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Abstract: Quantitative in vitro to in vivo extrapolation (QIVIVE) utilizes in vitro data to
predict in vivo toxicity. However, there may be differences between reported nominal
concentrations and the biologically effective free concentrations in media or cells. This
study evaluated the performance of four in vitro mass balance models for predicting
free media or cellular concentrations. Comparing model predictions to experimentally
measured values for a wide range of chemicals and test systems, we found that predictions
of media concentrations were more accurate than those for cells, and that the Armitage
model had slightly better performance overall. Through sensitivity analyses, we found that
chemical property-related parameters were most influential for media predictions, while
cell-related parameters were also important for cellular predictions. Assessing the impact of
these models on QIVIVE accuracy for a small dataset of 15 chemicals with both in vitro and
regulatory in vivo points-of-departure, we found that incorporating in vitro and in vivo
bioavailability resulted in at best modest improvements to in vitro–in vivo concordance.
Based on these results, we conclude that a reasonable first-line approach for incorporating
in vitro bioavailability into QIVIVE would be to use the Armitage model to predict media
concentrations, while prioritizing accurate chemical property data as input parameters.

Keywords: mass balance models; free concentration; in vitro assays; QIVIVE; bioavailable
concentration

1. Introduction
The Toxicity Testing in the 21st Century (Tox21) program, launched in 2007, addresses

the growing need for risk assessment of thousands of chemicals [1]. Tox21 and related
chemical testing initiatives aim to enhance the efficiency and accuracy of safety evaluations
by leveraging advanced methodologies, including in vitro high-throughput screening
(HTS) technologies and computational models [2,3]. In the past decade, the data availability
from in vitro bioassays has increased dramatically [4,5]. As a result, there is a pressing
need for methods that can extrapolate concentrations at molecular targets observed in
in vitro bioassays, termed biologically effective doses (BEDs), to equivalent in vivo effective
doses [6,7].

Quantitative in vitro to in vivo extrapolation (QIVIVE) has been proposed as a method
to convert concentrations that produce adverse outcomes in vitro to corresponding in vivo
doses using physiologically based kinetic (PBK) modeling-based reverse dosimetry [8–10].
Accurate linkage between in vivo and in vitro BED is crucial for improving QIVIVE. In vivo
BED is typically represented by the concentration of free-dissolved chemicals in plasma or
concentration of chemicals accumulated in tissue; concomitantly, the adverse effects are
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attributed to the amount of the chemical that can enter cells [11]. Similarly, in vitro BED is
represented by the concentration of freely dissolved chemicals in media, the amount that is
available for cellular uptake and effect [12]. However, a significant challenge in applying
QIVIVE arises from the common use of “nominal” chemical concentrations that are reported
for in vitro assays—these are not directly comparable to the “free” chemical concentrations
in plasma observed in vivo [13]. Nominal concentration, defined as the total mass of a
chemical added to a defined volume of the exposure medium, has traditionally been used to
develop in vitro dose–response profiles; however, this approach has been criticized as not
accurately reflecting in vivo BED due to differences in biokinetics. Consequently, it has been
suggested that the freely dissolved concentration in media is a more appropriate metric for
comparisons with the freely dissolved concentration in plasma from in vivo testing [14–16].
Although this notion has been proposed, only a few studies have considered chemical
distribution (e.g., protein binding) in vitro and in vivo while conducting QIVIVE [17,18].

Measuring free concentrations in media typically requires additional chemical analy-
ses, which, under the high-throughput demands of Tox21, can be both costly and technically
challenging, particularly with small media volumes in HTS assays [19]. To address this
limitation, mathematical models have been developed to characterize chemical distribution
and predict cellular and free chemical concentrations. Proença et al. [13] provided a com-
prehensive review of various in silico models that describe chemical distribution in in vitro
systems, detailing various aspects of each model, such as partitioning, as well as chemical-
and in vitro test system-related domains of applicability. Specifically, in vitro distribu-
tion is governed by a chemical’s interaction with various compartments, including media
constituents, the extracellular matrix, test system materials, intra-cellular accumulation,
volatilization, and abiotic degradation. Regression-based approaches are often employed
to estimate partition coefficients, such as the octanol–water partition coefficient (KOW), to
derive equations for predicting chemical distribution [20,21].

The complexity and parameter requirements of existing in vitro mass balance models
vary. For example, some models are designed for specific bioassays or chemical classes, such
as the model developed by Gülden and Seibert [12], which is tailored for the experiments
in glass Erlenmeyer flasks. This test system is not widely used anymore, especially for HTS
assays. Conversely, other models, such as those by Fisher et al. [16], Armitage et al. [19],
Fischer et al. [22], and Zaldivar-Comenges et al. [23], are applicable to various types of
multi-well plates and a broad range of neutral and ionized organic chemicals. Inputs for
these models require not only chemical property-related parameters to estimate partitioning
coefficients, but also cell-, media-, and labware-related parameters. The availability of cell-
and media-related parameters may be a limiting factor because many new cell types, such
as induced pluripotent stem cells (iPSCs), may be used for HTS assays and their cell culture
media composition may also be proprietary.

A comparison of chemical distribution simulations and predicted cellular concen-
trations across five models for six chemicals, conducted by Proença et al. [13], revealed
varying degrees of concordance between models. Understanding model performance
in predicting cellular and free media concentrations is critical for QIVIVE; however, few
mass balance models have been compared to experimental data. Among the four generic
models listed above, only Armitage et al. [19] directly compared predictions with in vitro
experimental data on chemical or cellular concentrations. Therefore, this study aimed to
address three knowledge gaps in the field of in vitro mass balance models (Figure 1). First,
we determined which models exhibit the best predictive performance by comparing their
accuracy using a common experimental dataset that includes free fractions/amounts in
media and cells. Second, we used sensitivity analysis to assess the impact of chemical-,
cell-, media-, and labware-related parameters on model predictions, identifying the most
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important data to prioritize in terms of accuracy and quality. Third, we evaluated the extent
to which including these in vitro and in vivo chemical distribution predictions in QIVIVE
improves the in vitro–in vivo concordance of points of departure (PODs). Based on these
results, we provide practical recommendations for the use of in vitro mass balance models
and offer empirical evidence on how adjustments for in vitro and in vivo bioavailability
may impact QIVIVE.

 

Figure 1. Schematic of study workflow and the structure of the four selected in vitro mass balance
models [16,19,22,23].

2. Materials and Methods
The overall workflow of this study is illustrated in Figure 1. It is divided into three

main components: model comparison and performance evaluation, sensitivity analysis,
and model application.

