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A priori prediction of tumour 
response to neoadjuvant 
chemotherapy in breast cancer 
patients using quantitative CT 
and machine learning
Hadi Moghadas‑Dastjerdi1,2,3,4, Hira Rahman Sha‑E‑Tallat2,5, Lakshmanan Sannachi1,2,3,4, 
Ali Sadeghi‑Naini1,2,3,6 & Gregory J. Czarnota1,2,3,4*

Response to Neoadjuvant chemotherapy (NAC) has demonstrated a high correlation to survival in 
locally advanced breast cancer (LABC) patients. An early prediction of responsiveness to NAC could 
facilitate treatment adjustments on an individual patient basis that would be expected to improve 
treatment outcomes and patient survival. This study investigated, for the first time, the efficacy 
of quantitative computed tomography (qCT) parametric imaging to characterize intra-tumour 
heterogeneity and its application in predicting tumour response to NAC in LABC patients. Textural 
analyses were performed on CT images acquired from 72 patients before the start of chemotherapy to 
determine quantitative features of intra-tumour heterogeneity. The best feature subset for response 
prediction was selected through a sequential feature selection with bootstrap 0.632 + area under 
the receiver operating characteristic (ROC) curve ( AUC

0.632+ ) as a performance criterion. Several 
classifiers were evaluated for response prediction using the selected feature subset. Amongst the 
applied classifiers an Adaboost decision tree provided the best results with cross-validated AUC

0.632+ , 
accuracy, sensitivity and specificity of 0.89, 84%, 80% and 88%, respectively. The promising results 
obtained in this study demonstrate the potential of the proposed biomarkers to be used as predictors 
of LABC tumour response to NAC prior to the start of treatment.

Breast cancer is the most commonly diagnosed cancer among women, accounting for about 30% of all new cases 
diagnosed each year in the United States and Canada1,2. Up to 20% of patients with breast cancer present with 
locally advanced breast cancer (LABC)3–5. LABC encompasses stage III and a subdivision of stage IIB disease, 
defined as tumours with a size of greater than 5 cm which may extend to the skin and/or chest wall. Current 
treatment for LABC includes neoadjuvant chemotherapy (NAC) followed by surgery and, if required, adjuvant 
radiation and/or hormonal therapy6–8. Despite multi-modal aggressive treatment, LABC patients still suffer 
from poor overall survival4. Whereas response to NAC has been demonstrated to correlate to patient survival, 
only about 20–30% of the patients realize a complete pathological response to standard NAC5,9–12. The standard 
approach to evaluate the tumour response to NAC is based on post-treatment anatomical imaging or histopa-
thology on post-surgical specimens. However, the window to modify neoadjuvant treatment is closed at that 
time. Also changes in physical dimensions of tumour in response to chemotherapy can take several months to be 
detectable on anatomical imaging, and in some cases no change is evident in tumour size despite a pathological 
response to treatment. Predicting response to standard NAC before to early after the treatment initiation can 
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facilitate treatment adjustments on an individual patient basis and potentially improve therapy outcome and 
patient survival.

A number of previous studies investigated different quantitative imaging techniques to evaluate chemotherapy 
response in breast cancer patients early after the start of treatment13–22. In13, dynamic contrast-enhanced magnetic 
resonance imaging (DCE-MRI) has been applied to predict the chemotherapy response in breast cancer. However, 
despite promising results, the cost and availability of MRI may restrict its utilization as a regular choice. Other 
researchers have used positron emission tomography (PET) to predict pathological complete response in women 
with breast cancer early after NAC15,16. The functional nature of measurements in PET also make it a potential 
choice to monitor tumour response, but it is expensive and requires using radionuclide contrast agents17,18. In 
recent years, diffuse optical imaging (DOI) has attracted the growing interest of researchers for monitoring and 
predicting breast cancer response to NAC19,23, since it can probe tissue oxygenation, and indirectly vascularity 
composition. In contrast to modalities such as CT and PET, DOI does not use ionizing radiation but it has not 
been adapted as an standard imaging modality in clinic and it requires long scan session to reconstruct volu-
metric images with reasonable resolution17. Ultrasound (US) is a non-ionizing and inexpensive modality that 
can probe the physical properties and specifically the microstructure of tissue without using any contrast agents, 
and hence it is a desirable choice for tumour response measurement to treatment22,24–27. Quantitative ultrasound 
(QUS) techniques have shown promising results in tissue characterization and tumour response monitoring28,29. 
However, in comparison with CT or MRI, the image quality is lower in US and usually it does not provide 3D 
images of the entire tumour volume in a facile manner.

