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Abstract

Recent applications of deep learning have shown promising results for classifying unstructured 

text in the healthcare domain. However, the reliability of models in production settings has 

been hindered by imbalanced data sets in which a small subset of the classes dominate. In 

the absence of adequate training data, rare classes necessitate additional model constraints for 

robust performance. Here, we present a strategy for incorporating short sequences of text (i.e. 

keywords) into training to boost model accuracy on rare classes. In our approach, we assemble 

a set of keywords, including short phrases, associated with each class. The keywords are then 

used as additional data during each batch of model training, resulting in a training loss that 

has contributions from both raw data and keywords. We evaluate our approach on classification 

of cancer pathology reports, which shows a substantial increase in model performance for rare 

classes. Furthermore, we analyze the impact of keywords on model output probabilities for 

bigrams, providing a straightforward method to identify model difficulties for limited training 

data.

Index Terms—

Machine learning; natural language processing; medical information systems

I INTRODUCTION

THE National Cancer Institute’s (NCI) Surveillance, Epidemiology, and End Results 

(SEER) program works with cancer registries to extract key cancer characteristics from 

healthcare records to create national estimates of cancer incidence. A key step in this 

process is the extraction of tumor characteristics including site, subsite, and histology, from 

electronic pathology reports. The reports provide a rich source of information to track 

diagnoses, treatments, and outcomes. However, data in current registries is primarily in 

the form of unstructured text, making automatic information extraction difficult [1]. To 

overcome the challenges associated with unstructured text, previous work has employed 

deep learning models for document classification with promising results [2]–[4]. Although 

deep learning approaches have been successful, the class imbalance inherent in registries’ 

datasets continues to be a key challenge to training robust production models.

For a given training set, class imbalance occurs when a small subset of classes occupies a 

large fraction of the samples. For example, in pathology reports, common cancer sites such 

as breast or lung will occupy a greater portion of the training data than relatively rare cancer 

sites such as larynx [5]. The distribution of classes in a training set is useful information 

for a classification model, providing an important signal to the model on how likely a class 

is to occur independent of any information from the text. However, for rare classes, the 

compounding issues of long sequences of raw text along with few training samples can lead 
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to over-fitting and subsequently poor model performance during testing or production [6], 

[7].

The problem of class imbalance in training data has been addressed previously through 

several different approaches [6]–[14]. For text processing and classification, one commonly 

used strategy involves altering the training set through oversampling, undersampling, or 

synthetic data generation to boost model performance [7], [13], [14]. A similar approach 

is to introduce class specific weights to the loss function to prioritize rare classes during 

training [6]. Although introducing class weights can indeed be a useful approach, it cannot 

in principle overcome the issues associated with over-fitting due to few training samples. For 

example, in the case of a single training sample for a given class, the input data may consist 

of a sequence of thousands of tokens. Furthermore, many combinations of those tokens may 

only occur for that class. Class weights may make the prediction of the rare class more 

likely by the model, but the change in weights does not improve the ability of the model 

to selectively identify meaningful segments out of the larger input sequence that robustly 

describe the class. Sampling methods are similarly hindered by a lack of diversity in the 

training data for rare classes.

Here, we present a different approach to addressing class imbalance by incorporating 

keywords into model training. In order to motivate the need for keywords, we utilize a 

widely-used model for clinical text classification [3], [4], [15], [16]. After model training, 

we find the highest scoring bigrams associated with each class. For well-represented classes, 

the trained model is able to identify short segments of text that represent the class, however, 

for rare classes few keywords or phrases are found by the model, suggesting over-fitting. To 

overcome the difficulties associated with limited training data for rare classes, we assemble 

a set of representative keywords for each class. The keywords are then used as training data 

alongside the raw text during each training batch.

To test our approach to boost performance on rare classes in clinical text, we consider 

the classification of pathology reports for cancer site, subsite, and histology. Keywords 

for each class within a respective task are assembled using two different methods with 

an increasing level of automation: (1) concept unique identifiers (CUI) extraction, (2) 

normalized pointwise mutual information (NPMI) ranking. Both approaches show a boost 

in the macro F1 score for tasks with class imbalance. Unlike class weights, the boost 

in performance for rare classes for our approach does not compromise performance for 

well-represented classes. Our results show that adding keywords to model training provides 

a straightforward way to improve production applications of deep learning for healthcare 

text data.

