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Incoherent-mediator for quantum 
state transfer in the ultrastrong 
coupling regime
F. A. Cárdenas-López1,2, F. Albarrán-Arriagada1, G. Alvarado Barrios1, J. C. Retamal1,2 &  
G. Romero1

We study quantum state transfer between two qubits coupled to a common quantum bus that is 
constituted by an ultrastrong coupled light-matter system. By tuning both qubit frequencies on 
resonance with a forbidden transition in the mediating system, we demonstrate a high-fidelity 
swap operation even though the quantum bus is thermally populated. We discuss a possible physical 
implementation in a realistic circuit QED scheme that leads to the multimode Dicke model. This 
proposal may have applications on hot quantum information processing within the context of 
ultrastrong coupling regime of light-matter interaction.

The exchange of information between nodes of a quantum network is a necessary condition for large-scale quan-
tum information processing (QIP) and networking. Many physical platforms have been proposed to implement 
high-fidelity quantum state transfer (QST) such as, coupled cavities1–4, spin chains5, 6, trapped ions7–9, photonic 
lattices10, among others. In the majority of cases, a necessary condition to carry out the transfer protocol is access-
ing to a highly controllable mediator. However, several protocols have been proposed to perform QST even 
though the mediator system is not controlled11, 12, or it is initialized in a thermally populated state13–17.

Likewise, the state-of-the-art quantum technologies has also proven useful for other quantum information 
tasks such as quantum computing18 and quantum simulations19. As important representatives of quantum devices 
we can mention superconducting circuits20 and circuit quantum electrodynamics (QED)21–24. These technologies 
have also pushed forward to achieve the ultrastrong coupling (USC)25–31 and deep strong coupling (DSC)32, 33  
regimes of light-matter interaction, where the coupling strength becomes comparable to or larger than the fre-
quencies of the cavity mode and two-level system. In this case, the light-matter coupling is well described by 
the quantum Rabi model (QRM)34, 35 and features a discrete parity symmetry. It has been proven that the above 
symmetry may be useful for quantum information tasks in the USC regime36–40.

We propose a protocol for performing high-fidelity QST between qubits coupled to a common mediator 
constituted by a two-qubit quantum Rabi system (QRS)41, 42, see Fig. 1. The QST relies on the tuning of qubit 
frequencies on resonance with a forbidden transition of the QRS, provided by the selection rules imposed by its 
parity symmetry. We demonstrate that high-fidelity QST occurs even though the QRS is thermally populated and 
the whole system experiences loss mechanisms. We also discuss a possible physical implementation of our QST 
protocol for a realistic circuit QED scheme that leads to the multimode Dicke model43 as mediating system. This 
proposal may bring a renewed interest on hot quantum computing13–15 within state-of-art light-matter interaction 
in the USC regime.

The model
Our proposal for quantum state transfer is schematically shown in Fig. 1. We consider a pair of two-level systems 
with transition frequencies ωq,i (i = 1, 2), ultrastrongly coupled to a single cavity mode of frequency ωcav. This 
situation is described by the two-qubit quantum Rabi model41, 42
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Here, a(a†) is the annihilation (creation) bosonic operator for the cavity mode. The operators σi
z and σi

x stand for 
Pauli matrices describing each two-level system. Also, ωcav, ωq,i, and gi, are the cavity frequency, ith qubit fre-
quency, and ith qubit-cavity coupling strength, respectively. Furthermore, two additional qubits with frequency 
gaps ωn (n = 1, 2), are strongly coupled to the QRS through the cavity mode with coupling strengths λn. The 
Hamiltonian for the whole system depicted in Fig. 1 reads
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where τj
x z,  are Pauli matrices associated with the additional qubits. In what follows, we will discuss about the 

parity symmetry of the two-qubit quantum Rabi model (1), and their corresponding selection rules.

