating pro-coagulant phospholipids from different tissues,
Howell’s student Jay McLean observed an anticoagulant effect of ‘cuorin” and ‘heparphos-
phatid’, preparations isolated from heart and liver extracts in 1916 [2]. In 1918, Howell
and Holt identified ‘heparin” as a novel anti-coagulant [3]. Nowadays, these historical
scientific results are difficult to interpret, because analyzed ‘substances’” were mainly com-
plex compounds with unavoidable impurities. As the first experiments on animals were
promising, heparin turned out to be a potent anticoagulant drug in the following decades.
In 1939 and 1942, the FDA approved bovine and porcine heparin, respectively. In parallel,
the awareness for the clinical significance of heparin increased in Europe and commercial
production started in Switzerland in 1939. However, it took until the 1970s before the
exact chemical composition and mode of action were uncovered (for review see [4]). In
recent decades, low molecular weight heparins (LMWH) and oral anticoagulants have
almost completely replaced unfractionated heparin (UFH) in clinical practice, mainly due
to easier use and better safety profile at comparable efficiency for the vast majority of
applications [5]. While clinical use of UFH as a highly potent medication is now restricted
to a limited number of selected cases, e.g., [6-8], it saw a revival in cell manufacturing
when using human platelet lysate instead of fetal bovine serum [9-11], and for application
of cell-based medicinal products to avoid an instant blood-mediated inflammatory reaction
(IBMIR) [12-14]. It is perhaps not common knowledge that heparins have clinical efficiency
as anti-inflammatory [15,16], anti-cancer [17,18] and anti-viral therapeutics, especially in
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the new coronavirus (SARS CoV-2) pandemic [19,20], is not definitively clarified, and
further clinical data are urgently needed. In regenerative medicine, the investigation of
the advantages, disadvantages and adverse effects of UFH compared to LMWH, heparin
pentasaccharides and also oral anticoagulants is also still pending.

2. Biology, Biochemistry and Clinical Application
2.1. Heparin Structure and Anticoagulant Mode of Action

Heparin is a linear, unbranched and highly sulfated polysaccharide belonging to the
family of glycosaminoglycans (GAGs) [21,22]. Based on various repeating disaccharide
units, four main groups of GAGs can be distinguished: (i) heparin and heparan sulfate,
(ii) chondroitin sulfate and dermatan sulfate, (iii) keratan sulfate, and (iv) hyaluronan. The
repeating disaccharide units of heparin consist of uronic acid and D-glucosamine connected
by «-glycosidic linkage. Membrane-bound heparan sulfate proteoglycans (HSPGs) include
syndecans-1-4, glypicans 1-6, betaglycan, neuropilin-1 and CD44. Serglycin on secretory
vesicles and perlecan, agrin and collagen XVIII within extracellular matrix complete the
HSPG family [23]. In vivo, heparin is mainly synthesized and stored by mast cells in their
secretory granules [24]. The knockout of glucosaminyl N-deacetylase/N-sulphotransferase-
2 (NDST-2), which is important for initial modification steps during heparin biosynthesis,
completely abrogated heparin synthesis in murine mast cells. However, despite alteration
of mast cell morphology and granules, NDST-2 knockout mice were viable and fertile. As
no thrombotic events were observed, endogenous heparin may not be indispensable for
the regulation of blood coagulation [25,26].

The anticoagulant effect of heparins is in part mediated by a unique pentasaccharide
sequence binding with high affinity to antithrombin [27]. This induces a conformational
change in its reactive center leading to an up to 1000-fold enhanced inactivation rate of
thrombin and activated coagulation factor X (FXa) by antithrombin [28]. For therapeutic
purposes, three forms of heparins are available: (i) UFH, (ii) LMWH and (iii) synthetic ultra
(UYLMWH, the latter corresponding to just five to ten saccharide molecules [29] (Table 1
and Figure 1A).