Recent studies have also explored quantitative imaging techniques including DOI and QUS to predict LABC 
responses to chemotherapy prior to the start of treatment23,30. These studies hypothesized that the microstructure 
and metabolic characteristics of tumour can be linked to its aggressiveness and responsiveness to chemotherapy. 
They demonstrated that the optical and ultrasound features quantifying such characteristics can be predictive 
of tumour response to treatment. The micro-environment characteristics of tumour can also be quantified 
using quantitative computed tomography (qCT). CT Images are often acquired as part of the standard of care 
for LABC patients and, in conjunction with methods quantifying spatial heterogeneity, can potentially provide 
complementary information on tumour aggressiveness and responsiveness to treatment. Whereas the voxel 
size in CT images is frequently larger than cellular dimensions, changes in tissue microstructure could meas-
urably alter the CT voxel intensities as a result of partial volume effects. As such, quantitative CT techniques 
have demonstrated promise in various tissue characterization applications including the measurement of bone 
mechanical properties31 and mineral density32, COPD diagnosis and staging33,34, the differentiation of primary 
lung cancer and granulomatous nodules35, pulmonary fibrosis assessment36, and the assessment of renal cell 
carcinoma differentiation37,38.

Although MRI is accurate in detecting primary inflammatory breast cancer lesions39, it may not always be 
accessible as the imaging modality of choice because of its cost and availability. As an alternative, CT images 
can provide diagnostic information about the spread of breast cancer and could be utilized for pre/post treat-
ment examination40. Previous studies have demonstrated that contrast-enhanced CT (CE-CT) can considerably 
improve diagnostic information for breast cancer assessment compared to non-contrast CT41,42. The accuracy of 
CE-CT breast cancer diagnostic imaging for evaluation of both masses and calcifications has been demonstrated 
in multiple studies43,44. In43 CE-CT has been utilized to evaluate and monitor response to NAC in breast cancer 
patients during the course of treatment. Although breast imaging with CE-CT takes longer than CT, it is still 
much faster than MRI. Since CE-CT provides higher specificity over conventional radiography methods, it has 
been suggested that CE-CT should become the modality of choice for large population screening and extracting 
imaging biomarker in the emerging era of precision medicine45.

This study investigated, for the first time, the efficacy of qCT biomarkers to predict tumour response to NAC 
in LABC patients prior to the start of treatment. The qCT textural biomarkers were determined from pre-treat-
ment CT images acquired from 72 LABC patients. The textural features were utilized in various types of machine 
learning algorithms to predict the tumour response to chemotherapy identified many months later based on 
standard clinical histopathology analysis of surgical specimens. The best qCT feature subset was selected through 
a multi-step feature ranking and feature selection process. The performance of the selected qCT biomarkers for 
response prediction were evaluated using different classifiers. Results indicated the qCT biomarkers in conjunc-
tion with an adaptive-boosting decision tree classifier predicted the pathological response of LABC tumours to 
chemotherapy with a cross-validated sensitivity and specificity of 80% and 88%, respectively. This study is a step 
forward towards the early prediction of cancer response to treatment using quantitative imaging biomarkers. 
Such prediction of therapy response could facilitate personalized medicine that is expected to improve survival 
and quality of life for cancer patients.

Materials and methods
Study protocol and data acquisition.  This study was conducted under the regulations and guidelines 
in accordance with institutional research ethics board at Sunnybrook Health Sciences Centre (SHSC), Toronto, 
ON, Canada. All methods and experimental protocols were reviewed and approved by the research ethics board 
at SHSC prior to initiating the study. The study was open to all women aged 18 to 85 years who diagnosed with 
LABC and who planned to undergo a full course of NAC followed by surgery. In accordance with this, 72 eligible 
patients were enrolled in this study after receiving an informed consent. A core needle biopsy was performed 
for all patients to confirm the cancer diagnosis, and to determine the initial cellularity where possible, histologi-
cal subtype, and the hormone receptor status of the tumour. Contrast-enhanced CT images of the breast were 
acquired for all patients at pre-treatment as part of the institutional standard of care. CT Scans were performed 
with a multi-slice CT scanner (LightSpeed, GE Medical Systems, Chicago, United States) using a helical acquisi-
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tion mode. The scan parameters were X-ray tube current: 10–367 mA, tube voltage: 120 kV, slice size: 512 × 512 
pixels, slice thickness: 2.5 mm, and pixel spacing: 0.8 × 0.8 mm. In order to measure the tumour size and assess 
the chest wall involvement, all patients underwent clinical MRI scans before and after the treatment as part of 
the institutional standard of care for LABC patients.

Pathological evaluation of tumour response.  All patients underwent breast surgery after the comple-
tion of their course of NAC. About two thirds of the patients underwent a mastectomy with the other patients 
went through a breast-conserving surgery (lumpectomy). The pathological response of tumour to NAC was 
assessed based on standard clinical histopathology on the surgical specimens. The specimens were stained with 
hematoxylin and eosin (H&E) and prepared on whole-mount 5″ × 7″ pathology slides which were digitized 
using a confocal scanner (TISSUEscopeTM, Huron Technologies, Waterloo, Canada). Patients were categorized 
into two groups of responders (R) and non-responders (NR) using a modified response (MR) grading system 
which was based on RECIST46 and histopathological criteria47 as before30. The MR score was defined as follows: 
MR 1: no reduction in tumour size; MR 2: up to 30% reduction in tumour size; MR 3: 30–90% reduction in 
tumour size or a very low residual tumour cellularity determined histopathologically; MR 4: more than 90% 
reduction in tumour; MR 5: no evident tumour and no malignant cells identifiable in sections from the site of 
the tumour; only vascular fibroelastotic stroma remains, often containing macrophages; nevertheless, ductal 
carcinoma in situ may be present. The histopathological analysis for each patient was performed by a board-cer-
tified pathologist who was kept blinded to the study results. The patients with a MR score of 1–2 (less than 30% 
reduction in tumour size) and 3–5 (more than 30% reduction in tumour size or with very low residual tumour 
cellularity) were determined as NR and R, respectively. In keeping with this, 56 and 16 patients were identified 
as responders and non-responders, respectively.