Selection rules in the two-qubit quantum Rabi model
An important result in quantum physics are the selection rules imposed by the electric and magnetic dipole tran-
sitions. Similarly, the parity symmetry (2) of the Hamiltonian (1) imposes selection rules for state transitions. 
The 2 symmetry can be seen if we replace σ σ→ −i

x
i
x and + → − +† †a a a a( ) ( ) in the Hamiltonian (1) such 

that it remains unchanged. In other words, this symmetry implies the existence of a parity operator   that com-
mutes with the Hamiltonian, =H[ , ] 0QRS  . In this way both operators can be simultaneously diagonalized in a 
basis ψ| 〉 =

∞{ }j j 0. In particular, for the two-qubit quantum Rabi model Eq. (1), the parity operator reads 
σ σ= ⊗ ⊗ π †

ez z i a a
1 2 , such that ψ ψ| 〉 = | 〉pj j , with p = ±1, and ψ ν ψ| 〉 = | 〉H j j jQRS  , where νj is the jth 

eigenfrequency.
The selection rules associated with the parity symmetry appear when considering a cavity-like driving, pro-

portional to a† + a, or qubit-like driving ∝σx or σz 30, 40. We are interested in the former case since each qubit in 
Fig. 1 couples to the QRS via the field quadrature X = a† + a. It is noteworthy that for the single-qubit quantum 
Rabi model35, it is possible to demonstrate that matrix elements ϕ φ= 〈 | + | 〉†q a a( )jk j k  are different from zero if 
states |ϕj〉 and |ϕk〉 belong to different parity subspaces, whereas qjk = 0 for states with same parity44. In addition, 
for the two-qubit quantum Rabi model we need to take into account additional features. In this case, if one con-
siders identical qubits and coupling strengths in the Hamiltonian (1), the spectrum features an invariant subspace 
formed by tensor products of pseudo spin and Fock states ↓ ↑ ↑ ↓N N{ , , , , , }, whose eigenstates are

φ = ↓↑ − ↑↓ .N1
2 ( ) (3)N

This is a dark state (DS) where the spin singlet is decoupled from the cavity mode45–47. Figure 2(a) shows the 
energy spectrum of the Hamiltonian (1) for identical qubits (ωq,1 = ωq,2) as a function of the coupling strength 
g1 = g2 = g. Blue (dot-dashed) lines stand for states with parity p = +1, while red (continuous) for states with par-
ity p = −1. The dark states (3) appear with constant energies whose gaps correspond to the cavity mode frequency.

The selection rules in the two-qubit quantum Rabi system need to take into account the emergence  
of dark states. In this case, each DS has definite parity as shown in Fig. 2(a); however, the matrix elements  
between a DS and remaining states are null, φ ψ= + =φ

†X a a( ) 0k N kN
, since states ψk  can be written as  

linear superpositions of products of symmetric states for the pseudo spins and Fock states, that is, 
ψ = ∑ ↑↑ ± − ↓↓ + ↑↓ ± − ↓↑=

∞ N a b N! { ( ( 1) ) ( ( 1) )}k N N
N

N
N

0 , where ± stands for parity p = ±148, 49. 
In the light of the above forbidden transitions, we will show that they become a key feature for our quantum state 
transfer protocol.

Parity assisted excitation transfer
We study the QST between two qubits that are coupled to a common QRS system [cf. Fig. 1]. We focus on the 
situation where frequencies of the leftmost and rightmost qubits are resonant with a forbidden transition of the 
QRS. For instance, if we consider the case g = 0.3ωcav as denoted by the vertical solid line in Fig. 2(a), we choose 
ω1 = ω2 = ν3 − ν0. It is clear that the matrix element ψ ψ= + =†X a a 003 0 3  because states ψ0  and ψ3  have 

Figure 1.  Schematic representation of the model. Two qubits with frequency gaps ω1 and ω2 are coupled to a 
QRS via dipolar coupling with strengths λ1 and λ2, respectively. The QRS is constituted by a pair of two-level 
systems ultrastrongly coupled to a single cavity mode of frequency ωcav.
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parity p = +1. Also, the matrix element X02 = 0 since ψ φ=2 0  is a dark state. The allowed and forbidden tran-
sitions for the lowest energies of the Hamiltonian (1), for g/ωcav = 0.3, are schematically shown in Fig. 2(b).