Commercially available UFH is isolated from porcine intestinal mucosa or lung and
intestine from cattle, the only sources for industrial production. As outlined recently [29],
the complex manufacturing process of pharmaceutical-grade heparins includes the pu-
rification, isolation and drying of highly charged heparin molecules from other GAGs,
with details of the production methodology usually kept secret. Due to animal origin and
biosynthesis, GAG molecules are of highly variant chain lengths and sulfation patterns,
finally impeding the perfect purification of UFH. This became fatal reality in 2007 and
2008 in the ‘heparin contamination crisis’. Structurally related over-sulfated chondroitin
sulfate impurified an adulterant heparin product and was not detected by standard quality
control. This caused hundreds of anaphylactic reactions and several deaths worldwide [30],
fostering the need for synthetic heparins and alternative anticoagulants.

UFH (average molecular weight of 19,000 Da) has several advantages including short
onset of action, no placenta passage, feasibility for patients with renal failure, neutralization
by protamine and low price. Nevertheless, the limitations predominate, particularly the
need for parenteral administration and dose monitoring, due to variable bioavailability. In
clinical practice, the individual dose is adjusted, e.g., six-hourly, usually according to the
activated partial thromboplastin time (aPTT) and the anti-FXa activity, both poorly reflect-
ing the anticoagulant effect [4]. As UFH inhibits the thrombin forming capacity of plasma
mainly by its anti-thrombin activity and minor by inhibition of FXa, the analysis of the
endogenous thrombin potential reflects the anticoagulant effect more precisely. Particularly
due to its extreme variability in the population but stability in the individual, the throm-
bin generation capacity is an important predictor of thrombotic risk and anticoagulant
therapy [4].
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Table 1. Characteristics of unfractionated heparin (UFH), low molecular weight heparins (LMWH)
and ultra (U)LMWH (fondaparinux, as representative of synthetic pentasaccharides); modified
from [29,31-33]. Abbreviations: AT: antithrombin; GAGs: glycosaminoglycans; h: hours; s.c.:
subcutaneous; aPTT: activated partial thromboplastin time; ETP: endogenous thrombin potential;

FXa: activated coagulation factor X; * in selected cases.

UFH LMWH ULMWH
Molecular Weight 3000-30,000 1000-10,000 1728
(Da)
(average) (19,000) (5000) -
Isolation from porcine Degradation from . .
Source mucosa UFH Chemical synthesis
Chemical Highly variable Highly variable Chemically defined
characteristics mixture of GAGs mixture of GAGs pentasaccharide
AT-mediated Flland =~ AT-mediated FII and Selective
Mode of action FX.a inhibition FX.a inhibition AT-mediated
AT-independent AT-independent o
FXa inhibition
effects effects
Affini.ty to plasma e . No
proteins and cells
Platelet interaction +++ + No
Bloavaﬂoabﬂlty 10-30 85-93 100
(s.c. [%])
Half-life time (s.c.) 14 h 3-5h 17-21h
Elimination Renal, intestinal Renal, intestinal Renal
o aPTT, ETP, * FXa,
Therapy monitoring platelet count platelet count No
Antagonist Protamine Protamine No

LMWHs are produced from UFH by chemical and enzymatic depolymerisation,

yielding smaller polysaccharide fragments (12-22 monosaccharide units with an average
molecular weight of 5000 Da). Compared to an anti-FXa/anti-thrombin activity ratio of one
for UFH, for LMWHs this ratio is between two and five [29]. Due to low affinity for plasma
proteins, endothelial and blood cells, LMWHSs show better subcutaneous bioavailability
and longer half-life (3—6 h) enabling application once or twice daily without the need
for laboratory monitoring. Causing fewer adverse reactions than UFH, LMWHs have
been recommended for prophylaxis and therapy of thromboembolic events since the
1990s [34,35].