II METHODS

A. Adding Keywords to Model Training

In this work, we are motivated by the performance difficulties of deep learning models 

on rare classes for clinical text classification [3] to propose a strategy for incorporating 

keywords into model training. Our strategy has two main components: generating a set of 

keywords associated with each class, and updating model training to include keywords.
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For keyword generation, we consider two approaches: (1) extract keywords from external 

data sources, (2) extract keywords using statistics from the training corpus. For approach 

(1), we adopted external knowledge sources from the cancer epidemiology domain. The NCI 

thesaurus (NCIt) [17] provides reference terminology for medical concepts and vocabulary 

by the National Cancer Institute (NCI). The NCIt provides preferred terms, synonyms, 

research codes, and information for clinical research and administrative activities. We 

employed the table from the NCIt that lists the classification codes of cancer site and 

histology defined by the International Classification of Diseases for Oncology, 3rd edition 

(ICD-O-3) and their corresponding NCI thesaurus and NCI metathesaurus codes (concept 

unique identifiers, CUIs). We then identified keywords associated with the ICD-O-3 from 

the “concept names” listed in the Unified Medical Language System (UMLS) [18] CUI 

dictionary.

Although authoritative external knowledge sources are very useful, such sources are likely 

not available for many text classification applications. Therefore, we also considered 

extracting keywords using statistics from the training corpus. Specifically, we used 

normalized pointwise mutual information (NPMI) [19], [20] to rank unigrams and bigrams 

for each class. Here, we considered each token and class as a binary random variable (i.e. 

present or not present) for each document in the training corpus. The normalized pointwise 

mututal information between a token x and a class y is then given by:

NPMI = −1
log p x, y log p x, y

p x p y (1)

where each probability is estimated using a simple count of the occurrences of a given token 

and/or class divided by the total number of training documents. We then retained the top 10 

unigrams and bigrams by NPMI for each class to use as keywords in model training.

The assembled keywords, either using CUIs or NPMI, consist of multiple short segments 

of text associated with each class. To incorporate the keywords into training, we sample 

from the assembled segments during each mini-batch. The loss is then calculated for the 

samples and added to the standard cross entropy loss for the documents. Keyword sampling 

introduces three hyperparameters: the number of classes sampled (NC held fixed at 128, 

equal to batch size for pathology reports), the number of keyword segments sampled per 

class (K), and the weighting of keyword loss (α). Therefore, a given training update has the 

following steps:

1. Calculate cross entropy loss from the given mini-batch of the training samples 

(Ldocs).

2. Randomly sample max(NC,C) classes from the total number number of C classes 

for the given task

3. From each of the selected NC classes, randomly sample K keyword segments 

(e.g. CUIs, bigrams, and/or unigrams)

4. For each unique class, join the K sampled keyword segments into a single 

document, resulting in a batch of NC keyword documents
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5. Calculate cross entropy loss from the keyword documents (Lkey)

6. Perform back-propagation based on the weighted sum of the loss from the 

training samples and the keyword documents (L = Ldocs + αLkey)

To determine the hyperparameters, a simple scan was done for the number of keyword 

samples per class (K) and the weighting of keyword loss (α). We first fixed α at 1.0 and 

varied K ∈ 1, 5, 10, 20.A value of K = 5 gave the best results in terms of a sum of micro/

macro F1 across tasks with CUI and NPMI keywords. We then varied α ∈ 0.25, 0.5, 1.0, 2.0 

with α =1 giving the best results. Therefore, K =5 and α =1 are used for all reported results 

unless otherwise specified. The full micro and macro F1 results for all parameters tested can 

be found in Tables VII and VIII.

B. Class Weights

For comparison with our proposed keyword strategy, we used class weights in the loss 

function to improve model performance on rare classes. The class weights (wi) were 

determined based on the logarithm of the inverse class frequency using the following 

equation:

wi = log
μ ici

ci
(2)

where ci is the number of times class i occurs in the training corpus and μ is a 

hyperparameter. Class weights were not allowed to be less than 1. For the value of μ, we 

used the following: 0.05, 0.15, 1.0. All values tested gave similar results (in relation to the 

keyword strategy); μ = 0.15 was used for all reported results unless otherwise specified. The 

full micro and macro F1 results for all parameters can be found in Table IX.