In view of the above conditions, and considering the QRS initialized in its ground state, we realize that the 
only transmission channel that would participate in a QST protocol between qubits corresponds to the first 
excited state of the QRS, since the matrix element ≠X 001 , as ψ0  and ψ1  have opposite parity. However, both 
qubits are far-off-resonance with respect to this allowed transition. In this case, one can demonstrate that the QST 
occurs in a second-order process, as qubits interact dispersively with the QRS resulting in an effective qubit-qubit 
interaction. The latter can be seen in the spectrum of the Hamiltonian (2), as depicted in Fig. 3(a). Specifically, 
around the region ω ≈ .E/ 1 2386cav  appears an avoided level crossing, enlarged in Fig. 3(b), where states ψ ↑↓0  

Figure 2.  Energy Spectrum of the two-qubit quantum Rabi system. (a) Energy spectrum of the Hamiltonian (1) 
with parameters ωq,1 = ωq,2 = ωcav, as a function of the coupling strength g. Blue (dot-dashed) lines stand for 
states with parity p = +1. Red (continuous) lines stand for states with parity p = −1. The straigth lines in the 
spectrum stand for dark states φN . (b) Schematics of the level structure at g = 0.3ωcav corresponding to the 
vertical solid line in (a). It is shown the allowed and forbidden transitions ruled by the parity symmetry of the 
two-qubit quantum Rabi model.

Figure 3.  Spectrum of the complete model. (a) Energy differences from the spectrum of Hamiltonian (2), as a 
function of the rightmost qubit frequency ω2. Blue (dot-dashed) lines stand for states with parity p = +1, while 
red (continuous) lines stand for states with parity p = −1. At frequency ω2 = ω1 an avoided energy crossing 
appears. (b) Enlarged view of the energy spectrum shown in (a) around the region ω2 = ω1 = ν3 − ν0. The 
numerical calculation was performed with the same parameters used in Fig. 2.
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and ψ ↓↑0  hybridize to form maximally entangled states well approximated by ψ ↑↓ + ↓↑( )/ 20  and 
ψ| 〉 |↑↓〉 − |↓↑〉( )/ 20 . This hybridization resembles the two-body interaction mediated by a single-qubit quan-
tum Rabi model50.

The effective qubit-qubit interaction can be obtained from the total Hamiltonian (2) via a dispersive treatment 
beyond rotating-wave approximation50, 51, see the supplemental material for a detailed demonstration. In this 
case, the effective qubit-qubit interaction reads

χ= + ⊗H H Z S
2

, (4)peff 0 10
2

12


where

∑

χ ψ ψ

ψ ψ ψ ψ

λ λ
µ µ

τ τ λ
τ τ τ τ

µ

= +

= −

=





+ −

∆
−

∆






+





 ∆
−





=

+ − − +

†a a
Z

S

( )

1 1 1 1 2 ,

p

x x

j
j

j j
j

j j
j

10
2

0 1
2

1 1 0 0

12 1 2
10
1

10
2

10
1

10
2 1 2

1

2
2

10 10

and τ τ τ= ±± i( )/2n j
x

j
y . The detunings are defined as ω ν∆ = −j

j10 10 and µ ω ν= +j
j10 10, where ωj corresponds 

to the jth qubit frequency that interacts with the QRS, see Fig. 1, and ν10 stands for the frequency difference 
between the two lowest energy states of the QRS.

Figure 4(a) shows the population inversion between states ψ ↑↓0  and ψ ↓↑0  calculated from the full 
Hamiltonian (2), and from the dispersive Hamiltonian (4), see Fig. 4(b). In both cases, the qubit-qubit exchange 
occurs within a t ime scale proportional to the inverse of the effective coupling constant 

χ λ λ µ µ= + − ∆ − ∆J (1/ 1/ 1/ 1/ )eff 10
2

1 2 10
1

10
2

10
1

10
2 . For parameters, ωq,i = ωcav, g = 0.3ωcav, ω1 = ω2 = ν3 − ν0 and 

λ1 = λ2 = 0.02ωcav, we obtain χ = .1 032510 , µ µ ω= = .1 763210
1

10
2

cav and ω∆ = ∆ = .0 714110
1

10
2

cav. These values 
lead to an effective coupling strength ω≈ .J2 0 0011eff cav. In addition, if we consider typical values for microwave 
cavities such as ωcav = 2π × 8.13 GHz30, the excitation transfer happens within a time scale of about 

π= ≈t J/2 56[ns]eff .
Additionally, we also study quantum correlations in our system. Figure 5 shows the Entanglement of 

Formation (EoF) for the subsystem composed by the leftmost and rightmost qubits, and the von Neumann 
entropy, S(ρ), for the reduced density matrix of the QRS. S(ρ) shows a negligible correlation between the biparti-
tion composed by QRS and the additional qubits. This behavior can be predicted from the effective Hamiltonian 
(4), which shows an effective qubit-qubit interaction while it is diagonal in the QRS basis. Therefore, the QRS will 
not evolve and the quantum correlations between it and additional qubits is negligible. At the same time, the EoF 
between the leftmost and rightmost qubits has an oscillating behavior whose minimum value is reached when the 
excitation transfer has been completed.