2.1. Model Comparison and Performance Evaluation
2.1.1. Models Selected for Analysis

The recent comprehensive review by Proença et al. [13] compared the features and
applicability domains of fourteen in vitro mass balance models. Some of these models are
limited to specific chemical groups or cell types, while others have broader applicability
across a wide range of chemicals and in vitro systems. To maximize the utility and general-
izability of our analyses, we selected four existing chemical distribution models with broad
applicability to chemical types and in vitro systems, as identified in the review: Fischer
et al. [22], Armitage et al. [19], Fisher et al. [16], and Zaldivar-Comenges et al. [23]. Figure 1
includes a schematic of each model, and Table 1 provides a summary of their characteristics.
All four models can be applied to a generic in vitro system. The first three models are
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suitable for systems exposed to both neutral and ionizable organic chemicals (IOCs), while
the Zaldivar-Comenges et al. [23] model is only applicable to neutral chemicals. Except
for the model by Fischer et al. [22], which only includes the media and cell compartments,
the other three models were developed with consideration of the media/serum, cellu-
lar, labware, and headspace compartments. Individual models incorporate additional
factors: Armitage et al. [19] include media solubility; Fisher et al. [16] account for cellu-
lar metabolism; and Zaldivar-Comenges et al. [23] incorporate abiotic degradation and
cell number variation. Fischer et al. [22] and Armitage et al. [19] models are equilibrium
partitioning-based models, while Fisher et al. (2019) [16] and Zaldivar-Comenges et al. [23]
models simulate time-dependent concentrations. Detailed equations are provided in the
respective publications.

Table 1. Summary of in vitro mass balance models evaluated.

Model
Reference

Applicable In
Vitro System

Applicable
Chemicals

Model Type
Partitioning Included a

Other
Factors/

ProcessesMedia Cell Lab-
Ware

Head-
Space

Fischer
et al. [22] Generic Neutral/ionized;

Non-volatile

Equilibrium
partitioning

model

√
√

(protein and
lipid)

Armitage
et al. [19]

Generic;
culture media

with serum
and monolayer

cell

Neutral/ionized;
Non-

volatile/volatile

Equilibrium
partitioning

model

√ √ √ √
Solubility

Fisher et al.
[16] Generic

Neutral/ionized;
Non-

volatile/volatile

Time-
dependent

model

√

√

(protein, lipid,
lysosome and
mitochondria)

√ √
Metabolism

Zaldivar-
Comenges
et al. [23]

Generic
Neutral;

Non-
volatile/volatile

Time-
dependent

model

√

√

(protein, lipid
and

mitochondria)

√ √
Evaporation;

abiotic
degradation;
cell growth

a √
= yes.

For the Fischer et al. [22] model, the same authors published an updated model [21]
incorporating distribution to plastic. However, this updated model focuses solely on the
chemical distribution in media and plastic, without considering cells. As such, this model is
limited to applications in cell-free assays and cannot be used to predict free concentrations
in media that contain cells. Considering the model’s applicable domain, although an
updated model [21] exists, we still used Fischer et al.’s [22] model.

Based on the chemicals applicability domain and considered compartments, each
model requires different chemical parameters, listed in Table 2. Common parameters
include molecular weight (MW), melting point (MP), and octanol–water partition coeffi-
cient (KOW). The models by Fischer et al. [22], Armitage et al. [19], and Fisher et al. [16]
also include pKa and IOC types as key input parameters. For models that consider the
headspace compartments, such as those by Armitage et al. [19], Fisher et al. [16], and
Zaldivar-Comenges et al. [23], additional parameters such as the air–water partition co-
efficient (KAW), molecular volume (Vb), and Henry’s constant at 37 ◦C (H37) are needed.
Also, Armitage et al. [19] incorporate solubility into the model, meaning solubility and the
salting-out constant (Ksalt) are needed. It is noted that the model by Fischer et al. [22] has
a different parameterization, requiring the distribution ratios at pH 7.4 between bovine
serum albumin (BSA)/phospholipid liposomes (lip) and water (DBSA/w and Dlip/w).
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Table 2. Chemical-related parameters used in four in vitro mass balance models.

Parameters (Abbreviation) [Unit]

Model

Fischer et al.
[22]

Armitage et al.
[19]

Fisher et al.
[16]

Zaldivar-Comenges
et al. [23]

Molecular weight (MW)
√ √ √

Melting point (MP) [◦C]
√ √

Octanol–water partition coefficient
(log KOW)

√ a √ √ √

Air–water partition coefficient (log KAW)
√ √

Solubility (CSAT,W) [mg/L]
√

Salting-out constant (Ksalt)
√ b

pKa
√ a √ √

IOC type
√ √

Henry’s constant at 37 ◦C (H37)
[Pa × m3/mol]

√

Molecular volume (Vb)
√

Distribution ratio at pH 7.4 between bovine
serum albumin (BSA) and water

(log DBSA/w)

√ a

Distribution ratio at pH 7.4 between
phospho-lipid liposomes (lip) and water

(log Dlip/w)

√ a

a If experimental values for log DBSA/w and log Dlip/w are unavailable, predictions based on chemical descriptors
from the UFZ-LSER database (http://www.ufz.de/lserd) (accessed on 24 October 2024) are used for neutral
chemicals. If the database is also unavailable, log KOW values are utilized to predict distribution ratios. For the
IOC, the pKa value is used to correct the log KOW, which is then applied for predicting distribution ratios. Further
details are provided in the main text. b Salting-out constant (Ksalt) is predicted by log KOW: Ksalt = 0.04 × log KOW
+ 0.114 (sourced from EAS-E Suite platform). Note:

√
= parameter included.

2.1.2. Data Used for Comparisons

The datasets were selected for model comparisons because they provide experimental
measurements for at least one partitioning compartment relevant to the model structure,
along with sufficiently detailed information on the experimental protocols to allow for an
accurate implementation of model simulations. Each dataset is briefly described below in
terms of the measurement type, chemicals tested, cell types, and other experimental details
(summarized in Table 3). Additional details are available in Table S1.

(1) Ratio of free to nominal concentration

Table 3. Data used for model performance comparisons.

Dataset Chemical (s) a Cell Type (s) b Endpoint Measurement

Ratio of free to nominal concentration
Huchthausen et al.

[24] Neutral and IOC (n = 12) MCF7, HEK293H Measured freely dissolved IC10
conc., then obtain ratio

Tanneberger et al. [25] Neutral and IOC (n = 27) Fish RTgill-W1
Ratio of conc. in medium at the end

and beginning of experiments
(C24h/C0h)

Schug et al. [26] Neutral organics (n = 9) Fish RTgutGC
Ratio of conc. in medium at the end

and beginning of experiments
(C24h/C0h)

http://www.ufz.de/lserd
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Table 3. Cont.