As just one third of individual heparin molecules show anticoagulant properties,
further attempts have been made to biochemically synthesize only ULMWHs or pentasac-
charides, as fondaparinux (Arixtra®) being the first and only synthetic clinically approved
selective FXa-inhibitor [29]. In sum, LMWHs and synthetic pentasaccharides have a greater
capacity to accelerate the inhibition of FXa than the inhibition of thrombin [35,36].
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Figure 1. Overview of intravascular, extracellular and intracellular effects of heparin. (A) In the blood
stream, the anticoagulant effect of heparin results from binding to antithrombin amplifying inhibition
of activated factor Xa (FXa) and thrombin. (B) In the extracellular and intracellular environment,
heparin affects essential cell functions such as ECM formation, cell adhesion and migration. The
interaction with the extracellular matrix (ECM), but also growth factor receptors as transforming
growth factor (TGF)-beta receptor, fibroblast growth factor receptor (FGFR) Frizzled, Notch and
platelet derived growth factor receptor (PDGFR) activates divergent intracellular signaling pathways,
putatively affecting gene expression. A systemic clearance of heparin by cellular internalization and
lysosomal degradation may finally induce the expression of target genes. Furthermore, the cellular
uptake of extracellular vesicles (EVs) can be reduced by heparin, putatively influencing cell-to-cell

communication.

2.2. Clinical Application of Heparins in Infections, Inflammation and Cancer

The most important clinical application of LMWH is prophylaxis and treatment of deep
vein thrombosis, stroke and pulmonary embolism in medical and surgical patients [35,37].
Another cutting-edge indication for heparins is the coagulopathy of severely ill patients
with acute respiratory distress syndrome (ARDS) due to the novel corona-virus disease
2019 (COVID-19) in the current pandemic [38]. Notably, in this inflammatory and pro-
thrombotic state of COVID-19 infection, an elevation of the coagulation potential may
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require higher heparin doses than the standard dose, implicating a “functional” heparin
resistance and again emphasizing the need for more reliable monitoring than anti-FXa
activity by thrombin generation analysis [39].

The benefits of prophylactic or therapeutic UFH or LMWH for patients with throm-
boembolic events and sepsis-induced disseminated intravascular coagulation, concomitant
with high D-dimer and fibrinogen and low anti-thrombin levels, are currently discussed
and investigated in clinical trials [19,38,40]. In a recent multicenter randomized clinical
trial (HEP-COVID) a clear benefit of therapeutic-dose LMWH (with enoxaparin, major
thromboembolism or death in 28.7%) compared to prophylactic or intermediate-dose hep-
arin regimens (with UFH, enoxaparin or dalteparin, major thromboembolism or death
in 41.9%) in inpatients with high D-dimer levels has been reported [41]. Preliminary
data from a large multiplatform of randomized controlled trials (ATTACC, REMAP-CAP
and ACTIV-4a trial platforms), including more than 2000 patients comparing therapeutic
LMWH or UFH to local venous thromboembolic prophylaxis in severely and moderately
ill COVID-19 patients, showed divergent results [39]. There was a benefit from therapeutic
anticoagulation in the moderate disease severity group, but the mortality in the total pa-
tient cohort was not significantly influenced by the heparins. Additionally, a comparison
of prophylactic (40 mg enoxaparin) to intermediate (1 mg enoxaparin/kg body weight)
LMWH in 562 patients with severe COVID-19 infection in another randomized clinical
trial (INSPIRATION) showed no benefit from increasing the LMWH dose [42]. In a recent
open-label multicenter randomized clinical trial (ACTION), 615 COVID-19 patients with
elevated D-dimer levels received either therapeutic or prophylactic anticoagulation. In the
therapeutic group, stable patients were treated with oral rivaroxaban; unstable patients
were treated with enoxaparin or UFH followed by rivaroxaban. The prophylactic group
received subcutaneous standard dose of enoxaparin or UFH. The primary efficacy outcome
(time to death, duration of hospitalization or duration of oxygen supplementation) was not
different between the groups but bleeding complications were increased by therapeutic
anticoagulation with rivaroxaban [43].

Based on these preliminary data, a general benefit of heparins compared to no heparins
seems evident only in selected COVID-19 patients with reduced disease severity. There was
no further improvement observed with higher doses of heparins, but instead increased risk
of bleeding complications, especially when combined with direct FXa inhibitors. Therefore,
for clinical practice, several comprehensive guidelines about prophylaxis and therapy of
thromboembolic complications in COVID-19 infection have been published in the last
months, e.g., by the British National Institute for Health and Care Excellence and the
American Society of Hematology [44,45], and are highly recommended.