Incoherent mediator for quantum state transfer
Notably, the above described mechanism allows us for quantum state transfer between qubits even though the QRS 
is initially prepared in a thermal state at finite temperature. Let us describe how our system governed by Eq. (2) is 
initialized in a thermally populated state. Since the frequencies of the additional qubits are larger than the lowest 

Figure 4.  Population evolution. (a) Population inversion of the states ψ ↑↓0  and ψ ↓↑0 , numerically 
calculated from the ab initio model (2). (b) Population inversion calculated from the effective Hamiltonian (4). 
These numerical calculations have been performed with parameters, ω ω=q i, cav, ω= .g 0 3 cav, ω1 = ω2 = ν3 − ν0 
and λ1 = λ2 = 0.02ωcav.
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energy transition of the QRS, we should expect that thermal population associated with both qubits are concen-
trated only in their ground states. In order to ascertain the latter, we compute the fidelity   between the Gibbs state 
obtained from the Hamiltonian (2), ρ = −e Z/H k T

Gibbs
( / )B , where = ∑ −Z k Texp( / )m m B�ε  is the partition func-

tion, and the probe state defined by ρ ρ= ⊗ ↓↓ ↓↓p th
QRS , where ρth

QRS is the Gibbs state for the QRS. Notice that 
�εj corresponds to the jth eigenvalue of the Hamiltonian (2), =H m mm�ε . Taking parameters from Fig. 4 and 
T = 100 mK, we obtain the fidelity  ρ ρ= = .tr( ) 0 9951Gibbs p . Therefore, the Gibbs state is a tensor product 
between the additional qubits in their ground states and the QRS in an thermal state.

For the purpose of QST of an arbitrary qubit state, we need to excite either the leftmost or rightmost qubit, see 
Fig.  1. This can be done by applying an external driving on the leftmost (rightmost) qubit 

 ν φ τ τ= Ω +H t t( ) cos( ) ( )d
x x

1 2  resonant with the qubit frequency gap ω1 (ω2) and far off-resonance with both the 
QRS and rightmost (leftmost) qubit. For example, one can initialize the whole system in the state

ρ ρ χ χ= ⊗ ⊗ ↓ ↓ , (5)QST th
QRS

where χ θ θ= ↑ + ↓φecos sin i .
We study the QST under dissipative mechanisms in a way that is consistent with a circuit QED implementa-

tion based on a flux qubit coupled to an on-chip microwave cavity in the USC regime26, and including the effect 
of a finite temperature. The treatment that we use has also been applied to a recent implementation of the QRM 
at finite temperature30. Moreover, the leftmost and rightmost qubits could be implemented by means of transmon 
qubits52, 53 coupled to the edges of the microwave cavity. The dissipative dynamics is governed by the microscopic 
master equation in the Lindblad form ref. 54
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where the Hamiltonian H is given by Eq. (2), and  ρ ρ ρ ρ= − −† † †O O O O O O O[ ] 1/2(2 ). Here, γj corresponds 
to the relaxation rate for the external qubit and γφj

 stands for the qubit pure dephasing rate. Also, ΓX
jk is the dressed 

photon leakage rate for the resonator, Γγ
jk corresponds to the dressed qubit relaxation rate for the qubit-cavity 

system, both dressed rates are defined as follows
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where κ and γ are the bare decay rates for the cavity mode and the two-level systems that belong to the QRS, 
ν ν ν= −kj k j, and ψ ψ| | = |〈 | + | 〉|†X a a( )jk j k

2 2, σ ψ σ ψ| | = |〈 | | 〉|jk
x
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2 2. The QST fidelity  χ ρ χ= 〈 | | 〉t( )QQST 2