Dataset Chemical (s) a Cell Type (s) b Endpoint Measurement

Nicol et al. [27] Neutral and IOC (n = 30) No cell

Ratio of conc. in buffer and in total
matrix. These measurements were

performed using a Rapid
Equilibrium Dialysis (RED) plate

Valdiviezo et al. [28] Pesticides (n = 20) No cell
Ratio of response ratios measured

from free media and initial
exposure media

Blanchette et al. [29] Neutral and IOC (n = 30) No cell
Ratio of response ratios measured

from free media and initial
exposure media

This study PFAS (n = 14) No cell
Ratio of response ratios measured

from free media and initial
exposure media

Amount of chemicals in media and/or cells

Bellwon et al. [30] Cyclosporine A (n = 1) PRH, PHH, HepaRG
Measured chemical amount in cell

lysate and media at multiple
timepoint (≤24 h)

Broeders et al. [31] Chlorpromazine (n = 1) Balb/c 3T3, Caco-2,
HepaRG

Measured chemical distribution %
in cells and medium at 48 h (Balb/c

3T3 and Caco-2 cells) or 72 h
(HepaRG cells)

Broeders et al. [32] Chlorpromazine (n = 1) PRH, PHH, HepaRG
Measured chemical amount in cell

lysate and media at multiple
timepoint (≤24 h)

Kodavanti et al. [33] PBDEs (n = 3) Rat cerebellar granule
cell

Measured chemical amount in cell
lysate at multiple timepoint (≤24 h)

Pomponio et al. [34] Amiodarone (n = 1) PHH, HepaRG Measured chemical amount in cell
lysate at multiple timepoint (≤24 h)

Truisi et al. [35] Ibuprofen
(n = 1) PRH, PHH, HepaRG

Measured chemical amount in cell
lysate and media at multiple

timepoint (≤24 h)
a Chemical-related parameters were summarized in Supplemental Table S2. b Cell-related parameters were
summarized in Supplemental Table S3. Abbreviations: IOC: Ionizable organic chemical; PFAS: Per- and polyflu-
oroalkyl substances; PBDEs: Polybrominated Diphenyl Ethers; PRH: Primary rat hepatocyte; PHH: Primary
human hepatocyte.

Three of the datasets that reported free fraction in media were sourced from Ar-
mitage et al. [19], who collected data from three previous publications [24–26]. Data from
Huchthausen et al. [24] included 12 chemicals and were calculated by dividing the mea-
sured freely dissolved IC10 by the nominal concentration. Tanneberger et al. [25] and Schug
et al. [26] reported ratios of free concentration in media after 24 h to the initial nominal
concentration (C24/C0) for 27 and 9 chemicals, respectively. Data from these studies were
obtained directly from Armitage and colleagues.

Additional data from Nicol et al. [27] was also included, where the bound fractions
were calculated from the measured concentrations in buffer and total tested media from
three different cell types (HepG2, HepRG, and MCF7). For each media type, 30 chemicals
were tested at nominal concentrations of 10 µM using Rapid Equilibrium Dialysis (RED).
The reported results ranged from 10% to 99% bound, with values outside this range reported
as <10% or >99% bound. The unbound fraction was calculated as 100% minus %bound,



Toxics 2025, 13, 439 7 of 24

with the censored %bound values of <10% and >99% replaced by 5% (the midpoint between
0% and 10%) and 99.5% (the midpoint between 99% and 100%), respectively.

From our laboratory, data on media-to-nominal concentration ratios for 10 drugs [29],
20 pesticides [28], and 14 PFAS (see Analytical Method description in Supplementary Mate-
rials) were included. The media used for these protein-binding assays consisted of iCell
Cardiomyocytes maintenance medium (FujiFilm Cellular Dynamics, Madison, WI, USA),
which contains 5% or 10% fetal bovine serum (FBS) depending on the study. The fraction
unbound was calculated from concentration data (free and stock). The details of chemi-
cal exposure and process of LC-MS/MS analysis are detailed in the work of Blanchette
et al. [29] for drugs, Valdiviezo et al. [28] for pesticides, and Supplementary Materials for
PFAS. Blanchette et al. [29] include data for only one exposure concentration; meanwhile,
the other two studies provide data at two exposure concentrations, so for these studies
each chemical has two datapoints.

Overall, this dataset includes 269 observations of 116 unique chemicals, with several
chemicals, including Caffeine, Lamotrigine, Ibuprofen, 2,4-Dinitrophenol, Chlorpyrifos,
Disulfoton, Lindane, Parathion, and Chlorpromazine, tested in multiple studies. All
observations are listed in Table S4.

(2) Chemical amount in media and in cells

Data on the amount of chemicals in cells and media comprise data from studies that
included chemical concentrations in cell lysates and/or media in each experimental well.
Some studies [30,32,34,35] added fresh chemicals to cell cultures daily for 14 days, and
data were reported for Day 0 and Day 13, with multiple timepoints. For consistency, we
only used data collected from within the first day (≤24 h). Notably, Kodavanti et al. [33]
exposed cells for 60 min with sampling at 15, 30, and 60 min, and Broeders et al. [31]
sampled at various timepoints (48 h for Balb/c 3T3 and Caco-2 cells, or 72 h for HepaRG
cells). Where tabulated data were not available, values were extracted from figures using
WebPlotDigitizer version 4 (https://apps.automeris.io/wpd4/) (accessed on 2 April 2024).
Overall, there are 27 and 43 datapoints for chemical amounts in media and cells, respectively,
for 7 unique chemicals, with some studies using multiple timepoints or experimental
replicates (Table S4).

2.1.3. Model Parametrization

Parameters required for the in vitro mass balance models were categorized into
the following types: chemical, cell, media, and labware. Details for each category are
described below.

(1) Chemical-related parameters

Based on the above-mentioned details of the dataset, our whole dataset included
116 unique chemicals. To illustrate the diversity of the studied chemicals, we compared our
116 chemicals to those in the Collaborative Estrogen Receptor Activity Prediction
Project [36] (CERAPP; n = 24,955). Nine chemical descriptors, including molecular
weight, boiling point, Henry’s law constant, melting point, octanol–air partition coef-
ficient, octanol–water distribution coefficient, octanol–water partition coefficient, vapor
pressure, and water solubility, were sourced from the Integrated Chemicals Environment
(https://ice.ntp.niehs.nih.gov/) (accessed on 21 January 2025) (Table S5) and analyzed
using principal component analysis (PCA). Plots showing chemical space coverage for
octanol–air partition coefficient, vapor pressure, and water solubility, as well as the first
three PCs, are presented in Figure 2 (corresponding two-paired scatter plots in Figure S1).
The results demonstrate that our 116 chemicals are largely representative of the structural
diversity of the CERAPP chemicals.

https://apps.automeris.io/wpd4/
https://ice.ntp.niehs.nih.gov/
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Figure 2. Characteristics of unique 116 chemicals used to model performance comparison (red points,
(A,B)) and 15 chemicals used to model application (blue points (C,D)), compared to the chemical
space included in the Collaborative Estrogen Receptor Activity Prediction Project (CERAPP; gray
points; n = 24,955). (A,C) Distributions of log KOW, solubility, and vaper pressure. (B,D) Principal
component analysis (PCA) plot demonstrating the diversity of study chemicals.

