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Abstract: According to Landauer’s principle, at least kBln2T Joules are needed to erase a bit that
stores information in a thermodynamic system at temperature T. However, the arguments for
the principle rely on a regime where the equipartition principle holds. This paper, by exploring a
simple model of a thermodynamic system using algorithmic information theory, shows the energy
cost of transferring a bit, or restoring the original state, is kBln2T Joules for a reversible system.
The principle is a direct consequence of the statistics required to allocate energy between stored
energy states and thermal states, and applies outside the validity of the equipartition principle. As
the thermodynamic entropy of a system coincides with the algorithmic entropy of a typical state
specifying the momentum degrees of freedom, it can quantify the thermodynamic requirements
in terms of bit flows to maintain a system distant from the equilibrium set of states. The approach
offers a simple conceptual understanding of entropy, while avoiding problems with the statistical
mechanic’s approach to the second law of thermodynamics. Furthermore, the classical articulation of
the principle can be used to derive the low temperature heat capacities, and is consistent with the
quantum version of the principle.

Keywords: Landauer’s principle; statistical mechanics; algorithmic information theory; algorithmic
entropy; conservation of bits; heat capacity

1. Introduction

Landauer [1] established that the thermodynamic cost of erasing a bit specifying a
state of a computational system at temperature T was at least kBln2T. This result, which
is known Landauer’s principle, was used by Bennett to resolve the paradox of Maxwell’s
demon. Maxwell postulated that an intelligent demon could avoid the implications of the
second law of thermodynamics by being able to manipulate gas molecules in a container
to collect the slower molecules on one side of the container. The demon could violate
the second law of thermodynamics, as work could in principle be extracted if the more
energetic molecules on one side of the container were able to expand against a piston.
However, as Bennett argued, the demon was in effect a computational device. As the
demon would need to determine which side of a box contained a gas molecule, this
information would need to be stored as one bit in the demon’s memory. If the demon were
to continue to extract work, the bit specifying the position of the molecule in the box would
need to be erased from the demon’s memory each cycle. It was this erasure, not the cost of
measurement as argued by Szilard [2], that corresponded to kBln2T joules per bit.

However, Landauer’s principle assumed the thermal system (the reservoir or the
environment) that accepted the energy of the erased bit was at equilibrium, and that the
equipartition principle held (see Section 3). As the erasure process tracked the change in
the Boltzmann entropy, the argument relied on the connection between the Boltzmann
entropy and the thermodynamic entropy. Later the argument tightened when erasure was
seen to be the reduction in the number of bits specifying a microstate of a system and,
for a quantum system, the change in its Von Neumann entropy as discussed in Section 5.
Nevertheless, for these reasons it is unclear how valid the principle is for regimes where
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the assumptions do not hold, particularly as Devine [3,4] used the principle to identify
the thermodynamic cost of maintaining a system distant from equilibrium in terms of
entropy flows.

This paper, by using Algorithmic Information Theory (AIT) to track bit flows into
and out of a system, and how these flows relate to the thermodynamic entropy, shows
the principle is valid whenever Stirling’s approximation holds. This is in effect the regime
where the reciprocal of the temperature can be defined as the derivative of the entropy
with respect to energy, and in so doing avoids the assumptions of the traditional view
of Landauer’s principle. The argument identifies the number of bits needed to exactly
specify the instantaneous microstate of a system that is independent of the observer, as
the algorithmic entropy of that microstate in bits. It is shown, using a simple model, that
Landauer’s principle is universal and is valid for regimes outside the most probable set
of states and where the equipartition principle may not hold. As a bit from the external
environment moves into or out of the system, the algorithmic entropy of the microstate
increases or decreases by one bit. The approach also shows that, as a system in a highly
ordered configuration trends to equilibrium, each bit shifted to the thermal degrees of
freedom at the instantaneous temperature of T, increases the thermodynamic entropy by
kBln2 per bit by carrying kBln2T Joules of energy.

The sink may be a subsystem, such as the momentum degrees of freedom of a larger
system, or the external environment. However, unless the erasure is reversible, the en-
tropy of the total system, which includes the system of interest and its sink, will increase
by more than kBln2 per erased bit, consistent with the second law of thermodynamics.
It is shown here that the principle is fundamental and a consequence of energy con-
servation, the appropriate allocation statistics leading to Stirling’s approximation and a
well-defined temperature.

As the argument applies to systems distant from equilibrium, it justifies the use of
Landauer’s principle to track bit flows into and out of the non- equilibrium system as used
by Devine [3,4]. By being able to do so, AIT offers an approach to statistical thermodynam-
ics which is easy to visualize and which offers new insights, as these computational bits
are real entities linked to energy through the temperature.

From the perspective of Algorithmic Information Theory, the processes implementing
natural laws can be seen as computations on a real-world Universal Turing Machine
(UTM) where the “algorithmic entropy” is defined as the number of bits in the real-
world computational program that shifts a microstate i to the microstate j. However, as
is outlined later, a laboratory UTM can simulate a real-world computation to within a
constant. Hence, the number of computational bits shifting microstate i to j is independent
of the Turing machine used and becomes a defining measure of an instantaneous microstate
of the system.

In contrast to the Boltzmann, Gibbs and Shannon entropies, the algorithmic entropy is
a property of the instantaneous microstate of a system, rather than the set of microstates in
a macrostate. However, just as is the case for energy for an isolated system, all microstates
have the same algorithmic entropy. Shannon’s source coding theorem, when applied to
the set of states in a macrostate, shows that the number of bits to specify each microstate
is the same as the Shannon entropy of all the states in the set. Similarly, the number of
bits, scaled by Boltzmann’s constant, kB, is identical to the Boltzmann entropy of the set.
This is because the shortest algorithm that can specify the instantaneous state of the system
needs to identify the state amongst the myriad of others and therefore can be no less
than the Shannon entropy of this set. Critically, as is discussed with the model below, the
algorithmic entropy is meaningful for highly ordered states distant from equilibrium.

The algorithmic approach avoids the difficulties that the Boltzmann and Gibbs en-
tropies have with the second law of thermodynamics. The algorithmic approach sees
the thermodynamic entropy increasing as bits move from instruction or stored energy
states to momentum states, consistent with Landauer’s principle. From this perspective,
the second law of thermodynamics is seen as the process where the computational bits
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that are initially in the stored energy or the instruction states of the system, represent the
potential thermodynamic entropy. As the instantaneous state of the system trends to the
most probable set of states, these bits become realized, increasing the thermodynamic
entropy by kBln2 per bit.

Because the algorithmic entropy is a property of a particular microstate, the term
“equilibrium” can confuse. Here the terms the “most probable set of states” or the “equilib-
rium set of states” will be used to refer to the set of microstates that the system occupies
for overwhelmingly most of the time. This allows a fluctuation away from the typical
microstate to be seen as a fluctuation within the thermodynamic macrostate.