, where 

Figure 5.  Correlation evolution. (a) Entanglement dynamics for the reduced system composed by the leftmost 
and rightmost qubits, and the von Neumann entropy ρS( )QRS  for the reduced QRS system, numerically 
calculated from the ab initio model (2). (b) Entanglement of formation and von Neumann entropy numerically 
calculated from the effective Hamiltonian (4). We have used the parameters from Fig. 4.
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ρ t( )Q2
 is the density matrix of the rightmost qubit, is numerically calculated from Eq. (6) for 4000 input states χ , 

uniformly distributed over the Bloch sphere. Figure 6 shows the evolution of QST  as a function of time and for a 
system temperature of T = 100 mK. As the QST time is shorter than any decay rate in the system, the dissipation 
should not affect the performance of QST. We see that the main detrimental effect on QST is produced by the 
distribution of the thermally populated states in the mediator. The numerical calculations have been performed 
for the QRS parameters given in ref. 30, that is, κ/2π = 0.10 MHz, γ/2π = 15 MHz, and for the leftmost and right-
most qubits we choose γj/2π = 0.48 MHz, γ π = .φ /2 0 15MHz

j
 given in ref. 53. At temperature T = 100 mK we 

obtain maximum fidelity of about = .0 9785QST . It is worth mentioning that the validity of our QST protocol 
relies on the range of temperatures in which the system can be initialized as a product state ρp.

Experimental Proposal
Our proposal for quantum state transfer might be implemented on the circuit QED architecture shown in 
Fig. 7(a), where a λ/2 coplanar waveguide resonator (CPWR) is galvanically coupled to N = 2 superconducting 
loops each formed by four Josephson junctions (JJs), see Fig. 7(b). Three junctions in the superconducting loop 
will form the flux qubit55 while the fourth junction embedded into the CPWR, and characterized by the plasma 
frequency ωp, will play the role of coupling junction. Also, two transmon qubits52 are capacitively coupled to the 
resonator through the voltage at the ends of the CPWR. The equivalent circuit is shown in Fig. 7(c), where CPWR 
is modeled as an finite array of LC circuit inductively connected in a series, each lumped circuit element is char-
acterized by the capacitance c · Δx and inductance l · Δx, where Δx stands for the lattice space. Moreover, the 
embedded Josephson junctions are located at the positions x = a = L/(N + 1), with L the resonator length and 
N = 2 the number of Josephson junctions that interrupt the coplanar waveguide. In this case, the state of the cir-
cuit can be characterized by the flux node ∫φ = ′ ′

−∞
x t V x t dt( , ) ( , )t  where V(x, t′) is the voltage associated with 

in each system component with respect to the ground plane. The circuit Lagrangian reads
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Figure 6.  Fidelity of the QST process. Time-evolution of the QST fidelity QST  between the states 
χ θ θ= ↑ + ↓φecos sin i  and ρ t( )Q2

, averaged over the Bloch sphere. We have considered the QRS 
initialized in a thermal state at T = 100 mK.
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Here ψk
i( ), φl

i( ), and φτ
j( ) correspond to the flux variables that describe the CPWR, the junctions in the supercon-

ducting loops, and the transmon qubits, respectively. Furthermore, C J
i( )

l
 and E J

i( )
l

 are the Josephson capacitance 
and energy on each JJ that compounds the flux qubit and the coupling junction. τC j( ) are the total capacitances of 
the transmon qubits and Eτ,j their respective Josephson energies. Cc is the coupling capacitance between the trans-
mon qubit and the coplanar waveguide. Following the formal procedure for the circuit quantization, the 
Hamiltonian of the system reads
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The detailed derivation of the above Hamiltonian can be found in the supplemental material. Here, ar ( †ar ) is the 
annihilation(creation) bosonic operator of the CPWR belonging to the manifold , σi

z x,  are the Pauli matrices 
that describe the two-level system formed by the flux qubit. In addition, ωq,i and ωr are the frequencies for the 
qubit and the field mode, respectively, and gi,r is the coupling strength between the CPWR and the two-level sys-
tem. Also, EC,j is the charge energy of each transmon and Eτ,j its respective Josephson energy. Notice that the 
charge qubit Hamiltonian will be truncated up to the third energy level, n = 0, 1, 2. This is because of in the trans-
mon regime, 

E EC J , the anhamonicity α = E10 − E21 is only ~3–5% of E10
56. However, our numerical results 

with realistic circuit QED parameters show that the third energy level does not take part in the protocol (see 
supplemental material) and the charge qubit can be considered as an effective two-level system. In this computa-
tional basis the interaction between the transmon and the field mode becomes proportional to τ +†a a( )j

x
r r  as in 

Eq. (2).
On the other hand, each eigenmode frequency of the CPWR will constitute a manifold  which has as many 

modes as the number of embedded junctions. Nevertheless, for an specific value of the plasma frequencies of the 
embedded junctions, that is, ωp = πv(N + 1)/L, the modes in the manifold  become degenerate (cf. Fig. 8), 
single-band approximation57, allowing to obtain the multimode Dicke model43