For consistency of parameterization, most of parameters, i.e., MW, MP, KOW, KAW,
solubility, and Ksalt were sourced from the Exposure and Safety Estimation (EAS-E) Suite
platform (ARC Arnot Research and Consulting, https://arnotresearch.com/eas-e-suite/)
(accessed on 24 April 2025). These parameter values are compiled in Table S2. For pKa and
IOC identification, we used the website (https://xundrug.cn/molgpka) (accessed on 20
January 2025) developed by Pan et al. [37] to predict the pKa and determine the IOC type
(Table S6). Some chemicals may have multiple pKa values, each corresponding to different
acid or base types, and the process for identifying which pKa and IOC to use involves
first determining the strongest acidic or basic pKa (if applicable). Then, the pKa values
are compared to the pH value of the in vitro system (7.4). If an acidic pKa is greater than
the system pH by 2 or more log units, it is considered predominantly neutral and can be
ignored. The same principle applies for basic pKa values: if the pKa is more than 2 log units
lower than the system pH, the compound is considered neutral. The final determined pKa
values and IOC types based on this procedure are in Table S2. Additional parameters for
Zaldivar-Comenges et al. [23] include molecular volume (Vb) and Henry’s constant at 37 ◦C

https://arnotresearch.com/eas-e-suite/
https://xundrug.cn/molgpka
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(H37), and these values were obtained from the US EPA CompTox Chemicals Dashboard
(https://comptox.epa.gov/dashboard/) (accessed on 24 April 2025). Fischer et al. [22]
required DBSA/w and Dlip/w: preferred data were experimental values, with predicted
values used when experimental data were unavailable. For neutral chemicals, these values
were primarily predicted using polyparameter linear free energy relationships based on
chemical descriptors from the UFZ-LSER database (http://www.ufz.de/lserd) (accessed
on 24 April 2025), following the equations presented in Fischer et al. [22] However, if the
descriptors from the UFZ-LSER database were unavailable, Fischer provided via personal
communication valued based on the relationships between log KOW and DBSA/w/Dlip/w

developed by Endo and Goss [38] and Endo et al. [39], respectively, were used to predict
distribution ratios. For acidic and basic chemicals, the pKa was used to correct the log KOW,
which was then used as input to predict the DBSA/w and Dlip/w. The detailed calculations
and parameter sources were compiled in Table S7.

(2) Cell-, media-, and labware-related parameters

Information on these parameters was obtained, where available, from original refer-
ences listed in Table S1, with specific values including cell types, cell seeding numbers,
exposure concentrations, media volume, serum percentage, and labware types. Table S3
compiles the cell-related information, including size, mass, percentage of protein, storage,
and membrane lipid and water content. Table S8 contains the labware dimensions. For
parameters that were not reported, default values for each model were applied.

2.1.4. Model Assumptions, Execution, and Evaluation

Based on the model applicability domain, models by Fischer et al. [22], Armitage
et al. [19], and Fisher et al. [16] can be applied for predicting the in vitro distributions of
all chemicals in our dataset, while the model by Zaldivar-Comenges et al. [23] can only
be used for neutral chemicals. For Fisher et al. [16], we assumed no cellular metabolism.
For Zaldivar-Comenges et al. [23], we assumed no abiotic degradation and no significant
change in cell numbers. Model simulations for Fischer et al. [22] and Armitage et al. [19]
were executed using Excel tools as published. The Excel tool for Fischer et al.’s [22]
model was obtained from the Supplementary Materials of the original reference, while
the Excel simulation tool of Armitage et al. [19] model was directly provided by Armitage
and coworkers. Fisher et al. [16] model equations were coded in R language with GNU
MCSim [40], and Zaldivar-Comenges et al. [23] equations were also implemented in R
software, as sourced from Proença et al. [13]. Copies of all Excel sheets and R scripts are
provided in https://github.com/hsingchiehlin/Invitro_mass_balance_models.

Model performance was evaluated using Pearson’s (r) and Spearman’s (ρ) correlation
coefficients, mean absolute error (MAE), and mean error (ME). MAE was calculated to
assess overall accuracy:

MAE =
∑|log10(Prediction)− log10(observation)|

n
,

while ME (calculated as the mean difference between log10-transformed prediction and
observation) was used to assess the degree of bias. Linear regression analyses were em-
ployed to evaluate the impact of chemical properties (nominal concentrations, Henry’s
constant [H37], molecular weight [MW], melting point [MP], solubility, octanol–water
partition coefficient [KOW], air–water partition coefficient [KAW], and pKa) on prediction
residuals, thus assessing whether there are limitations in the applicability domain of each
mass balance model based on these chemical properties. Cyclosporine A was excluded
from the regression analysis due to it having a much larger MW and smaller KAW compared
to the other chemicals.

https://comptox.epa.gov/dashboard/
http://www.ufz.de/lserd
https://github.com/hsingchiehlin/Invitro_mass_balance_models
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2.2. Sensitivity Analysis

Sensitivity analysis was performed to examine the impact of model type and input
parameters (chemical, cell, labware, and media) on predictions across different mass balance
models. Although each category of inputs possesses several detailed parameters, to simplify
the analysis, we combined some of the parameters based on the category. The analysis
involved using the four selected in vitro mass balance models to predict the fractions of
free chemicals in media and chemicals in cells, based on 1 µM exposure of 116 chemicals to
13 cell types in 96- or 384-well plates with 2% or 20% FBS in the media (Figure 1). The list
of 13 cell types included those used for model comparison and additional cell types from
the EAS-E Suite platform. However, we also exclude the cell types if their cell parameters,
such as the lipid and protein contents, were set to the same of values as default or similar
cell types, resulting in a final list of 13 cell types including human, rat, mouse, and fish cells
(Table S3). Cell numbers and media volumes followed the default settings from the EAS-E
Suite platform: 20,000 cells and 150 µL media for 96-well plates, and 5600 cells and 40 µL
media for 384-well plates. Given the applicability domain of the mass balance models, the
Zaldivar-Comenges et al. [23] model is not suitable for the IOCs. Therefore, we conducted
two sensitivity analyses: the first considered all chemicals, evaluating only the models by
Fischer et al. [22], Armitage et al. [19], and Fisher et al. [16]; the second focused exclusively
on neutral chemicals, allowing us to incorporate all four models in the sensitivity analysis.
For statistical performance, eta squared (η2) was calculated based on the context of an
analysis of variance (ANOVA) to assess the contributions to variance of each input variable.
The equation for η2 is

η2 =
SSVariable

SSTotal

where SSVariable is the sums of squares for the given input variable, and SSTotal is the total
sums of squares for all variables. The lsr R package (ver. 0.5.2) was used to calculate η2.