In what follows, Section 2 provides the basics of the AIT, while the model of Devine [4,5]
is extended to identify the regime where Landauer’s principle is valid. It is shown that the
algorithmic derivation of the Einstein and Debye heat capacities, and the distribution of
microstates in an isolated system depend on the same system properties.

2. Algorithmic Information Theory

The laws of the universe that shift one state to another can be interpreted as compu-
tations on a real-world Universal Turing Machine (UTM) where the interaction between
atoms and molecules can be seen as program instruction implemented on molecular com-
putational gates. Even though the real-world system is more akin to a set of interacting
computing automata, the trajectory through real space can be simulated on a laboratory
UTM, such as the typical laboratory computer.

As different UTMs can simulate each other to within a constant, the number of bits in
the real-world program that drive one state to another are the same as the number of bits
determined from an exact simulation on the laboratory computer. There are two constraints,
reversibility must be maintained and the simulation, like a natural computation, must use
instructions that have no end-markers, i.e., are self-delimiting

With these real-world requirements in mind, the algorithmic entropy is the number of
computational bits HU in the reversible self-delimiting program p undertaken by computer
U, that generates the string defining state s from the string defining the initial state y and
then halts. Or, in computational terms,

U(p, y) = s.

Below, |p| specifies the number of bits in program p. Mathematically this definition takes
the form;

HU(s|y) = minU(p,y)=s |p|. (1)

As, in the natural world, only algorithmic entropy differences are important, and as
differences are independent of the UTM used, the subscript U representing a particular
computer can be dropped. The algorithmic entropy, the total number of bits in state s is the
sum of bits in p, and the existing bits in the system that specify the initial state y.

While the algorithmic approach requires the algorithm to halt when the state of
interest is reached, real-world computations are reversible and do not normally halt but
are on-going. However, as the algorithmic entropy can be shown to be a function of
state, provided all bits are tracked, it does not matter what path is taken to arrive at a
particular configuration. From the perspective of an on-going real-world computation, the
net number of bits that define the state of interest is given by the initial bits, and the bit
flows given by the shortest program that fully defines the state of interest and then halts.
Hidden bits will exist whenever the memory bits that allow reversibility are not included in
the "observed" state description. Whenever the net number of bits is not consistent with the
number obtained by a halting algorithm, these hidden bits need to be taken into account.

2.1. Uncertainty Due to Phase Space Graining

The instantaneous microstate of a natural system can be represented by a point in the
multidimensional state space of the system that defines the position, momentum, binding
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states and electronic states of all the species in the system. As much of the discussion on
microstates involves specifying position and momentum coordinates of each species along
the x, y, z axes, the term “phase space” is specifically used for this sub-space of the full
state space. For N species the phase space is a 6N dimensional space known as Γ space.

While the Boltzmann and the algorithmic entropy approaches, require each point in
phase space to be specified to a suitable degree of precision, the argument in the algorithmic
case is a fundamental one. As computational bits are discrete, discreteness is built into
the algorithmic universe, and translational symmetry is restricted to increments of the
minimum sized cell in position-space. Let the minimum unit length along the x axis
be a. This length should be fine enough to ensure all microstates can be captured by a
discrete binary string. In which case, allowable translations in the x direction that shift
one configuration to another must be integral multiples of a given by Na where N is any
integer. The basis function for the discrete Fourier expansion of the position-space in one
dimension is e−2πkx x where kx is the wave-number, i.e., the x component of the reciprocal
space vector conjugate to the x. As a translation of Na changes the Fourier function to
e−2πkx Nae−2πkx x, for the configuration in position-space to be invariant under translation,
2πkx Na = 2π(integer). This implies that the wave-number, k = (integer)/(Na) for all
N > 0. That is, the wave-number in k space is a discrete multiple of 1/a and

δxδkx = a(1/a) = 1. (2)

Here δx and δkx define the resolution for the position and the momentum wave-number
space, respectively. From an algorithmic perspective, the translational symmetry due to
the minimum specification of a bit in position-space, constrains the specification in k space.
This is in effect an uncertainty principle, as increasing resolution in the x space decreases
the allowable resolution in the reciprocal space. Equation (2) is a fundamental property of
the algorithmic universe. As the momentum in the x direction, px, is also invariant under
translational symmetry, both px and kx are constants of the motion, implying that px =
constant× kx and δxδpx = (constant)δxδkx. As this constant has the same dimensions as
Plank’s constant, it can be taken to be Plank’s constant, to give δxδpx = h. For N particles
in 3 dimensions, the fundamental volume in the 6N dimensional phase space is h3N . In
other words, there is a plausible argument that, because the phase space is discrete, the
resolution should be determined by Plank’s constant. Furthermore, as time and energy are
also discrete, energy will be similarly related to the Fourier transform of time by h.

Equation (2) above is a property of the discreteness of the space and is conceptually
different from the Heisenberg uncertainty principle expressed in terms of the standard
deviations of the position and momentum operators along say the x direction (σp and
σx) by σxσp ≥ h/2, [6]. This is interpreted as the uncertainty due to the spread of the
probabilities determined from the square of the amplitude of the position and momentum
wave functions.

2.2. The Conservation of Bits and Reversibility

As the laws of classical physics are reversible, computations simulating natural pro-
cesses must be reversible. As a consequence, the computation that measures the number of
bits needed to specify a state must be undertaken on a reversible computer, or with a re-
versible algorithm. Alternatively, the information bits, including the history bits generated
by the computation, must be kept to allow the initial state to be regenerated. If bits are
properly tracked, reversibility ensures bits are conserved. This implies that computational
steps, representing increments in time are discrete and the cumulative time is finite. How-
ever, once this trajectory information, corresponding to the reversible or history states is
lost, the process is not reversible and the cost of restoring a state is greater than that implied
by the Landauer minimum of kBln2T Joules per bit. This is because correlations between
the system and the sink, captured in the history bits, are lost. A bit, which is a physical
entity carrying energy, cannot just vanish. Rather it can no longer be tracked. Reversibility
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ensures that, as bits are conserved, the algorithmic entropy is a function of state, and the
value associated with each state is independent of the path taken to get to the state [4].

While the traditional entropies, including the Shannon entropy, identify entropy as a
characteristic of the macrostate, the algorithmic entropy, given by the number of bits that
generate a particular microstate, is a property of the instantaneous microstate of a natural
system. However, as is discussed further below, just as all microstates in a macrostate have
the same energy, they have the same algorithmic entropy. This clarifies the relationship
between the algorithmic entropy and the thermodynamic entropy. The algorithmic entropy,
i.e., the bits specifying the stored energy degrees of freedom correspond to potential ther-
modynamic entropy. It is only when these bits are transferred to the momentum degrees of
freedom will the temperature increase. In which case, the algorithmic entropy becomes real-
ized as thermodynamic entropy. i.e., the number of bits specifying a microstate in the most
probable state, when multiplied by kBln2T, corresponds to the thermodynamic entropy
provided Landauer’s principle holds generally. As is shown later, once the universality of
Landauer’s principle is established, the thermodynamic entropy be consistently related to
the algorithmic entropy, both when the system is in the most probable set of states and also
when the system is distant from this set. In the latter case, most bits will be stored in the
potential energy states. However, if the system is isolated and reversible, there cannot be an
increase in entropy of the total system. This all makes sense as the number of bits needed
to describe the initial state (including the program bits) is the same as the number of bits
needed to describe a later equilibrium or typical configuration provided reversibility is kept.
When such a system trends to the equilibrium set of states, the thermodynamic entropy
increases as stored energy bits and program bits become momentum bits, increasing the
temperature. In other words, the algorithmic approach allows the bit flows within the
system to be tracked as the system trends to the most probable set of states. As is shown
in the model discussed below, the thermodynamic entropy increases by kBln2 for each bit
that is transferred to the momentum states.