In COVID-19 disease, not only anticoagulant, but also anti-inflammatory and anti-
viral effects of heparin and derivatives may be beneficial, as UFH and heparin derivatives
have been supposed to inhibit viral and protozoan infections by impeding the interaction
between pathogen proteins and heparan sulfate chains on the cell surface [46]. Pathogen
proteins being responsible for cell entry such as HIV-1 gp120 [47,48], Dengue virus envelope
protein [49], and circumsporozoite protein, a cell surface protein of the parasite plasmodium
falciparum causing malaria [50], were shown to interact with UFH and heparin derivatives.
Furthermore, the interaction of Clostridium difficile toxin A with de-N-sulfated heparin
inhibited the cell entry, in contrast to highly O-sulfated heparins enhancing it [51]. A recent
study, however, showed that UFH and LMWH inhibited Dengue virus but promoted Zika
virus replication [52]. These results indicate that UFH and LMWH molecules may act
either pro- or anti-pathogenic, depending on various sulfation patterns and in a context-
dependent manner.

UFH and LMWHSs may have an anti-inflammatory potential [53]. Over the last years,
treatment of various inflammation-associated diseases (e.g., bronchial asthma, rheumatoid
arthritis, cystic fibrosis and inflammatory bowel disease) with UFH and LMWHSs was
evaluated in clinical trials, with conflicting results [15,53,54]. As analyzed in a systematic
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review [15], patients with active ulcerative colitis had no benefit from LMWH by injection
but only from LMWH administered in high dose by extended colon-release capsules.

In cancer patients, the incidence of arterial and venous thromboembolism is increased,
frequently causing morbidity and death. These thromboembolic events are triggered
by various clinical risk factors such as surgery, immobilization, type and stage of the
primary tumor, hormone- and chemotherapy [55-57]. This creates the need for consequent
thromboprophylaxis with LMWHs, with UFH in patients with coexisting renal failure, and
with direct oral anticoagulants (DOACs) [58,59]. In randomized clinical trials, DOACs were
found to be similarly effective as LMWHSs but had a higher risk of bleeding, particularly in
patients with thrombocytopenia, intracranial and hematological malignancies or due to
drug-drug interactions [59].

The anticoagulant effect of UFH and LMWHs is not only induced by inactivation
of plasmatic coagulation factors, but also by reduced platelet activation via protease-
activated receptor 1 (PAR1), due to diminished thrombin formation. Platelets are essential
contributors of cancer-associated thromboembolism but can also nurture tumor growth and
metastasis, as reviewed comprehensively [60]. These complex interactions are characterized
by cancer-associated thrombocytosis [57], protection of tumor cells from apoptosis and
NK cell attack by platelet shielding and transfer of unaffected major histocompatibility
class I molecules onto the tumor cell surface [60]. Furthermore, platelets store a plethora
of growth factors and cytokines in their specific granules [10], supporting angiogenesis
and tissue repair not only in wound healing. These mediators are released after platelet
activation and also play a pivotal role in tumor growth and metastasis [60,61]. P-selectin,
for example, is stored in platelet alpha-granules under steady state conditions and gets
expressed on the platelet surface after activation. Evidence exists indicating that binding
of platelets to tumor cells may depend on P-selectin contributing to microembolic events
and metastasis [60]. Notably, differential inhibitory effects of UFH and LMWHs on platelet
aggregation [62] and on selectins [63,64] have already been shown some decades ago,
indicating the non-anticoagulant effects of heparins in cancer.