2.3. Chemical Distribution Model Application: Assessing In Vitro–In Vivo Concordance of PODs

Adjusting for in vitro bioavailability has been hypothesized to improve the in vitro–
in vivo concordance of oral equivalent dose (OED) estimation by using QIVIVE. To test
this hypothesis, we extend the work of Lu et al. [41], who used a dataset of 15 chemicals
to compare regulatory in vivo PODs with multiple alternative in vitro PODs. The unit of
the in vivo POD reported in Lu et al. [41] is mg/kg/day, which represents an external
exposure dose. Therefore, it can also be expressed as OED to allow for direct comparison
with OEDs converted from in vitro PODs (µM). Specifically, in vivo PODs in the work by
Lu et al. [41] included four types: regulatory in vivo PODs in terms of both animal dose and
human-equivalent dose (HED), as well as two Bayesian model-averaged benchmark doses
(BMA BMD) in animal dose and HEDs. The BMA BMDs were derived using a web-based
Bayesian BMD (BBMD) system (https://benchmarkdose.org) from the in vivo original
study data used for regulatory assessments. The HEDs were extrapolated from the animal
dose PODs using allometrically scaling and exposure duration uncertainty factors, where
applicable. Detailed values, extrapolation methods, and relevant study information are
compiled in Table S9. For more information, please refer to Lu et al. [41].

In vitro datasets included the fifth percentile AC50 from ToxCast and the most sensitive
POD from a 6-cell type battery of in vitro testing from Chen et al. [42] and Ford et al. [43].
The latter dataset included multiple cell types, i.e., human-induced pluripotent stem cell
(iPSC)-derived cells (hepatocytes, neurons, cardiomyocytes, and endothelial cells), human
umbilical vein endothelial cells, and lymphoblast cells. For these 15 chemicals (listed in
Table S9), we evaluated their representativeness of chemical space relative to CERAPP
using the same approach as for the 116 chemicals used in model performance evaluation

https://benchmarkdose.org
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and sensitivity analyses. As shown in Figures 2 and S1, the coverage of chemical properties
is less complete for these 15 chemicals.

Lu et al. [41] previously noted that the best concordance was between the Bayesian
model-averaged benchmark dose adjusted to HED (BMA BMDH) for in vivo PODs and
the six-cell type battery for in vitro PODs. Here, we extended the work of Lu et al. [41]
by applying different mass balance models to see whether they improved in concordance
between in vivo and in vitro PODs. In addition to the two sets of in vitro PODs evaluated
previously (ToxCast and the six-cell type battery), we also evaluated concordance using
fixed constant in vitro PODs corresponding to equal toxicodynamic bioactivity. In this way,
we could isolate the effects of toxicokinetics (TK) on IVIVE predictions, and to compare
the degree of in vitro–in vivo concordance from TK alone with and without accounting for
bioavailability. We selected constant in vitro PODs of 0.01 µM or 1 µM based on the concept
of internal Threshold of Toxicological Concern (iTTC), where the value of 0.01 µM is the
internal NOAEL (i.e., iTTC prior to application of a 100-fold safety factor) as proposed by
Arnot et al. [44], and the value of 1 µM was the iTTC itself (which had no safety factors) as
proposed by Blackburn et al. [45]

To examine the concordance of OED estimation from in vivo and in vitro studies,
in vitro PODs were first converted using the standard QIVIVE approach:

OED

( mg
kg

day

)
= PODin vitro(µM) × 1 mg/kg/day

Css, 1 mg/kg/day(µM)

where Css, 1 mg/kg/day is the steady-state concentration in plasma under daily oral dosing
of 1 mg/kg/day, calculated using the calc_analytic_css function with the “3compart-
mentss” model and the settings of “adjusted. Funbound.plasma = FALSE” and “adjusted.
Clint = FALSE” in the httk R package (version 2.3.0). We note that the steady-state concen-
tration (rather than Cmax) is most appropriate for extrapolating to OED in this case because
the mass balance models are 24 h or equilibrium in vitro concentrations.

To evaluate the impact of mass balance models, the OED calculation was adjusted to
incorporate the fraction unbound in plasma (fub, plasma) and in media (fub, media):

OEDadjusted

( mg
kg

day

)
= (PODin vitro × fub, media) × 1 mg/kg/day(

Css, 1 mg/kg/day × fub, plasma

) .

Here, fub, plasma was sourced from the httk database and fub, media was calculated using
the four in vitro mass balance models described above. Due to the multitude of unknown
cell-based parameters for ToxCast data, fub, media predictions were based on the following
default assumptions for cell, media, and labware parameters: the default cell type in the
Armitage et al. [19] model, using 384-well plates with the hiPSC-CM maintaining media
used in Chen et al. [42] (measured lipid content: 0.22 mg/mL; measured protein content:
4.19 mg/mL).

Chemical-related parameters are summarized in Table S2. Concordance was evaluated
using r, ρ, MAE, and ME, as previously described. Because the BMA BMDH in vivo PODs
included confidence interval estimates, r and ρ were calculated weighted by the inverse
variance, as implemented using the wCorr R package (version 1.9.8). The impact of mass
balance models on concordance with respect to alternative in vivo POD types considered
by Lu et al. [41] was evaluated in a sensitivity analysis.
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3. Results
3.1. Comparing Performance of Four In Vitro Mass Balance Models

The comparative performance of the four selected in vitro mass balance models in
predicting the ratios of free to nominal concentration (Ffree,media), chemical amount in
media (Amedia), and in cells (Acell) is illustrated in Figure 3 (residuals shown in Figure S2,
separated by neutral and ionized). Additionally, because the Zaldivar-Comenges et al. [23]
model only is applicable to neutral chemicals, we separated performance summaries for
neutral and ionized chemicals in Figure S3. Nicol et al. [27] reported analytical issues for
some measurements, so we also evaluated model performance excluding those data and
found that it showed little differences in r, ρ, MAE, and ME (Figure S4).