2.3. The Source of the Apparent Entropy Increase in an Isolated System

If bits are conserved, how does the algorithmic entropy increase as an isolated system
trends to the most probable set of states? Devine [4], developing an argument first articu-
lated by Zurek [7] has shown that, as the system trends to the most probable set of states,
the number of bits needed to specify later microstates in the trajectory increases when
program bits are added to the configurational bits. As a consequence, if the program bits
are considered as part of the initial configuration, and residual program bits are tracked in
the system’s trajectory, bits are conserved at each step of the process.

This can be understood by recognizing that a general computation on the UTM U
initially in state s0 generates the halt state st = ŝt, gt after t steps. The computation takes
the form;

U(pt, s0) = ŝt, gt.

Here ŝt, represents what the observer sees as a later microstate, while gt, represents the
history bits or equivalently the residual program bits needed for reversibility. When the bits
defining ŝt increase, the history or residual program bits decrease. i.e., H(pt, s0) = H(ŝt, gt).

In the natural world, the instructions are stored in the structure of the species that
act as computational automata. As these disintegrate under natural laws, bits are released
into the downstream microstate. Another way of looking at this is to see the process in
terms of the algorithmic equivalent of Shannon’s mutual information. In the algorithmic
case, the mutual information between two configurations x and y is given by H(x : y) =
H(x) + H(y)− H(x, y). Applying this to the halt configuration,

H(ŝt : gt) = H(ŝt) = H(gt), (3)

as ŝt and gt are generated together by the same algorithm. Ultimately the system trends to
the most probable set of states. In this case, from Shannon’s source coding theorem, the
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number of bits specifying such microstate is close to log2Ω, where Ω is the total number
of available states in the trajectory. However, in practice a real-world trajectory, even if
deterministic, can fluctuate away from the trend to the most probable set of states. While
such ordered fluctuations reduce the algorithmic entropy of what the observer sees as the
actual microstate, to compensate, the structures that act as computational gates and the
instructions they carry are reconstituted, conserving the number of bits.

When a string representing a configuration of molecular species initially in the system,
becomes a string representing a configuration of species transferred to the environment,
represented by ŝenv, the history bits of the computation, H(genv), implementing the transfer
are also now part of the environment. Unless the correlations between the history or
residual program bits with the observed state are tracked, the process is not reversible
and the total entropy of the environment increases more than by just H(ŝenv) bits as the
mutual information, the bits identifying the correlation between ŝenv and genv, are lost.
As the algorithmic approach necessitates quantization, the loss of mutual information
corresponds to environmental decoherence. Indeed, the conservation of information as the
system evolves implies unitarity, while coherence is a consequence of the memory allowing
strict reversibility. The implications of the correlations implied by the mutual information
is discussed in Section 5, which deals with the quantum formulation of the principle.

3. Landauer’s Principle and Energy per Bit

As was mentioned in the Introduction, Landauer [1], showed that resetting a bit in a
computational device that specified a binary state as a 0 or a 1, back to 0, was a process of
erasure that cost at least kBln2T Joules. As a bit is a physical entity and energy is conserved,
the process of erasing a bit must involve transferring the bit, with its associated energy,
to the external environment. As reversibility is lost, this compresses the phase space of
the system by one bit, and expands the phase space of the environment by at least one bit.
Bennett [8] showed how the cost of erasure of a bit foiled the demon’s attempt to subvert the
second law of thermodynamics. Landauer’s principle provided the framework to discuss
reversibility and the cost of restoring a system to an earlier configuration. As real-world
trajectories are reversible from a classical point of view, provided all bits, including history
bits and bits specifying instructions are tracked, the cost of reversibly (i.e., restoring a
system to the original configuration) is still kBln2T joules per bit. It is when no reversible
path exists to restore the original configuration, as correlations between the system and
the sink, captured in the history bits are lost that the cost of restoring a configuration is
greater. This understanding has allowed Lloyd to argue the thermodynamic entropy stored
in a volume of material containing N bits is NkBln2 [9] and kBln2T Joules are needed to
transfer a bit within the system.

Although the evidence supporting Landauer’s principle is strong [4], there is some
disagreement over whether logical reversibility and thermodynamic reversibility are the
same. As a logical trajectory through a computational system is a trajectory implemented
on a computational device as a thermodynamic system, the implication is that provided all
logical bits are tracked, Landauer’s principle holds from a logical and thermodynamic per-
spective. Devine [5,10] has also used the Landauer value to determine the bit requirements
to maintain a thermodynamic system distant from the equilibrium set of states. In this
situation, the bits carrying stored energy that enter as potential entropy, must equal the bits
specifying the momentum degrees of freedom that are rejected from the system as realized
entropy. The energy input counters the drive of the second law of the thermodynamics.
Nevertheless, the validity of assigning kBln2T Joules per bit for real-world situation needs
to be explored.

The following identifies some of the perspectives underpinning Landauer’s principle.

• While Landauer’s argument is about erasing a discrete entity “the bit” that specifies
the actual state of a system, the argument, which is usually expressed in terms of the
change to the Shannon or Boltzmann entropies is not clear cut, as a bit is a property of
the collection of allowable microstates. For example, Landauer [1] discusses erasure
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from the Boltzmann/Shannon perspective where a computation shifts the set of
allowable input states to the set of allowable output states, by mapping 8-bits on to 4-
bits. This dissipates 1.18kBT Joules. However, in contrast, the algorithmic perspective
sees only an entropy change of one bit, as 3 bits (representing 8) drops by an integer
to 2 bits (representing 4), clearly indicating that the minimum energy change for one
bit is kBln2T = 0.6931kBT Joules.

• Chandrasekhar [11], assuming the equipartition of energy, has shown that in an
isolated system, the energy to drive a Brownian particle from a stored energy state
produced by a gravitational field to the most probable set of states, corresponds
to a thermodynamic entropy change of kB nats or kBln2 bits per particle. (Here
“nats‘’ stands for natural units of information.) This is Landauer’s principle if one
assumes the bundle of energy carrying a nat behaves like a Brownian particle. This
can be envisaged as the entropic force dissipating the stored energy and, in so doing,
increasing the kinetic energy of the system.