C. Datasets

The data consists of cancer pathology reports obtained from the Louisiana Tumor Registry 

(LTR), Kentucky Cancer Registry (KCR), Utah Cancer Registry (UCR), New Jersey State 

Cancer Registry (NJSCR), and Seattle Cancer Registry (SCR) of the SEER Program.1

We determined truth labels of the cancer pathology reports based on the Cancer/Tumor/Case 

(CTC) database, which stores all diagnostic, staging, and treatment data for reportable 

neoplasms in the SEER Data Management System (SEER*DMS). We consider the 

International Classification of Diseases for Oncology [21], Third Edition (ICD-O-3) coding 

convention for labeling the cases. The following 3 tasks were used for model training: 

cancer site, subsite, and histology. The study was executed in accordance to the institutional 

review board protocol DOE000619, approved by Central DOR Institutional Review Board 

on April 6, 2021 (initial approval on September 23, 2016).

To determine the impact of rare classes on model performance, we assembled two datasets 

from the cancer pathology reports. The development dataset, which was used in all reported 

1NJSCR is no longer in the SEER Program, but is included in the current data release.
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results unless otherwise specified, consisted of 177,185 pathology reports from KCR and 

LTR. The production dataset, contained 4,404,942 pathology reports gathered from all 5 

registries, and was used to test the benefits of our approach in a large-scale production 

setting. Statistics for both datasets can be found in Tables I–II.

D. Model Architecture and Parameters

Although our proposed strategy does not depend on a particular model, a specific 

architecture is needed to generate results. Here, we selected a word-level Convolutional 

Neural Network (CNN) tailored to extract information from a cancer pathology data corpus 

[3], [4], [15]. Although the model architecture is relatively simple, it is still widely used for 

biomedical text applications and produces near state-of-the-art results [3], [16].

Our CNN uses trainable word embeddings of size 300 that are initialized using Word2Vec 

pretraining on our train set. These are fed into three parallel 1D convolution layers with 

300 filters each and window sizes of 3, 4, and 5 consecutive words. The convolution layer 

outputs are fed into a maxpool-over-time layer and concatenated, resulting in a document 

embedding vector of size 900. This final document embedding is fed into a softmax layer 

for classification. We train a separate model for each of our three classification tasks - site, 

subsite, and histology. We train with batch size 128 using the Adam [22] optimizer with 

learning rate 1E-4; training stops when loss does not improve on the validation set for 5 

consecutive epochs. All models are trained using PyTorch [23] and a Tesla P100 GPU.

E. Performance Metrics

We applied micro- and macro-averaged F1 scores for performance metrics:

Precision = TruePositive
TruePositives   +   FalsePositives (3)

Recall = TruePositives
TruePositives   +   FalseNegatives (4)

Micro F1 = 2 ∗ Precision   ×   Recall
Precision   +   Recall (5)

Macro F1 = 1
C Ci

C
F1 Ci (6)

In (6), F1(Ci) is the F1 score within class i, and |C| represents the total number of classes in 

the dataset. Calculations were performed using the f1_score function from Scikit-learn [24].

F1 scores are widely accepted means of scoring for information extraction from cancer 

pathology reports [2]–[4]. The macro-averaged F1 is particularly useful for assessing 

severely imbalanced data corpus because it equally weighs the performance on each class 

including the rare classes. In addition to F1 scores, we determined the test accuracy for 
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samples according to the number of training samples present. This enabled us to better 

isolate the impact of keywords on model performance.

We also assessed the performance of trained models by evaluating a given model on all 

possible bigrams from the training text. Bigrams were assembled using a sliding window of 

size 2 (i.e. no skip grams were added). Each bigram was then padded to the minimum 

document length necessary for the model (i.e. 5) and scored. The top bigrams were 

determined for each class based on the model score.

III RESULTS

A. Impact of Keywords on F1 Scores

As shown in Table III, the added keywords in the form of CUIs, improves on both micro and 

macro F1 scores for all three tasks (site, subiste, and histology) compared to the standard 

CNN model. The largest gain in macro F1 is realized for the task (histology) with the largest 

fraction of rare classes, as shown in Fig. 1. The results for the subsite and site tasks show 

that the benefit of keywords decreases as the fraction of rare classes decreases.