 

Figure 3. Scatter plots of comparing observed free fraction in media (ratios of free to nominal
concentration) (top row), amounts of chemicals in media (middle row), or cells (bottom row) and
their corresponding predictions by using four in vitro mass balance models (see column labels). For
free fraction (top row), the filled points represent the data sourced from the literature, the open
points represent experimental data from our previous publications. For amounts in media (middle
row) or cells (bottom row), the filled points represent the experimental data tested using human
cells, the open points represent experimental data tested using non-human cells. Each graph shows
correlation values and prediction errors, as well as the number of chemicals (nchem) and data points
(ndata) included in each scatter plot. See Table S4 for the values plotted in these graphs [16,19,22,23].
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For model comparison, we focus on MAE as the measure of prediction accuracy
and ME as the measure of bias. Across the different types of measurements, the most
accurate (lowest MAE) and least biased (ME closest to 0) predictions were for Ffree,media,
with predictions for Amedia and Acell performing worse, with the highest MAE observed
for predicting Acell using Fisher et al.’s [16] model. In most cases, predicted Ffree,media was
nearly unbiased, with a high peak in residuals near 0 deviation (Figure S2). In contrast,
most predicted Amedia and Acell were biased high (ME ranged from 0.15 to 0.99), which the
exception of Fisher et al. [16], which had high underprediction bias for Acell (ME = −0.69).

Across models, the Armitage et al. [19] model had the best performance for Ffree,media

and Amedia and Zaldivar-Comenges et al. [23] the best for Acell, though the differences
across models for Ffree,media were small. These conclusions apply for all chemicals combined
and for neutrals only; however, Zaldivar-Comenges et al. [23] is only applicable to neutral
chemicals. For ionized chemicals, the remaining three models perform very similarly for
Ffree,media while Armitage et al. [19] performs best for Amedia and Acell (albeit data only
available for two and three chemicals, respectively).

With respect to residual trends, for predictions in media, most models and parameters
had no significant trends and/or coefficient of determination (R2) < 0.10 (10%), indicating
that errors in most cases did not systematically shift with chemical properties. Exceptions
were a significant positive trend with pKa in the Fischer et al. [22] model (R2 = 0.13), and
the significant positive trend for log10_Solubility (R2 = 0.12) and negative trend for log
KOW (R2 = 0.19) in the Zaldivar-Comenges et al. [23] model (Table S10 and Figure S5).
Thus, Fischer et al. [22] under/over-predict with low/high pKa, and Zaldivar-Comenges
et al. [23] under/over-predict at low/high solubility and high/low-log KOW.

For predictions in cells, all four models had negative trends with log10_Solubility,
but only for the Fischer et al. [22] model was the trend significant with a material
R2 = 0.40 (Table S10 and Figure S6). Both Fischer et al. [22] and Fisher et al. [16] had
significant positive trends with log10_H37, with relatively high R2 values of 0.29 and 0.72,
respectively. The Zaldivar-Comenges et al. [23] model also had a positive trend with tested
concentration, with high R2 = 0.58. The Fisher et al. [16] model also had positive trends
with log KAW, log KOW, and MW, with R2 between 0.26 and 0.32. For the IOCs, our results
found that three models which can be applied to IOC have negative trends for pKa with R2

values ranging from 0.12 to 0.26, meaning that these models tend to underpredict chemical
distributions in cell at high pKa.

Overall, predictions in media have more consistent performance across different
chemical properties than predictions in cells. Among models, for predictions in media, the
Armitage et al. [19] and Fisher et al. [16] models had the fewest residual trends, with no
chemical parameters having statistically significant trends and R2 > 0.1. For predictions in
cells, only for the Armitage et al. [19] model were there no statistically significant trends
and no R2 > 0.1

3.2. Determining the Impact of Input Parameters on In Vitro Bioavailability Predictions

To evaluate the influence of different models and input parameters on chemical dis-
tribution predictions in in vitro assays, we conducted sensitivity analyses on Ffree,media,
Amedia, and Acell using the four mass balance models. The simulations involved 116 chem-
icals across 13 cell types in two types of labware with two serum concentrations. The
results for ratios of free concentrations in media and chemical fractions in cells are shown in
Figures S7 and S8, respectively. Eta squared (η2) values, derived from ANOVA analy-
sis, illustrate the contribution of each variable to the variance, as presented in Figure 4,
separately for all chemicals and neutrals only. For predicting Ffree,media, chemical-related
parameters showed the highest sensitivity (η2 = 86.1% and 87.6%, all and neutral chemicals,
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respectively), followed by the percentage of FBS (2.1% and 2.8%, respectively). In contrast,
for predicting Acell, cell-related (17.9% and 27.1%, respectively for all and neutral chemi-
cals) and chemical parameters (20.3% and 12.1%, respectively) had the greatest influence.
Different model types and labware showed very small sensitivity for either media or cells.

 

Figure 4. Pie charts showing the effect size (η2 values) for chemical, cell type, % of FBS, labware, and
models on predicted chemical’s fraction in media (left) and cells (right). Calculations are shown for
(A) all chemicals (n = 116) and (B) neutral chemicals (n = 81).

Additionally, to assess how concordant different models were with each other, we
compared the predictions for each chemical and model from the sensitivity analysis to a
“baseline” prediction from the Armitage et al. [19] model using the “default cell” settings
(Figures S9 and S10). The results indicate that the Armitage et al. [19] model’s predictions
for Ffree,media are very similar to those of the Fisher et al. [16] model, whereas the Zaldivar-
Comenges et al. [23] model generally predicts lower values. Predictions from the Fischer
et al. [22] model exhibited the most notable differences, with some values (e.g., Diclofenac
and Perfluorohexanesulfonic acid) being more than 102-fold smaller, and others (e.g.,
2,3-dimethyl-1,3-butadiene) being over 103-fold larger than baseline values. For Acell,
predictions from the Fisher et al. [16] and Zaldivar-Comenges et al. [23] models were
generally lower compared to the Armitage et al. [19] model. Based on the box-and-whisker
plot in Figure S10, many of the outliers with large discrepancies of Acell between the
Armitage et al. [19] and Fisher et al. [16] models were associated with two cell types:
FishRtgill and rat cerebellar granule cells. These discrepancies may be attributed to cellular
characteristics. The rat cerebellar granule cells, for instance, have an extremely high lipid
content (95.3%), well above the range observed in other cell types (0.46–14.2%) (Table S3).
Additionally, the FishRtgill cells have the lowest mass among the 13 cell types evaluated
in this study. These differences likely influenced the variability in predicted chemical
concentrations between the models.
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3.3. Model Application: Effects of In Vitro Bioavailability Adjustment on In Vitro–In Vivo
Concordance of POD Estimations