• Again, the Johnson-Nyquist noise in a communication channel, represented by a
resistance capacitance network, given the equipartition principle, is kBT Joules per
mode of oscillation. This corresponds to N0, the noise power per bandwidth. If the
signal energy per bit of data is Eb, Shannon has shown that the optimum capacity for
a noisy communication channel at temperature T is EB/N0 ≥ kBln2T as more energy
is needed to identify a bit as the temperature rises. This can be related to Landauer’s
principle by determining the energy cost of sending a signal of one bit carried by a
pressure pulse using a gas tube as the communication channel. This would require
at least kBln2T Joules, otherwise the pulse could not be identified above the thermal
background noise.

The above arguments, would not seem to be applicable to systems where entropy
flows occur between components of a system that are not at equilibrium. Critically, if the
principle is to be applicable to such a situation, a better argument is needed.

4. The Validity of Landauer’s Principle

In the next subsection it is shown that Landauer’s principle applies to the bit flows
in each step of the processes that drive a system from a highly ordered, low algorithmic
entropy microstate towards the most probable set of states. The principle applies to bit
flows in microstates distant from the most probable set of states and is independent of the
equipartition principle.

A simple archetypical model is presented that shows how to count the number of
bits in each microstate as the system trends from the optimally ordered configuration
to the equilibrium set. In the first instance, the argument is primarily one of counting
the number of states, as shown in Table 1 for each step of the trend to equilibrium. The
following subsections demonstrate that, for each step, Landauer’s principle determines the
energy cost of moving a bit specifying the electronic or stored energy microstate, to one
specifying a momentum microstate. i.e., effectively erasing the bit. Because the number
of bits specifying the algorithmic entropy of the microstate at each step of the process
is identical to the Shannon entropy of the set of similar microstates, the argument could
also be articulated in terms of the Shannon entropy. However, because the algorithmic
argument is more straightforward, and provides an understanding of the source of the
increase of bits it would appear to be more fundamental.

The data from Table 1, also verifies that, from the algorithmic perspective, the distri-
bution of states around the most probable set of states is indistinguishable from a normal
distribution consistent with statistical mechanics.
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Table 1. The algorithmic entropy for each class in the 24-atom system.

Number
of States

log2n(k)
e

H(e(k)
i )

log2n(k)
p

H(p(k)
i )

H(e(k)
i ) +

H(p(k)
i )

Instruction
Bits

Temp
×10−6

0 0 0 0 0 105.551
1 1 4.585 4.585 9.170 96.381 2.66
2 576 8.229 8.229 16.458 89.093 3.35
3 90,000 11.344 11.344 22.689 82.862 3.91
*** *** *** **
12 5.42× 1017 29.276 29.636 58.912 46.639 7.89
13 3.85× 1018 30.633 31.106 61.738 43.812 8.30
14 2.45× 1019 31.903 32.508 64.41 41.140 8.69
15 1.42× 1020 33.093 33.849 66.942 38.609 9.09
*** *** *** **
43 3.19× 1030 43.057 58.274 101.331 4.220 19.72
44 3.79× 1030 42.700 58.881 101.581 3.970 20.09
45 4.32× 1030 42.293 59.476 101.779 3.781 20.47
46 4.73× 1030 41.837 60.061 101.898 3.653 20.84
47 4.95× 1030 41.329 60.636 101.964 3.586 21.21
48 4.96× 1030 40.768 61.201 101.969 3.582 21.58
49 4.76× 1030 40.154 61.756 101.910 3.641 21.96
50 4.37× 1030 39.485 62.302 101.787 3.764 22.33
51 3.21× 1030 38.759 62.839 101.598 3.953 22.70
52 3.21× 1030 37.974 63.367 101.342 4.209 23.07
53 2.56× 1030 37.129 63.887 101.017 4.534 23.44
54 1.95× 1030 36.222 64.399 100.621 4.930 23.81
*** *** *** **
67 1.54× 1026 16.576 70.417 86.993 16.724 28.63
68 3.75× 1025 14.097 70.837 84.934 18.558 29.00
69 7.31× 1024 11.344 71.252 82.596 22.955 29.37
70 1.12× 1024 8.229 71.662 79.891 25.660 29.74
71 1.19× 1023 4.585 72.067 76.652 28.899 30.11
72 6.53× 1021 0 72.467 72.467 33.084 30.48

Total 5.94× 1031

4.1. The Archetypical Model to Illustrate the Algorithmic Perspective

Devine [4,5] introduced a simple archetypical model to track the bit flows as a system,
initially in a microstate maximally distant from equilibrium set, trends to the most probable
set of states. The original model had only 3 atoms which is too few atoms for Stirling’s
approximation to be valid. However, as is shown below, Stirling’s approximation is needed
to demonstrate Landauer’s principle in the general case. Once the model is extended
from a 3-atom system to a 24-atom system Stirling’s approximation holds. It can then be
demonstrated that the energy required to transfer a bit from the stored energy states to
the momentum states obeys Landauer’s principle. This argument holds for any system
of greater size, irrespective of whether the system is in a highly ordered microstate, or
whether it belongs to the most probable set of states. i.e., the principle does not depend on
the usual statistical mechanics argument but holds generally.

Consider a 24-atom isolated system where each atom can store from 0 up to 3 units
of energy in its electronic states. Each unit of energy will be taken to be ε̂ Joules. The
initial state of the system is taken to be maximally distant from the most probable set of
states with no energy in the momentum states. This can be envisaged as a system at zero
temperature, but where the electronic states having been excited by a laser. In total there are
424 allowable microstates in this stored energy subsystem. Let k specify the number of units
of energy, corresponding to ε̂k Joules, that reside in the momentum states at a particular
instant. The initial value of k is zero as all the energy is carried in the electronic states. As
the system trends to the equilibrium set of states, at each step ε̂ Joules are transferred to the
momentum states and k increases by 1. When k = 24× 3 all the 72ε̂ Joules will have been
transferred to the momentum states.

The integer k, the number of units of energy in the momentum states at a particular
instant, characterises a class of microstates that all have the same momentum or kinetic
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energy. i.e., each microstate in the class k is specified by the same number of bits, as shown
in Table 1. Where k is low, the class will have few microstates, the algorithmic entropy
is low, and the instantaneous configuration is highly improbable. Over time, the second
law of thermodynamics will ensure that k increases, as the stored energy in the electronic
states is re-distributed to the momentum states, increasing the total number of microstates.
Ultimately, the system trends to the most probable set of states which, in Table 1, is seen
to be when k ≈ 48. As bits are conserved, it will be shown that the increase in bits with k,
comes from the instruction or computational bits specifying the behaviour of the natural
laws. Further transfers of energy can occur, but for k > 48, a particular configuration
becomes less probable and the transfer of energy is likely to be in the reverse direction.
Later, a the value of ε̂ will be taken to be the first excited state of the hydrogen atom. This
allow a representative value of temperature to be assigned to each k value. the value of ε̂
will be taken to be the first excited state of the hydrogen atom. This allow a representative
value of temperature to be assigned to each k value.