Further potential non-anticoagulant anti-cancer effects of heparin were already de-
scribed in 1957, demonstrating an inhibitory effect of UFH on ascites tumors in mice [65].
Furthermore, experimental animals did benefit from UFH and LMWHs by reduced tumor
growth and diminished metastasis [53,66]. Later animal studies reproduced that UFH de-
creased tumor cell adhesion, and that LMWHSs diminished metastasis burden and primary
tumor growth in animal cancer models, but the overall survival of solid tumor patients
was not increased by LMWHs [17,67]. Due to the limitations as heterogeneity of number,
dosing and timing of treatment, more standardized study protocols and investigation of the
exact dose-response relationship would be required for exactly predicting clinical effects of
LMWHs during anti-neoplastic therapy [67]. As anti-inflammatory and anti-cancer effects
of heparin and derivatives were mainly observed with high doses, the concomitant risk
of bleeding complications may hinder efficient therapy [16]. Highly sulfated synthetic or
semi-synthetic heparin mimetics with reduced anticoagulant activity have been developed
to overcome this problem [68].

2.3. Adverse Effects of Heparin Treatment

The most common adverse effect of heparins is bleeding. The incidence of major
bleeding complications ranged from 2% with LMWHs to more than 5% with intravenous
UFH [69]. The individual risk depends on the dose, surgical technique, underlying disease
and concomitant medication, e.g., platelet aggregation inhibitors or cytostatic agents [33].
Algorithms for the management of this iatrogenic hemorrhagic diathesis have been devel-
oped [69], and protamine can be employed as specific antagonist for UFH and LMWH.

A frequently observed transient and mild decrease in platelets due to a nonimmune-
mediated effect of heparins is termed type I heparin-induced thrombocytopenia (HIT).
The massive platelet drop on days 3 to 5 of heparin therapy is a rare but potentially life-
threatening side effect. The characteristic symptoms of a more distinct thrombocytopenia
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and arterial embolism, now considered type II HIT, were first described by Weismann and
Tobin in 1958 [70]. The mechanism of this adverse drug reaction was extensively studied
over the past decades [71]. The causative agents are mainly IgG antibodies against com-
plexes of heparin and platelet factor 4 (PF4) binding to the immunoglobulin Fcy receptor Ila
on platelets, with the potential to induce platelet activation and consumption, consecutive
thrombin generation and paradoxical thromboembolic events [71]. The incidence for HIT II
ranges from 0.1% to 7% of patients exposed to heparin, depending on UFH or LMWH type,
the underlying disease, surgical interventions and other factors [72]. Further details about
HIT diagnosis, the management of HIT-associated thromboembolic events and treatment
with alternative anticoagulants are out of the scope of this review, and are summarized
in recent comprehensive guidelines of the American Society of Hematology [72]. Other
observed adverse effects of heparin treatment are osteoporosis, skin lesions, alopecia and
the elevation of hepatic enzymes [73].

2.4. Modulation of Extracellular Matrix and Cell Adhesion

A variety of stimuli regulates the extracellular matrix (ECM) conformation, including
mechanical forces and different ligands [74]. During ECM assembly, fibronectin fibrils
interact with collagens, proteins and growth factors to build the final matrix. Fibronectin
has binding sites for heparan sulfate and heparin, influencing fibronectin conformation
and regulating growth factor presentation at the cell surface [75,76]. UFH and LMWHs
may differentially influence cell adhesion via neural cell adhesion molecule 1 (NCAM]I,
CD56) [77], selectins and integrins [63,64,78,79]. Indirectly, via macrophage receptor 1 (Mac-
1, CD11b/CD18) inhibition, UFH and LMWH reduced leukocyte adhesion on endothelial
cells via intercellular adhesion molecule 1 (ICAM-1, CD54) [80], to cite just selected effects.
Depending on conformational changes influencing ECM properties heparin binding can
thus increase or decrease adhesion. Heparin molecules as GAGs can impact biological pro-
cesses by specific interaction with growth factors, cytokines and chemokines, cell adhesion
molecules, and cell surface proteins of pathogens [16,46,54,68], depending on dose, the
saccharide chain length, specific orientation and arrangement of its sulfo- and carboxyl-
groups. This makes heparins important multifunctional mediators in cell signaling and
gene expression, influencing cell fate beyond coagulation (Figure 1B).