Figure 5 illustrates the results of evaluating in vitro–in vivo concordance, with and
without in vitro bioavailability adjustments, between the in vivo BMA BMDH and the
in vitro iTTC of 0.01 and 1 µM, the in vitro PODs from ToxCast, or the in vitro PODs from
the six-cell type battery. In general, in vitro PODs from ToxCast generally exhibited lower
concordance than those derived from either constant concentrations or the six-cell type
dataset. Compared to using nominal concentrations alone, mass balance model-based
adjustments for f ub in plasma and media enhance in vitro–in vivo concordance for the
constant iTTC of 0.01 µM, as evidenced by increased r and/or ρ values, decreased MAE,
and ME values closer to zero. For the constant iTTC of 1 µM, there were also increases
in r and/or ρ values, but MAE and ME did not improve. Improvements were less consis-
tently observed with in vitro PODs from ToxCast. For the six-cell type battery, unadjusted
concordance was already quite high, and although r and/or ρ values improved slightly
with mass balance adjustments, MAE and ME tended to worsen. It is also noteworthy that
the negative MEs mean that considering in vivo and in vivo bioavailability adjustments
may make the OED derived from in vitro POD less conservative. Among the in vitro mass
balance models, only small differences were noted, with no one model consistently leading
to greater improvement in in vitro to in vivo concordance.

As a sensitivity analysis, similar analyses were performed with alternative in vivo
PODs (Figure S11 and Table S11). Notably, in vitro–in vivo concordance with these alter-
native in vivo PODs from the ToxCast dataset remained lower compared to those derived
from iTTC or the six-cell type battery, consistent with the findings from in vivo BMA BMDH.
Although f ub adjustments did not substantially enhance the in vitro–in vivo concordance of
human-equivalent regulatory PODs (not using BMA) and the in vitro six-cell type battery
PODs, in vitro–in vivo concordance using experimental animal PODs and constant and
six-cell type battery in vitro PODs did improve with f ub adjustments, with lower MAEs
and ME values closer to zero.

To critically evaluate the quantitative impact of considering in vivo and in vitro
bioavailability adjustments on in vitro–in vivo concordance, we calculated the “correc-
tion factors” that would be applied to nominal-concentration-based IVIVE, i.e., the ratio
of fraction unbound in media to fraction unbound in plasma (Figure S12). In addition to
the 15 chemicals evaluated for in vitro–in vivo concordance, we expanded the analysis to
include a broader range of chemicals by using predicted fractions unbound in media from
a sensitivity analysis and fraction unbound in plasma data sourced from the R package httk
(version 2.3.0) dataset. The httk dataset contains fraction unbound values for 68 chemicals,
and the predicted fractions unbound in media from human cell lines, including MCF7,
HCT116, HEK293T, HEK293H, HepG2, Me 180, and SH-SY5Y, as well as the default cell,
were used. Figure S12 demonstrates that most of these “correction factors” for in vivo
and in vitro fraction unbound were almost all greater than 1, regardless of whether the
15 chemicals used in the model application or the 68 chemicals from the sensitivity analysis
were considered. This finding suggests that, for most chemicals, incorporating both in vivo
and in vitro bioavailability adjustments when performing QIVIVE leads to a higher, and
thus less conservative, OED. Mechanistically, this is consistent with in vitro free fractions
typically being higher than in vivo free fractions due to the higher protein content of plasma
versus media.
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Figure 5. Scatter plots for comparing oral equivalent dose (OED) from in vivo and in vitro
POD—(i) assumed to be constant (0.01 and 1 µM), sourced from (ii) ToxCast, and (iii) six-cell-
type databases—with/without adjustment by using fraction unbound in plasma from httk database
and fraction unbound in media predicted by four mass balance models. Blue dashed lines are best fit
linear correlation (basis for Pearson r and Spearman ρ values), and red dash-dot lines are best fit line
with fixed slope = 1 (basis for mean absolute error [MAE], and mean error [ME] values) [16,19,22,23].

4. Discussion
Proposals to use in vitro assays as a basis for human health assessments have re-

sulted in the necessity for IVIVE approaches to convert in vitro bioactive concentrations
to equivalent in vivo exposures. This conversion is crucial for accurately characterizing
human health risks. Existing IVIVE methods often rely on nominal concentrations to
derive an in vitro POD, which is then extrapolated with reverse toxicokinetics to an in vivo
POD based on the total chemical concentrations in plasma. However, without incorporat-
ing biokinetics into in vitro systems, these approaches may introduce biases in assessing
in vitro–in vivo concordance of effective concentrations causing any biological response.
To address this issue, using free chemical concentrations in media or cellular environments
has been proposed as a more appropriate approach for IVIVE. Nonetheless, measuring
free concentrations, particularly in high-throughput screening assays, poses analytical
challenges due to limited sample volumes and high numbers of samples. As a feasible
alternative, in vitro mass balance modeling has been proposed.
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Here, we evaluated the performance of four such in vitro mass balance models finding
that predictions of media concentrations were more accurate than those for cells, and that
the Armitage model had slightly better performance overall. We also found chemical
property-related parameters to be most important for media predictions, while cell-related
parameters were also important for cellular predictions. These findings aligns with pre-
vious studies that also found that predicted cell concentrations were less accurate than
media concentrations [46]. It has been suggested that sample preparation techniques—such
as the use of detergents, freezing and thawing cycles, ultrasonication, liquid homoge-
nization, and PBS wash—can impact the “true” cellular concentration measurements,
potentially increasing measurement variability and reducing robustness. Similarly, Bloch
et al. [47] highlighted that the accuracy of partitioning data, along with cell-related param-
eters (e.g., cell mass, seeding density, and cell composition), are key factors influencing
predictions of chemical distribution within cells. These factors could contribute to the ob-
served biases in our predictions and offer potential methods for improving the accuracy of
cellular predictions.