4.1.1. The Contributions to the Algorithmic Entropy of the Model System

For simplicity, we will assume the momentum specification has only one degree of
freedom allowing the instantaneous configuration of momentum microstate state to be
denoted by the string pi. This can be envisaged as restricting the atoms to movement along
the x-direction. Again, the position degrees of freedom will be ignored when they are
unaffected by the transfer of bits. The counting parameter k denotes the number of units
of energy of magnitude ε̂ that have been shifted to the momentum states. All microstates
with the same k have the same number of bits.

In general, the bits specifying a particular electronic state and a particular momentum
state cannot be added to give the number of bits needed to define a particular configuration.
The algorithm generating the microstate generates both theses bits together. However, for
a given value of k, as the number of states in the class is the product of the number of
electronic states and momentum states, the bits defining the electronic subsystem and the
momentum subsystem are additive [4,5]. This can be seen in each row of Table 1. In which
case, the full stored energy and momentum microstate for the class k, given by column 4 in
Table 1 can be represented by the string (e(k)i , p(k)i ) where e(k)i is the electronic configuration,

and p(k)i the momentum configuration. For the microstates in class k, as the probabilities
multiply, the electronic and momentum algorithmic entropies can be added to give the
total. i.e.,

H(e(k)i , p(k)i ) = H(e(k)i ) + H(p(k)i ).

If kmp specifies the value k defining the most probable set of states, under the second
law of thermodynamics, as energy is transferred to the momentum states the initial ordered
microstate (e(0))(p0), where k = 0, trends to the microstate i in the most probable set of

states (e
(kmp)
i )(p

(kmp)
i ). i.e., (e(0))(p(0))→ (e

(kmp)
i )(p

(kmp)
i ), as outlined by Devine [4].

From Shannon’s source coding theorem, [12] the shortest algorithm that specifies
a microstate is no more than 1 bit greater than −log2 of the probability of that state in
the set of states. As all strings in a particular class are equally likely, the number of bits
needed to specify a microstate becomes the logarithm of the number of states in the set.
From this it follows that the shortest algorithm to generate the string (e(k)i , p(k)i ) contains

H(e(k)) = log2n(k)
e bits, for the electronic component and H(p(k)) = log2n(k)

p bits for the
momentum component. (Or equivalently, the Shannon entropy of the set of states). Here
n(k)

e and n(k)
p are the number of electronic and moment states in the k-th class. The critical

point is that all microstates in the same class are specified by the same number of bits. As a
consequence, the subscripts i can be dropped in H(p(k)) and H(e(k)).

However, the full algorithmic entropy of a microstate in class k consists of the number
of bits needed to specify the class, plus the number of bits, that, given the class, specify the
electronic and momentum contributions. The bits, needed to identify the class, are given
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by the 6th column in Table 1 and correspond to −log2Pk where Pk is the probability of class
k in the set of all k values. As Devine [4] has shown, these extra bits to define class k are
real entities and correspond to the instruction bits specifying the interactions between the
species and the system. That is, these extra bits specify the program instructions embodied
in the natural laws that drive the system to the halt state to generate the instantaneous
microstate in the class k. For a highly ordered configuration, few bits define the microstate,
while most of the bits are in the program instructions in the 6th column. As the system
trends to the most probable set of states, the instruction bits become the bits specifying
the increasingly disordered microstate. For k around 48, only residual instruction bits,
identified as history bits, remain to ensure reversibility. Once the bits needed to specify
the class are taken into account, the sum of the bits specifying the electronic state, the
momentum state, and the instruction is a constant. It is then obvious that all microstates
in the isolated system are equally likely, as instruction bits add to the bits specifying the
microstate. To clearly demonstrate this point, because the number of states is low, the
probabilities and the derived entropies in Table 1 have been expressed as non-integers.
With a realistic system of, say, a mole of a Boltzmann gas, the total number of bits is
enormous and there would be no need to have non-integral bits to demonstrate the point.

Table 1 captures the specifics of the model. Consider first the thermal subsystem
consisting of just the momentum bits. The distribution of the momentum degrees of
freedom is straightforward. If g is taken to be the number of atoms, the formula to allocate
k identical objects, corresponding to kε̂ Joules of energy to the g distinct atoms as bins, is
known as the “stars and bars” approach attributed to Ehrenfest. The resulting number of
momentum states in class k is given by,

n(k)
p = (k + g− 1)!/[(k!)(g− 1)!]. (4)

This is analogous to the distribution of k bosons amongst g oscillators. As Stirling’s
approximation is based on natural logarithms, the number of nats is ln2H(p(k)) = ln(n(k)

p ).
Hence,

ln2H(p(k)) = ln(n(k)
p ) = g(1 + k/(g− 1))ln[k/(g− 1)]− (k/(g− 1))ln[k/g]. (5)

On the other hand, the bits specifying the electronic subsystem for class k is not as
straightforward as the maximum energy in each atom must be ≤ 3ε̂. There is no simple
formula to determine the number of microstates in the electronic subsystem, once the
number of atoms grows large. Hence the values for the distribution for g atoms was able
to be determined from g− 1 atoms building up from the simple case using a spreadsheet.
The total number of states, where g atoms can store 0 to 3 units, is 4g.

The first column in Table 1 specifies the class k, while the second gives the actual
number of states for the class. The 3rd and 4th columns list the algorithmic entropy values
H(ek) and H(pk). The total number of bits specifying a microstate is given in column 5.
The 6th column lists the bits needed to pick out the class k amongst all the classes. i.e., the
program or instruction bits that still remain in the system. For each value of k, the sum of
the instruction bits and the bits that specify the microstate is log2(5.94× 1031). Strictly, as
mentioned, the bits should be expressed as integers, but doing so makes it less obvious
that all microstates are equally probable.

Figure 1 represents a schematic diagram representing the rows in Table 1. In the figure
it is seen that the number of bits is constant for each value of k, where initially in the
ordered situation, most of the bits are program or instruction bits whereas the program bits
are minimal for microstates in the most probable set of states.



Entropy 2021, 23, 1288 11 of 18

Figure 1. Showing how programme, stored energy and momentum bits interchange as the microstate
of the isolated system moves away from an ordered configuration.

The full specification of microstate si, allowing for non-integer bits is,

Hsi = 105.551 = H(instructions) + H(e(k)i ) + H(p(k)i ).

For a microstate in the most probable set of states, which occurs around k = 48, the
contribution from the instructions or program bits is small as H(e(48)

i ) + H(p(48)
i ) = 102.0.