An important comparison to the keyword results is the performance with class weights (CW) 

added to the model. As shown in Table III, class weights are indeed capable of boosting 

performance on under-represented classes, resulting in an increase in macro F1. However, 

the increase in macro F1, is accompanied by a decrease in micro F1. Depending on the 

application, a drop in micro F1 may not be acceptable.

To get a better understanding of the impacts of keywords and class weights on model 

performance, we determined test accuracy for classes depending on the number of training 

samples. As shown in Fig. 1, keywords consistently boost performance on the most rare 

classes (i.e. those will less than 50 training samples), while maintaining performance for 

well-represented classes. Class weights, on the other hand, boost performance for rare 

classes at the expense of performance for well-represented classes.

B. Impact of Keywords on Model Scores

In classifying the site, subsite, and histology of cancer pathology reports, there is an 

expectation that the model will learn certain short phrases associated with each class. For 

example, the word “lung” should result in a high classification probability for the associated 

cancer site. To make this intuitive notion quantitative, we evaluated each trained model on 

all possible bigrams found in the training corpus. We then identified bigrams that resulted in 

the maximum model probability for each class.

As shown in Fig. 2, the addition of keywords (i.e. CUIs) has a large impact on the maximum 

scoring bigrams for each class of the subsite task. For the CNN model, classes with few 

training samples have a relatively low max bigram probability. For these classes, no single 

bigram in the entire training corpus generates a confident model classification. Intuitively, 

this is expected as the model must learn to fit large documents (i.e. thousands of tokens) 

with only a few labeled examples. The addition of keywords, however, enables the model 

to focus on specific bigrams without the need for many training samples. Notice that, 
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although class weights boost macro performance, they have a negligible impact on the 

distribution of maximum bigram scores, showing that the keywords approach is qualitatively 

(and quantitatively) different.

To give a concrete example of associated bigrams for a given class, Table IV shows the top 

5 bigrams for a rare subsite class C69.1 (Cornea, NOS). For the CNN and CNN + CW, the 

top bigrams are largely not specific to the subsite, but refer to the cancer site (C69 - Eye 

and Adnexa). Furthermore, the largest model output probability is approximately 0.1 for all 

possible bigrams. In contrast, the top bigrams for CNN + CUI all refer to the cornea and 

have a much higher model probability.

For a well-represented class, such as subsite C75.1 (Pituitary gland), the addition of 

keywords has much less impact on bigram probabilities. As shown in Table V, several of the 

top bigrams are in common across the models. The CNN is able to generate high bigram 

probabilities solely from the development training documents.

C. Production Applications

Our results have shown that the addition of CUI based keywords improves model 

performance on rare classes and alters the model probabilities for short segments (i.e. 

bigrams). In many cases, however, CUIs or something similar may not be available 

to improve model performance. Therefore, to extend our strategy to enable production 

applications without previously generated keywords, we utilized normalized pointwise 

mutual information (NPMI) to determine keywords solely from the training corpus.

Here, we focus on a production scale dataset with over 4 million pathology reports. As 

shown in Table VI, even with a large corpus, the model still has difficulty with class 

imbalance, resulting in a low macro F1 score. Furthermore, CUI keywords continue to 

provide a substantial boost in macro F1 without much decrease to micro F1. Interestingly, 

the keywords provided by NPMI also improve macro with only a small drop in micro, 

substantially outperforming class weights for the histology task.

IV DISCUSSION

Recent work in deep learning for text classification tasks has largely focused on building 

better model architectures [2], [3], [16], [25]–[28]. Although model architecture is very 

important, our results suggest that a data centered (rather than model centered) approach 

may be useful as well. In the extreme case of a rare class with only one training sample, a 

model is confronted with a long sequence of tokens many of which may be unique to the 

given class. In this setting, model performance can be boosted through additional training 

keywords rather than attempts to modify the model architecture. Any future model can 

benefit from augmented training data including a collection of keywords associated with 

each class.

In a production setting, the keywords and short phrases can also serve as a mechanism 

to debug model errors. By determining the top bigrams based off of classification score 

for the model, a quick inspection can show if appropriate patterns are being mined from 
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the data. In cases where model bigrams do not meet expectations (e.g. keywords are too 

generic), keywords can be introduced into training to increase user confidence in model 

classifications. To decrease the amount of manual involvement, there are already many 

approaches that can be used to generate possible keywords [20], [29]. Our results suggest 

that normalized pointwise mutual information, or a similar variant, can serve as a useful 

starting point to generate keywords. Keywords for under-performing classes could then 

be inspected and revised without the need to start from scratch. Furthermore, keyword 

inspection and annotation could be included within an active learning framework [30] to 

address class imbalance in a guided manner.