This analysis does have a number of limitations. The dataset for cellular chemical
amounts was much smaller compared to that for media measurements. Additionally, pa-
rameterization across the four in vitro mass balance models varied and certain cell-related
parameters for specific cell types, such as human and rat primary hepatocytes, were of-
ten unavailable. Consequently, default parameters were used, or parameters for other
cell types were used as a surrogate. Furthermore, we could not test the performance of
certain model components, such as cell growth and abiotic degradation in the Zaldivar-
Comenges et al. [23] model and metabolism in the Fisher et al. [16] model, due to lack
of appropriate validation data. For the sensitivity analysis, limitations were also present.
Interaction effects within groups of cell- and chemical-related parameters necessitated a
“lumping” approach to assess each category’s contribution to prediction variance. This
method may obscure the detailed effects of individual parameters and increase residual
contributions to variance; notably, the residual contribution for predicting chemical frac-
tions in cells exceeded 50% (Figure 3). Lastly, the limited number of chemicals (n = 15,
with poorer coverage of chemical space) examined regarding the impact of considering
unbound plasma and media concentrations on in vitro–in vivo concordance resulted from
data constraints related to the need for better overlap among chemicals tested in in vitro
assays, chemicals for which TK parameters are available, and chemicals for which regula-
tory in vivo dose–response data are available for determining PODs in the form of BMA
BMDH. Moreover, this comparison is further limited due to the in vivo data being derived
from experimental animal studies, whereas much of the in vitro data were derived from
human cells.

Future research directions should focus on addressing these limitations by gathering
more experimental data for model performance comparisons, particularly for measured
cellular concentrations and comprehensive datasets for assessing the effects of in vitro
and in vivo bioavailability adjustments on IVIVE. The review by Proença et al. [13] indi-
cated that many in vitro mass balance models were developed primarily for traditional
systems involving monolayers of cells in static media and plastic labware. However, there
is an increasing demand for novel in vitro models, such as microphysiological systems
(MPSs), which incorporate fluidic microenvironments and multiple cell layers and types
to better mimic in vivo conditions, thereby enhancing IVIVE, toxicity assessments, and
pharmaceutical development [13,48–50].

Consequently, there is a growing need for new in vitro mass balance models tai-
lored for MPSs, particularly given recognized issues related to material absorption in
MPSs [51]. Unlike traditional systems, MPSs often utilize various materials such as poly-
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dimethylsiloxan, poly (methyl methacrylate), polycarbonate, polystyrene, and polysulfone,
sometimes along with coatings that can influence partitioning to labware itself [52,53]. This
necessitates the collection of partitioning coefficients for water with other materials, rather
than the conventional water–plastic coefficients. Additionally, the complex geometric
characteristics of MPSs—including multiple wells and microchannels—result in increased
media contact with devices and consequently higher mass transfer rates [54]. Moreover,
while chemical distribution to cells in traditional in vitro systems is typically characterized
by specific partition coefficients, cellular distributions in MPSs, which often involve mul-
tiple cell types and layers, require characterization based on intricate permeability and
diffusion dynamics [55]. Instead of using static medium, the integration of perfused fluidic
media in MPSs should also be considered in model development [13].

Based on our findings, we suggest several future directions and practical suggestions
for application. First, predictive performance for chemical distributions in media is gen-
erally superior to that for distributions in cells, indicating that free media concentrations
may be the preferable basis for QIVIVE. Using media may also be preferable because the
human TK models are generally considered to be more reliable for predicting plasma con-
centrations than for predicting tissue-level concentrations. Moreover, because prediction of
media levels are relatively accurate, experimental measurements, if feasible, may prioritize
cellular concentrations.

Additionally, based on our performance evaluation, the Armitage et al. [19] model
appears to be a reasonable first choice due to its relatively high predictive accuracy and
low bias, consistent performance across a range of chemical properties, broad applicability
across neutral and ionizable chemicals, and overall ease of use. Specifically for cellular
distribution of neutral chemicals, the Zaldivar-Comenges et al. [23] model has the best per-
formance, but the amount of validation data is quite limited. Future users of these models
for predictions in media should prioritize collection of accurate chemical-related parame-
ters, while those targeting cellular concentrations should also target accurate measurements
of cell-related parameters.

However, while in vitro and in vivo bioavailability clearly plays an important role
in QIVIVE, as demonstrated by the improvement in concordance when using a constant
in vitro POD, evidence that it improves in vivo concordance when combined with in vitro
bioactivity assays remains limited. Linking in vivo “free” concentrations in plasma to
in vitro “free” concentrations does lead to less conservative extrapolated PODs, and thus,
it may be reasonable to wait for stronger evidence of improved accuracy in decision
contexts emphasizing sensitivity over specificity. On the other hand, multiple factors unre-
lated to mass balance models (e.g., quantitative relevance of experimental in vivo and/or
in vitro data) may contribute to the lack of strong evidence for improving in vitro and
in vivo concordance.

5. Conclusions
Overall, our study provides an initial comparison of the predictive performance,

parameter sensitivity, and impact on in vitro–in vivo concordance of four in vitro mass
balance models. Our evaluation suggests that, among the current generation of mass
balance models, there is sufficient accuracy and domain of applicability for their routine
use in next-generation chemical risk assessment. Nonetheless, while there is a mechanistic
rationale to use “free” concentrations as the basis for QIVIVE, evidence that it improves
in vitro to in vivo concordance in PODs remains limited.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics13060439/s1, Figure S1: Satter plots of relationships among
log KOW, solubility and vaper pressure for unique 116 chemicals used to model performance com-
parison, 15 chemicals used to model application, and the chemicals in the Collaborative Estrogen
Receptor Activity Prediction Project3 (CERAPP), as well as relationships among top three principal
component after conducting PCA analysis; Figure S2: Histograms of errors of comparing observed
(A) ratios of free to nominal concentration, (B) amounts of chemicals in media, and (C) in cells
and their corresponding predictions by using four in vitro mass balance models; Figure S3: Scatter
plots comparing observed free fraction in media, amounts of chemicals in media, or cells and their
corresponding predictions by using four in vitro mass balance models for only neutral chemicals and
only non-neutral chemicals; Figure S4. Scatter plots comparing observed free fraction in media and
their corresponding predictions by using four in vitro mass balance models for all the datapoints
in Figure 3 (top row) and the comparison with removing the datapoints with mass balance issue;
Figure S5: Relationships of chemicals properties, including nominal concentration (Conc), Henry’s
constant (H37), solubility, KAW, KOW, melting point (MP), molecule weight (MW), and pKa and er-
rors of observed ratios of free to nominal concentration and their predictions; Figure S6: Relationships
of chemicals properties, including nominal concentration (Conc), Henry’s constant (H37), solubility,
KAW, KOW, melting point (MP), molecule weight (MW), and pKa and errors of observed fraction
of chemical amount in cell and their predictions; Figure S7: Simulated ratios of free to nominal
concentration by 4 mass balance models with 13 cell types, 2 types of labware (96- and 384-well), and
2 percentages of FBS (2% and 20%) for 116 chemicals; Figure S8: Simulated fraction of chemicals
in cells by 4 mass balance models with 13 cell types, 2 types of labware (96- and 384-well), and
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