This differs by only ≈ 4 bits from the total bits H(si).
These 4 bits represent residual program instructions. For a many-atom system, these

residual instructions bits are negligible relative to the number of bits needed to specify a
microstate in the most probable set. E.g., for a mole of a Boltzmann gas, where each atom
might need 8 bits to specify its momentum states, and 269 bits are needed to specify each
atom. In total, 272 bits are needed to specify the atom and its momentum state. The residual
instruction bits are negligible relative to the 272 bits. Nevertheless, if the residual bits
expressing these instructions are lost, the correlations and connections between different
states of the system are lost, and the algorithmic entropy increases. This is why, when these
bits pass to the environment, the system is no longer reversible. For example, when a heat
bit is passed to the environment in a non-reversible manner, the entropy cost is more than
kBln2 per bit. The residual instructions bits dissipate as heat, because correlations are lost,
increasing the overall entropy of the universe. It is only when the program information is
kept, can the system be reversible and return to a prior state.

In the model, as 98% of the microstates lie between k = 37 and 58 and the algorithmic
entropy of these is within 2 bits of the state at k = 48. This range for practical purposes can
define the most probable set of states. However, with a realistic number of atoms and a
larger energy transfer, the most probable peak becomes extremely sharp.

The number of program bits needed to fully specify a microstate in class k is given
by D(k)

ord, the degree of order of that class [3,4]. These bits measure the “distance from
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equilibrium” of the microstate. This is the difference in bits needed to specify the class and
the bits needed to specify a microstate in the most probable set. In general

D(k)
ord = Htotal − H(e(k)i )− H(p(k)i ).

These are the bits that need to be released into the system to shift the microstate from an
ordered configuration, (e(k)i , p(k)i ), to one in the most probable set.

4.1.2. Derivation of Landauer’s Principle

Landauer’s principle establishes the energy cost of transferring ∆H bits to the mo-
mentum states. In other words, what TdS work is needed to shift bits to the momentum
degrees of freedom, by driving k → k + 1, given that there are ε̂ units of energy per k
value? Provided the work in shifting k to k + 1 dissipates ε̂ = kBln2T∆H Joules per bit,
Landauer’s principle is verified.

The first step is to use Equation (5), derived from Stirling’s approximation of the
natural logarithm of Equation (4) to determine the number of bits, H(p(k)), needed to
specify a momentum state in class k. The derivative of this gives the number of bits
transferred to the momentum states when k changes by 1 unit. i.e.,

ln2[dH(p(k))/dk] = ln[1 + (g− 1)/k]. (6)

Except for very low values of k, the number of bits given in Table 1 from the factorial
formula, is consistent with Stirling’s approximation converted to the base 2. If ε̂ is the
minimum energy transfer for each increment of k, the total energy transfer is U = ε̂k.

The second step is to use Equation (6) to define the temperature of the system at the
time the momentum states have k units of energy. Consider the system to be isolated in
class k for an instant. Each microstate in class k has the same kinetic energy and therefore
the same temperature, although the momentum carried by an individual particle varies.
Fluctuations in temperature only occur between classes, i.e., when ki → k j. At the time
the system is isolated in class k, the temperature is given by ∂S/∂U = 1/T. The next step
is to relate the algorithmic entropy to the thermodynamic entropy. One way to do this is
to recognise that, the Boltzmann entropy of the set of momentum states in class k, is the
algorithmic entropy of associated with each microstate in the class k multiplied by kBln2,
because of Shannon’s source coding theorem discussed above. Here the ln2 factor converts
to natural entropy units.

All microstates have the same algorithmic entropy and each microstate is proportional
to the Boltzmann entropy of the set of microstates in the macrostate. i.e., the Boltzmann
entropy S(k)

B for class k is

S(k)
B = kBln2H(p(k)).

This would suggest that the right hand side of the above equation expresses the thermo-
dynamic entropy in terms of the algorithmic entropy. However, there are advantages in
directly relating the algorithmic entropy to the thermodynamic entropy without involving
the Boltzmann entropy, because of its inherent difficulties with the second law, and the
Boltzmann entropy has meaning only for equilibrium situations. The factor kB primarily
allows temperature to be expressed in terms of energy, appearing as kBT Joules.

In general, we might expect the algorithmic entropy to be related to the thermody-
namic entropy S(k) by

S(k) = k′Bln2H(p(k)), (7)

where k′B replaces Boltzmann’s constant. However, scenario 5 in Devine [4] identifies the
thermodynamic entropy change of a Boltzmann gas of N particles that is isothermally
compressed to half the initial volume, given the gas law PV = NkBT. As kBln2T Joules
of work are ejected as heat, the thermodynamic entropy passed to the environment is
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S = kBln2. From an algorithmic perspective as N bits are ejected, and N corresponds to
H(p(k)), by comparison with Equation (7), k′B = kB. This is a result that is independent of
Boltzmann statistical mechanics.

Taking k′B = kB, the change in internal energy of the momentum states is related to tem-
perature by 1/Tk = ∂S(k)/∂Uk = (1/ε̂)∂S(k)/∂k. Expressing S(k) in terms of H(p(k)) from
Equation (7), and using Equation (6) for the derivative with respect to k, the result becomes;

Tk = (ε̂/kB)[ln(1 + (g− 1)/k)]−1. (8)

Solving for k/(g− 1) gives a distribution which has the same form as the Bose–Einstein
distribution, showing that bits in the momentum degrees of freedom behave as bosons. i.e.,

k/(g− 1) = 1/[eε̂/kBTk − 1]. (9)

A representative temperature value, Tk, is listed in the last column of Table 1 by taking the
minimum ε̂ as the energy of the first excited state of hydrogen. As there are few atoms, the
temperatures are extremely low.

The final step is to show how the number of bits transferred to the momentum states
depends on the temperature. This follows by eliminating the natural logarithm term from
Equations (6) and (8) to give;

ε̂(dk/dH(p(k))) = kBln2T.

The number of bits, ∆H, transferred to the momentum states for dk = 1, is given by
replacing dH(p(k)) by ∆H. This gives Landauer’s principle as,

ε̂ = kBln2T∆H.

It is seen that the principle does not depend on the principle of equipartition of energy, nor
is it a property of just the most probable set of states.

While the model discussed involves transferring energy from the stored energy states
to the momentum states, the current general argument for Landauer’s principle does not
depend on the source of the energy, or the source of bits that pass to the momentum states.
In general, the k units of energy could come from the stored energy subsystem as in the
model, from heat generated through pdV work done on the spatial degrees of freedom,
from the latent heat of a type 1 phase change, or by thermal contact with another system.
The cost of transferring the bits depends on the temperature of the receiving subsystem
and the energy transferred to the momentum states. The principle is a consequence of
the statistics defining the momentum states of the system and a value of temperature that
relies on Stirling’s approximation.

Only when Stirling’s approximation breaks down, will the temperature become ill-
defined and will the principle need revising. However, even with the simple 24-atom
case, this does not appear to be significant as the factorials grow quickly with k. There
is only a 3% error for k = 1 and a 0.4% error k = 3, showing Stirling’s approximation is
very effective.

When bits are transferred to the environment, or to a different system, temperature
becomes the parameter that ensures both energy and bits are conserved. However, bits
themselves can be tracked directly within the system.

While the model is simple, the results extend to systems with more realistic particle
numbers and with temperatures significantly above absolute zero. As was mentioned, once
the number of particles increases, discrete bits provide a realistic picture of the situation.
The next section relates the above argument to the quantum version of Landauer’s principle.