2.5. Gene Expression Modulation

Heparin and heparan sulfate significantly regulated genes involved in cell adhesion
and proliferation in human bone marrow-derived stromal cells in a donor-dependent
manner [81,82]. UFH also regulated gene expression, depending on the tissue source
of stromal cells at a therapeutic dose of 2 IU/mL [83]. Independent of the cell source
and concentration of UFH, mainly genes affecting cell proliferation (e.g., members of the
WNT-, PDGF- and Notch signaling pathways), adhesion, apoptosis and angiogenesis were
upregulated. Downregulated genes were involved in inflammatory processes, cytokine
and chemokine signaling and negative regulation of WNT-, TGF3- and EGFR-pathways.
It is still not completely understood how heparin affects gene expression precisely, but
there are at least two explanations: (i) UFH can bind to cell surface receptors, support
their activation, as observed for fibroblast growth factor receptors, FGFRs [84,85], thereby
fostering intracellular signaling, leading to modified gene expression pattern. (ii) It was
also shown to be internalized and directly interfere with transcription factors [86]. The
systemic clearance of heparins from the circulation was found to be tightly linked with the
hyaluronan receptor for endocytosis (HARE/stabilin-2) [87-89] (Figure 1B).

2.6. Effect on Cell Proliferation and Differentiation

The effect of UFH supporting long-term propagation of endothelial cells is well-
known [90]. It plays a pivotal role in cell proliferation acting as co-factor for growth factors
of the FGF family [84,91], the transforming growth factor (TGF)-beta superfamily [92,93],
vascular endothelial growth factors (VEGFs) [94,95], placental growth factor (PIGF) [96,97]
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and platelet derived growth factors (PDGFs) [98], among others. Members of the FGF
family were shown to require an interaction with the corresponding high affinity receptor
and heparins to realize their full signaling potential [99-101]. Heparins also interacted with
other mitogenic factors such as midkine (previously named neurite growth promoting
factor 2, NEGF2) [102] and hepatocyte growth factor (HGF) [103]. These interactions
supposedly induce structural changes, stabilizing the tertiary structure of the growth
factors and resulting in a potentiated growth promoting activity [104]. High-resolution
x-ray studies revealed that heparin and heparan sulfate bound to FGFs and promoted
the dimerization of FGFRs, thus inducing FGF signal transduction [84,85]. UFH further
protected FGF from proteolytic cleavage [105] and basic or acidic inactivation [106] and
increased the diffusion radius by influencing the binding of the growth factors to ECM
proteoglycans [107].

The effect of heparins on cell proliferation in vitro can be either growth promoting
or inhibiting. It appeared to be mandatory for efficient proliferation of endothelial cells
and their progenitors [108,109]. Stromal cell growth was also observed to be only partly
stimulated by UFH, strongly dependent on their tissue origin [83,110]. Low concentrations
of UFH supported proliferation of human bone marrow-derived stromal cells and human
embryonic stem cells; higher concentrations impaired cell growth in a dose-dependent
manner [111,112]. The cell type and dose-dependent variability of heparin’s effects on pro-
liferation is reminiscent of the adhesion-increasing or -decreasing effects discussed above.

GAGs are also tightly linked to developmental and differentiation processes. In
animal models, proteoglycans were identified as important modulators of protein gradient
formation and signal transduction [113,114]. UFH was demonstrated to promote the
osteogenic differentiation of human bone marrow stromal cells in vitro [115-117]. The
effect on osteogenic differentiation was tightly linked to the sulfation pattern. While UFH
and 2-O-desulfated heparin stimulated osteoclastogenesis, N-desulfated heparin exerted
suppressive effects on osteoclastogenesis and bone resorption in vitro and in vivo [118,119].
Historical [120] and more recent clinical research [121] however demonstrated adversely
effected bone density in up-to one third of heparin-treated patients, particularly after
extended exposure [122].