Supplying keywords during model training serves to provide a richer picture of the sample 

space, with long sequences of raw text showing realistic documents and short keyword 

phrases showing idealized class definitions. Given the amount of resources invested in 

debugging and tuning models in production settings, our results suggest a large return 

on investment for generating a set of keywords for each class. Furthermore, tracking 

and scoring bigrams for the model provides an efficient way for users to quantify model 

performance beyond typical measurements of loss and F1 score.

The use of keywords in the current approach can be viewed as a mechanism for guiding 

model training based on a known distribution of class scores for single tokens from the text. 

In this context, there is a natural comparison to Bayesian statistical modeling, with known 

keywords providing a prior distribution for conditional class probabilities. Generalizing the 

current results to include possible keyword distributions is an interesting topic for future 

investigation.

V. CONCLUSION

Using a CNN model for text classification, we have shown that model performance on 

rare classes can be substantially improved by introducing keywords and shorts phrases for 

each class into the training set. For healthcare related applications, the keywords can be 

automatically extracted using UMLS CUIs, providing an automated solution to improve 

production applications with limited available training samples.
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APPENDIX

MAXIMUM BIGRAM PROBABILITIES FOR SITE AND HISTOLOGY

In addition to the maximum model output probabilities shown for the subsite task, we 

generated similar figures for site (Fig. 3) and histology (Fig. 4). Similar to subsite, the 

histology task shows a drastic shift in the bigrams scores. Site also shows an increase in 

bigram scores, but does not have as many rare classes as subsite or histology.

HYPERPARAMETERS

See Tables VII, VIII, IX.
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Fig. 1. 
CNN model performance on the development dataset for three different tasks (site, subiste, 

histology). First row shows fraction of classes vs training samples per class. Second row 

shows test accuracy vs training samples for the baseline CNN model (blue), CNN + CUIs 

(green), and CNN + Class Weights (red). The x-axis for all plots is scaled by a factor of 5 

(i.e. the intervals are 0–50, 50–500, 500–5000, and >5000 training samples).
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Fig. 2. 
For each class in the subsite task, the maximum model output probability for all bigrams in 

the development training corpus is shown vs the number of training samples. The two X’s in 

each figure correspond to the example bigrams and scores shown in Tables IV–V.
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Fig. 3. 
For each class in the site task, the maximum model output probability for all bigrams in the 

development training corpus is shown vs the number of training samples.
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Fig. 4. 
For each class in the histology task, the maximum model output probability for all bigrams 

in the development training corpus is shown vs the number of training samples.
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TABLE I

DEVELOPMENT DATASET DESCRIPTIONS FOR PATHOLOGY REPORTS

Task Train Docs Val Docs Test Docs Unique Labels

Site 124289 26666 26230 70

Subsite 124289 26666 26230 315

Histology 124289 26666 26230 534
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TABLE II

PRODUCTION DATASET DESCRIPTIONS FOR PATHOLOGY REPORTS

Task Train Docs Val Docs Test Docs Unique Labels

Site 3371508 579127 454307 70

Subsite 3371508 579127 454307 328

Histology 3371508 579127 454307 645
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TABLE III

TEST MICRO AND MACRO F1 SCORES FOR CNN ON THE DEVELOPMENT DATASET OF PATHOLOGY REPORTS

CNN CNN + CUIs CNN + CW

Site Micro/Macro 93.62/69.81 93.67/71.31 93.51/72.07

Subsite Micro/Macro 78.22/36.74 78.46/39.65 77.40/38.35

Histology Micro/Macro 84.01/37.52 84.53/45.42 82.76/41.21
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TABLE IX

TEST MICRO/MACRO F1 SCORES FOR CW WITH DIFFERENT VALUES OF μ ON THE DEVELOPMENT DATASET

CNN + CW

μ Site Subsite Histology

0.05 93.48/71.88 77.17/37.74 83.22/40.71

0.15 93.51/72.07 77.40/38.35 82.76/41.21

1.0 93.59/71.46 77.97/38.15 83.08/39.63
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