5. The Landauer Principle at the Quantum Limit

While Landauer’s principle seems to be widely applicable, until recently it was not
clear how effective it is in the quantum regime. Yan [13], by employing an ultracold



Entropy 2021, 23, 1288 14 of 18

trapped ion, showed the quantum version of Landauer’s principle is consistent with the
theoretical approach of Reeb and Wolf [14]. The quantum version is the thermodynamic
cost of reducing the von Neumann entropy by one bit. This leads to the following equality.

∆Q/kBT = ∆S + I(S′ : R′) + D(ρ′R||ρR). (10)

HR is the Hamiltonian specifying the states of the reservoir, R, while ∆Q is the average
increase of the thermal energy in the reservoir. ∆S is the decrease of the von Neuman
entropy of the trapped ion when a bit is erased. In that context ρ is the operator in the von
Neumann density matrix.

The previous discussion argued that from a classical perspective, when all bits are
tracked, Landauer’s principle becomes an equality. However, the above equation has two
extra terms. These are

• I(S′ : R′) is the mutual information between the system and the reservoir. It is this
term that irreversibly increases the entropy. From the algorithmic entropy perspective
discussed here, I(S′ : R′) corresponds to the algorithmic mutual information embod-
ied in the bits in the residual program or history as in Equation (3). The algorithmic
approach interprets the loss of mutual information as adding an extra H(gt) bits to
the environment. It is necessary to track these bits to maintain reversibility as when
the structures carrying these bits disintegrate, the bits dissipate as heat, leading to an
increase in the algorithmic entropy of the reservoir.

• D(ρ′R||ρR) is the relative entropy before and after the erasure, given ρ′ and ρ. D(ρ′R||ρR)
corresponds to the free energy increase of the reservoir during the erasure process. As
this term is included where capability exists to do work, it will be zero with an appro-
priate definition of heat as argued by Bera et al. [15]. These authors do not consider
energy that transfers into a reservoir to be heat when work can still be extracted from
the energy. From the perspective here, these bits are potential entropy only, and do
not align with the realized entropy in the momentum degrees of freedom.

Provided that the momentum states are thermalized, the classical algorithmic ap-
proach to Landauer’s principle is seen to be consistent with the quantum mechanical
approach. However, this is no surprise. As was mentioned earlier in Section 2.3, quantiza-
tion underpins the algorithmic approach. A referee has suggested that the discussion in
the current section could be framed in terms of unitarity and decoherence via interaction
with an unobserved and hence traced-over environment. Writing the interaction in terms
of one-bit measurement operators yields Landauer’s principle in a straightforward way.

6. The Heat Capacity

A gas has a higher algorithmic entropy than a liquid or crystal because a first order
phase transition occurs when a gas liquifies or a liquid crystallizes and in so doing, rejects
heat and bits from the momentum states. Fewer bits are then needed to describe the
microstate, as correlations between particles shorten the algorithmic description. This hap-
pens, for example, when the restriction of translational symmetry to lattice points shortens
the algorithmic description. The reverse phase change, occurring in a system initially in
an ordered low temperature state where disorder emerges as happens when a solid melts.
The extra bits only increase the temperature when the disordering is complete. As the
temperature remains constant during such phase changes, the energy cost of transferring
a bit remains unaltered. In a low temperature solid phase, the momentum bits specify
phonons rather than random motions. This allows the algorithmic approach to be used
to explore the Einstein and the Debye theories of the heat capacity of a low temperature
system. The equations that determine the low temperature heat capacity are the same
equations as those behind Landauer’s principle. If Landauer’s principle does not hold at
these temperatures, the Einstein and the Debye heat capacities would not fit the relevant
data. In the Einstein approach, the atoms are considered as 3-dimensional oscillators and
the energy of a particular oscillator is determined by the number of phonons allocated as
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is outlined immediately below. The Debye heat capacity for solid with a lattice structure,
recognizes that, as correlations exist between the vibrations of the atoms, the algorithmic
entropy drops. Compared with the Einstein approach, fewer bits are needed to specify the
system of vibrational modes at low temperatures. This is discussed further in Section 6.2.

6.1. The Algorithmic Equivalent of the Einstein Heat Capacity

In this case, the temperature behaviour is determined by the allocation of k units of
energy, as phonons vibrating at frequency ν, to g oscillators (rather than to atoms in the
previous discussions). Nevertheless, Equation (4) still captures the allocation process. The
number of bits needed to specify a particular state is given by Equation (5).

The Einstein heat capacity follows from noting that the heat capacity is given by
∂U/∂T = ε̂∂k/∂T where ε̂ is the fundamental energy unit. In this case ε̂ = hν, the energy
of a single phonon at frequency ν. The heat capacity can be evaluated by differentiating
Equation (8), and substituting for k/(g− 1) from Equation (9). The result is,

Cv = (g− 1)kB(ε̂/(kBT))2eε̂/kBT [eε̂/kBT − 1]−2.

The result is identical to the Einstein heat capacity allowing for the fact that the model has
only 1 degree of freedom in momentum space, whereas there are 3 degrees of freedom in
the Einstein approach. As (g− 1) is close to g, this corresponds to the number of oscillators
or atoms, used in the conventional approach. As T → ∞, Cv becomes (g)kB, agreeing with
Boltzmann provided the factor of 3 is included.

6.2. Background to the Debye Approach to the Heat Capacity

While the Einstein and the Debye approaches have the same allocation statistics, the
Debye approach focuses on determining the energy of each mode of vibration, rather than
the vibration of independent atoms. This introduces correlations between atomic vibrations
leading to a lower algorithmic entropy. Because the AIT approach recognizes that the heat
capacity is a property of the instantaneous microstate of a system in the most probable
set of states the relevant algorithmic parameter is the actual number of phonons n in each
vibrational mode of a typical or equilibrium microstate. On the other hand, the Debye
approach determines the expected value < n >, of the number of phonons in a particular
mode at the given the temperature. This is a statistical property of the whole system.
Nevertheless, as the behaviour of a typical state corresponds to the expected behaviour of
the whole system, the expressions for the heat capacity are consistent.

The Debye approach recognizes that at low temperature, the energy distribution
between different lattice modes is like the energy distribution between different vibrational
modes of a string.

• The wavelength λ of the fundamental mode of vibration of a crystal lattice is given
by λ = c/ν, where ν is the vibrational frequency and c the wave velocity. At low
temperatures, the wave velocity is assumed to be constant for different modes of
vibration. If the wave number qm of the m-th mode, is the reciprocal of the wavelength,
it follows that, with the assumed constant velocity, the frequency of the m-th mode is
mν = νm,

• The quantum of energy needed to excite the m-th mode is ε̂m = hνm. Where there
are n(qm) phonons in a lattice vibration, the vibration at frequency νm carries energy
of (n(qm) + 1/2)hνm. Here h is Plank’s constant. Ignoring the zero-point energy, the
energy of the vibration depends on the number of phonons, i.e., εm = n(qm)hνm =
n(qm)ε̂m. The total number of phonons in the mode is n(qm) = εm/ε̂m, where εm is
the energy of the mode.