3. Heparins for Manufacturing Cell Therapeutics
3.1. Heparins as a Cell Culture Supplement

Endothelial cell culture as a prerequisite for studying molecular mechanisms of vascu-
lar biology and regeneration was established half a century ago [90,123]. Addition of UFH
to culture medium containing reduced concentrations of endothelial cell growth factor
enabled cloned human endothelial cell strain propagation for the first time in the early
1980s [109]. In recent years, novel UFH applications appeared, especially in the field of
cell-based therapeutics, making UFH a key component in subsequent clinical-grade manu-
facturing of endothelial and stromal cells [124,125]. As the European Medicines Agency
recommended the avoidance of animal-derived components for manufacturing cell thera-
peutics [126], human platelet lysate (HPL) has been implemented as an efficient cell culture
supplement [9,127-131]. HPL supports in vitro cell proliferation due to abundant growth
factors and cytokines superior to fetal bovine serum (FBS) [10,132-134]. Because HPL
contains fibrinogen and plasmatic coagulation factors, addition of ideally preservative-free
UFH to the HPL-supplemented culture medium is mandatory to avoid jellification-like
clotting events during cell propagation [112]. Although UFH is of porcine origin, there are
still no alternative anticoagulants of human origin established for cell culture. Recombinant
serglycin decorated with heparin/heparin sulfate represents one strategy to replace UFH
in cell culture [135]. Recombinant hirudin derivatives and non-heparin synthetic anticoag-
ulants are efficiently used to treat patients with heparin-induced thrombocytopenia type
11 [136], but may contain preservatives and are still not validated as cell culture additive.
Notably, effects of heparins on cell biology as described above in detail can be considered
operative also in cell culture.
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3.2. Potential Benefits of Heparins for Cell Therapy

Solid organs and different progenitor cell types can be transplanted successfully due
to human leukocyte antigen matching and pharmacologic immune suppression strate-
gies. After liver cell transplantation, an initially unexplained substantial cell loss after
application was discovered through attentive observation [137,138]. The instant blood-
mediated inflammatory reaction (IBMIR) [139], an innate immune attack characterized
by the activation of the complement system and coagulation cascade, was shown to be
a main cause of the substantial cell loss after extra-hematopoietic cell transplantation,
particularly of isolated human hepatocytes and Langerhans’ islets. During IBMIR, binding
of activated platelets to the transplanted cells and consecutive clot infiltration by neutrophil
granulocytes and monocytes, is eventually leading to cell destruction [137,140]. In different
studies it was demonstrated, that most types of culture-expanded stromal cells, with the
exception of bone marrow-derived stromal cells lacking tissue factor (coagulation factor 3,
FIII), also trigger significant clotting events in vitro as well as in vivo [13,141-143]. It was
therefore suggested, that IBMIR is involved in the early cell loss and lack of engraftment
after transplantation [144,145]. The majority of transplanted cells was shown to be trapped
in thrombi in lung, liver and kidneys of transplanted animals [141,142,145-147] and hu-
man patients [148-150]. Clinical trials comparing efficiency and safety of UFH, LMWH,
pentasaccharides or oral anticoagulants for IBMIR prophylaxis are still missing.

In order to prevent thrombotic complications after transfusion, several animal studies
and subsequent clinical trials were efficiently using UFH as a pretreatment [140,151,152]
during the preparation of, or directly combined with cellular therapeutics [12,153,154].
Further efforts to avoid necessity of systemic anticoagulation, which associates with a
measurable bleeding risk, were based on results from efficient pancreatic islet surface
heparinization [151]. On the surface of stromal cells and hepatocytes, heparin conjugates
(consisting of about 70 heparin molecules of 13 kDa covalently bound to a polyamine chain
with disulfide bonds) were immobilized by binding of polyethylene glycol-conjugated
phospholipid (PEG-lipid) derivatives to a short heparin-binding peptide [155] to protect
the cells from IBMIR-induced damages. This conjugation technique was further improved
using a conjugate of heparin-binding peptide and human serum albumin on the surface
of endothelial cells [152]. These strategies might appear in contradiction to the above-
mentioned avoidance of UFH in cases where SDF-1/CXCR4-dependent homing might be
affected [156], well representing another example of pleiotropic and partly dose-dependent
heparin effects to be considered in cell therapy and regenerative medicine.