Figure 7.  Schematic of the experimental proposal. (a) A superconducting λ/2 coplanar waveguide resonator is 
galvanically coupled to N = 2 superconducting loops formed by four Josephson junctions. Also, the resonator 
is coupled capacitively to two transmon devices at the edges of the waveguide. (b) Enlarged view of figure (a) at 
the position where the superconducting loop is placed. The flux qubit is formed by three Josephson junctions 
and the coupling between each flux qubit and the resonator is mediated by the the fourth embedded junction. 
(c) Equivalent circuit for (a), the resonator is considered as a finite set of LC circuits inductively connected 
in a series, these LC circuits are characterized by the capacitance c · Δx and inductance l · Δx, the flux qubits 
are denoted by F(j) and the transmon devices are formed by two superconducting islands shunted by a large 
capacitance Cτ and an SQUID loop.
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The Hamiltonian ′HQRS also exhibits the 2 symmetry as the Hamiltonian (1). Therefore, the energy spectrum of 
′HQRS can be tagged in terms of two parity subspaces as shown in Fig. 9. Notice that the spectrum presents similar 

features compared with the spectrum of Fig. 2, that is, both the QRS and the modified QRS described by ′HQRS 
have the same energy level configuration in terms of parity subspaces and dark states. Under those circumstances, 
the multimode Dicke model in Eq. (15) and the model in Eq. (2) present the same selection rules which are fun-
damental in our protocol for state transfer. In order to study how the protocol works for the multimode Dicke 
model, we start by obtaining the Gibss state of the Hamiltonian (15) at T = 100 mK. To assure that the thermal 
state is a tensor product between the external qubits and the system mediator, we compute the fidelity between the 
Gibbs state and the probe state defined by ρ ρ= ⊗ ↓↓ ↓↓p th

QRS . If we consider realistic parameters for loss 
mechanisms discussed in the description the master equation, we have obtained a fidelity of 
 ρ ρ= = .tr( ) 0 9443Gibbs p . The result of our transfer protocol is shown in Fig. 10. As discussed before, we con-
sider 4000 different initial states for the leftmost qubit, χ θ θ= ↑ + ↓φecos sin i , uniformly distributed over 
the Bloch sphere. The result is similar to the one obtained with the model described by Eq. (2), that is, for the same 

Figure 8.  Energy spectrum of the CPWR. Energy spectrum of the coplanar waveguide resonator with two 
Josephson junctions embedded on it, as a function of the plasma frequency ωp. The parameters for the resonator 
are v = 0.98 × 108 m/s, = ΩZ 500 , L = 0.28 mm, and the Josephson capacitance of the embedded junction is 

=C 1pFJ4
. For particular values of the plasma frequency, the eigenmodes belonging to an specific manifold 

become degenerate.

Figure 9.  Energy spectrum of the multimode Dicke model. Energy spectrum of the Hamiltonian (15) with 
parameters ωq,1 = ωq,2 = ωcav, as a function of the coupling strength g. Blue (dot-dashed) lines stand for states 
with parity p = +1, and red (continuous) lines stand for states with parity p = −1. Straight lines stand for dark 
states.
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physical parameters of loss mechanisms we obtain that at temperature T = 100 mK the fidelity reach its maximum 
= .0 9503max . Higher temperatures in the physical setup will diminish this fidelity.

Conclusion
We have shown that a system composed by two qubits connected to an incoherent QRS mediator, allows us to 
carry out high fidelity QST of single-qubit states even though the mediator system is in a thermally populated 
state. The QST mechanism involves the tuning of qubit frequencies resonant to a parity forbidden transition in 
the QRS such that an effective qubit-qubit interaction appears. Numerical simulations with realistic circuit QED 
parameters show that QST is successful for a broad range of temperatures. We have also discussed a possible phys-
ical implementation of our QST protocol for a realistic circuit QED scheme that leads to the multimode Dicke 
model. Our proposal may be of interest for hot quantum information processing within the context of ultrastrong 
coupling regime of light-matter interaction.
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