• In a crystal, there are many possible modes as qm is a vector with components along
the x, y and z axes. In which case, the wavelength of the vibration is the reciprocal
of the size of the way vector denoted by |qm|. However, the actual amplitude of
particular mode of vibration depends on the number of phonons denoted by n(qm) in
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the mode. Overall, the total number of modes in the crystalline solid must equal the
number of atoms or lattice points.

• The total energy U of the complete vibrational system is given by summing over all
the modes.

U = ∑
m

ε̂mn(qm). (11)

The heat capacity is obtained by differentiating the above equation with respect to
temperature. The algorithmic approach closely mirrors that of Debye, but in the Debye
case it is the expected value of the phonon population, not the actual value that enters the
equation. The heat capacity is a function of the actual microstate of the system at an instant
of time.

6.3. Evaluating n(qm) the Number of Modes with Energy εm

Consider initially a set of vibrational modes qm with the same wave-number and
frequency as a separate subsystem where gm is the number of vibrational modes, i.e., the
number of buckets in the set. Phonons can be allocated to each of these modes, in energy
increments of ε̂m per phonon in the same manner as that outlined in the derivation of
Landauer’s principle. i.e., from Equation (9),

n(qm) = εm/ε̂m = k/(gm − 1) = 1/(eε̂m/kBTm − 1, )

where ε̂m = mhν The above equation holds for all the different sets of possible m values,
but the temperature Tm of each set may differ. However, if we consider all the different
m modes to be at equilibrium with each other, all the sets will have the same value of the
temperature T of the most probable set of states. In which case from Equation (11),

U = ∑
m

ε̂m/(eε̂m/kBT − 1).

Once mhν is substituted for ε̂m and replacing the sum by the integral,
∫

D(ω)mhν/(emhν/kBT

−1)dω, this reduces to the Debye approach, as outlined by Kittel [16]). The longitudinal
and two transverse waves are assumed to have the same velocity and the linear relationship
of frequency with velocity is deemed to hold up to a cut-off frequency which determines
the Debye temperature. As mentioned, the difference is that the current approach relies on
the actual value of n(qm) of the microstate in the most probable set of states rather than the
expected value per mode < n(qm) >.

At high temperatures, the number of modes equals the number of atoms (N = g), and
the heat capacity corresponds to Cv = 3NkB, the classical limit in 3 dimensions. At lower
temperatures, well below the classical limit, high energy vibrations corresponding to short
wavelengths are not excited and there are fewer possible states.

7. The Consistency of the Model System

The consistency of the simple model can be explored by comparing the probability
distribution of states with statistical mechanics. Even with only 24 atoms, it is shown
that the distribution of the microstates of the isolated model system is virtually a normal
distribution. Let Pk be the probability that the system will be in class k. Column 5 in Table 1
gives the algorithmic entropy, the total number of bits H(k) to specify a microstate in the
class k. The relative probability of a state being found in class k compared with the peak
probability is therefore,

Pk/Pkpeak = 2−H(k)+H(kpeak).

The number of bits can be expanded around kpeak to give,

H(k)− H(kpeak) = (∂H(kpeak)/∂k)(k− kpeak) + (∂2H(kpeak)/∂k2)(k− kpeak)
2 . . . . . . etc.
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For k values close to the mean, the first term vanishes as the slope is zero at the mean. If the
distribution follows a normal curve as expected from statistical mechanics, the probability
is determined from the second derivative term in the above equation. In which case, once
normalised, the probability would take the form;

Pk = (1/(σ2π))e(k−kpeak)
2/(2σ2).

Here, k− kpeak is the energy deviation from the mean.
The normal curve can be compared with the probability distribution generated by

the model. This distribution is from the number of states in column 2 of Table 1 for each
k value divided by the total number of states. The expected value of the mean, denoted
by kpeak was determined using the model’s distribution, while σ2 was determined from
the expected value of the squared deviations from the mean. The normal curve generated
from these two parameters is displayed in Figure 2 as a continuous curve with the model’s
distribution as separate points.

Figure 2. Normal curve and data distribution.

The normal curve is nearly indistinguishable from the actual distribution of the model.
The sum of the total squared deviations from the normal curve is 2× 10−5. Each point in
the complete distribution is determined from the probability of the electronic configuration
constrained within the envelope determined from the momentum value. However, with
a large number of atoms, the electronic distribution would be sharply peaked with little
variation in the momentum contribution over the more narrow region. In which case, the
distribution would become indistinguishable from a normal curve.

8. Conclusions

This paper uses a simple model to show that Landauer’s principle is a direct conse-
quence of the statistics that distribute energy between stored energy and momentum states
of an isolated system, or between two systems if all bits are tracked. Previous arguments
for the principle relied on the equipartition principle, or assumed that the system was close
to equilibrium. Here it is shown that the principle is more general, requiring only that
Stirling’s approximation is valid and, as a consequence, temperature is a robust measure.



Entropy 2021, 23, 1288 18 of 18

As Landauer’s principle directly links the algorithmic entropy in terms of bit flows
with thermodynamic entropy flows, without directly depending on statistical mechanics
arguments, it is valid for systems, such as a living system, that is to be maintained distant
from the most probable set of states. Both the bit and the energy flows from the environment
into the system must equal the bit and energy flows out. In other words, to maintain the
system, N bits must enter the system as stored energy to balance the thermodynamic
entropy outflow of NkBln2. Similarly, the stored energy entering the system to maintain it,
must equal an energy outflow of NkBln2T Joules. Where such a system is maintained by
constant bit and energy flows, the temperature rises to ensure both energy and bits flows
are constant. This justifies the algorithmic entropy approach to the thermodynamics of
replicating living systems [4,10] and also the thermodynamic requirements to sustain an
economy distant from thermodynamic equilibrium [3,4].

The approach provides a simple conceptual model for statistical thermodynamics that
makes sense. Even when the microstate of interest is distant from the equilibrium set of
states, the thermodynamic entropy is simply proportional to the number of bits defining
a microstate in the momentum degrees of freedom. A bit is a real entity carried by a
quantity of energy that is proportional to the surrounding temperature. Entropy, from this
viewpoint is not something that is difficult to conceive. When the system is distant from the
equilibrium set, most bits are potential entropy being carried by potential energy. When
the potential entropy bits are transferred to the momentum degrees of freedom, the bits
become realized as thermodynamic entropy which increases by kBln2 per bit transferred.

This paper shows that the algorithmic approach, while being conceptually straightfor-
ward, is consistent with the quantum articulation of the Landauer’s principle, and also with
the Einstein and Debye equations for the heat capacity. The algorithmic approach is con-
sistent with traditional approaches but as the approach is not constrained by equilibrium
assumptions, it provides a set of tools to apply to systems distant from the equilibrium set
of states.
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