3.3. Heparins in Biomaterials Used for Regenerative Medicine

A growing number of biotechnology applications is using heparins to support the
production of specific cell-based therapeutics. The precise nature of the heparins (UFH or
LMWH) was commonly not disclosed. The most frequently used heparin-based bio-
materials include heparin-functionalized surfaces (either by electrostatic interactions,
self-assembly or chemically immobilized), heparin-based hydrogels (either physically
or chemically crosslinked), and heparin-containing nanoparticles, micelles or so-called
coacervates, spontaneous aggregates of amphiphilic molecules [157]. Heparins are at-
tractive components of biomaterials aiming to support different aspects of regeneration
mainly for two reasons: First, biocompatible materials can be conjugated with heparin
in order to provide a proteoglycan-like structure mimicking the physiologic functions
of heparan sulfate. This was considered promoting proliferation and differentiation, for
example of muscle progenitor cells [158-161], neurons [162,163], stromal cells [117] and
hepatocytes [164,165] (Figure 2A). Second, UFH molecules were described to effectively
bind a large number of growth factors and cytokines due to its high negative charge [104].
Gel-matrices or biodegradable scaffolds often contain intermediate size heparin molecules
(>5000 Da) that interact with and therefore retain growth factors such as FGFs [166],
VEGFs [167,168], PDGFs [169,170] or bone morphogenetic protein 2 (BMP-2) [171], fre-
quently also in combination with SDF-1 [172], cytokines such as interleukin 10 (IL-10) [173],
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or other growth factors [174-176]. These heparin-interacting factors were shown to be
released slowly and in a controlled manner from heparin-modified biocompatible scaf-
folds or hydrogels, thus providing stable local growth factor concentrations and therefore
enhancing cellular growth and differentiation (Figure 2B). Heparin-containing matrices
have been used in animal models to treat central nervous injuries [177], urinary inconti-
nence [178], bone defects [179], skin wound healing [180] and to optimize the production
of suitable replacements for corneas used in human eye surgery [181]. A multiplicity
of in vitro and in vivo studies demonstrated that heparin is important not only as a cell
culture supplement but also as a cell therapy adjuvant.
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Figure 2. Heparin-based biomaterials for regenerative medicine. (A) Biodegradable scaffolds conju-
gated with heparin provide a proteoglycan-like structure. This mimics the physiologic functions of
heparan sulfate, supporting proliferation and differentiation of muscle cells, neurons and hepato-
cytes. (B) In heparin-modified hydrogels and scaffolds, heparin molecules are frequently conjugated
with growth factors and/or cytokines. These factors are slowly but constantly released during the
degradation of the biomaterial and thus support cell proliferation and differentiation in vitro and

in vivo.
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Heparins were successfully tested for tissue engineering (not covered in this review)
and improving the production of cell therapeutics as a key component of diverse biomate-
rials. These functions, which are quite different to the anticoagulant properties of soluble
heparin, might be explained in part also by the immobilization and associated modifica-
tions, which are supposed to affect heparin’s functionality in addition to the multiplicity of
mechanistic explanations discussed in detail above.

4. Conclusions

A century after heparin discovery, mainly LMWHSs and synthetic pentasaccharides
are used in daily clinical practice together with oral anticoagulants to prevent and cure
thromboembolic events [5]. However, UFH is far more than solely anticoagulant. Dif-
ferent heparins can act as modulators of key processes during cell adhesion, migration,
communication, proliferation and differentiation in vitro and in vivo. The application of
cell-based therapeutics often demands the in vitro use of UFH to support proliferation
and/or differentiation of certain cell types, in addition to its increasingly common addition
to HPL-based cell cultures. UFH and LMWH are also beneficial in vivo to prevent IBMIR
and thromboembolic complications after transfusion of originally extravascular stromal
cells expressing tissue factor. The impact of heparins on physiological processes seems to
be mainly related to the interaction of cells with bioactive molecules. These interactions
lead to a local concentration and furthermore induce conformational changes of proteins,
thereby affecting the protein’s properties regarding target affinity and specificity. A more
detailed understanding and more precise reporting of the different heparin’s influence
on cell biology is mandatory for the future design of cell-based therapies particularly
regarding the bleeding risk associated with UFH use.
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