Feature extraction and pre‑processing.  The regions of interest (ROI) were outlined manually on all 
slices of each 3D CT image to include the entire tumour within the breast region. Textural analysis was per-
formed using a grey-level co-occurrence matrix (GLCM) method to determine first-order and second-order 
textural features from each ROI. The features parametric texture-maps were generated using texture analysis of 
grey-scale CT images and a sliding window approach using a 3 × 3 pixel window and a sliding step of 1 pixel. 
The GLCM was used to quantify statistically the angular relationship between neighbouring pixels with different 
intensities and the distance between them48. The CT numbers of all images were quantized to 128 Gy levels and 
the GLCMs were symmetrically computed over one pixel distance from each reference pixel at different direc-
tions, i.e. at angels of 0°, 45°, 90° and 135°. Eight textural features of entropy (ENT), contrast (CON), correla-
tion (COR), maximum probability (MAX), mean (MEA), homogeneity (HOM), standard deviation (STD) and 
energy (ENE) were computed from each GLCM and then averaged over all four GLCMs. The textural features 
were extracted from all 2D slices covering the entire tumour volume. In order to account for the differences in 
the area of tumour cross-sections among different slices, a weighted averaging scheme, based on the ROI area, 
was used to compute the average feature values for each tumour. The median number of slices utilized to calcu-
late the average features for each tumour was 10. In order to make the numeric range of the features consistent49, 
feature standardization was done using the robust scaler method. The scaler moves the median to zero and scales 
the data according to the range between the 1st and 3rd quartiles. The standardization was performed inde-
pendently on each feature by computing the relevant statistics on the samples in the dataset. The inter-feature 
correlations were assessed using a Pearson correlation analysis to obtain the coefficient of determination (R2) 
for each feature pair.

Feature selection and response prediction.  Prior to the start of feature selection, features were ranked 
based on minimal-redundancy-maximal-relevance (mRMR) criterion50. A sequential forward feature selection 
(SFS) scheme was applied to find the best feature subset. The features were incrementally selected based on their 
mRMR ranking and the performance of the feature subsets was evaluated using the AUC0.632+

51–53. The subset 
that yielded the highest AUC0.632+ was selected as the best feature subset at the end of the process (Supplemen-
tary Fig. 1). This subset was used to train the classifiers afterward.

In order to address the imbalance issue of the data, the minority group was oversampled to a double size using 
the SOMTE method54, while the majority group was undersampled by taking B = 200 bootstrapped samples with 
the same size of the oversampled minority group. The SMOTE method has shown promise for oversampling in 
different applications including medical data analysis55–62. The balanced training sets were prepared by combining 
the oversampled minority subset with each of the bootstrapped subsets from the majority group. These combined 
training sets were randomly shuffled to provide a proper mixture of samples from different classes. Before under/
oversampling, one of the samples was randomly left out as the test sample for leave-one-patient-out (LOPO) 
cross-validation (n-fold; n = 72). Each of the training sets was utilized to train a classifier. Then, a majority vote 
over all B = 200 classifiers were used to predict the label of the test sample. This procedure was repeated until all 
the samples were tested (Supplementary Fig. 2). The training/testing procedures were performed using various 
types of classifiers including a support vector machine (SVM)63 (kernel = RBF, g = 1.85, c = 0.9), a decision tree 
(DT) classifier64 (maximum depth = 4, 100 estimators, learning rate = 0.1), a multilayer perceptron (MLP) neu-
ral network (NN)65 (hidden layer sizes = 9, optimizer = ADAM, alpha = 1e-4), a random forest (RF) classifier66 
(maximum depth = 4, 100 estimators), adaptive boosting (AdaBoost)67 classifiers using SVM and DT as the weak 
learner and a hybrid classifier that consisted of SVM, RF and Adaboost-DT classifiers. The median of the three 
predictions of the hybrid classifier was used as its final prediction. All the classifiers were implemented in Python 
using Scikit-learn68 and a Dell PC OptiPlex 3,020 (Intel Core i5 3.30 GHz CPU, 8 GB RAM, Dell Inc, Round 
Rock, TX, U.S.A.) with a Windows 7 (64-bit) operating system (Microsoft, Redmond, WA, U.S.A.).
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Results
The clinical and pathological characteristics of participating patients are summarized in Table 1. The age of 
patients was in the range of 27–83 years with a mean and standard deviation of 52.7 ± 11.9 years. The primary 
tumour size was in the range of 1.3–12.8 cm with the mean and standard deviation of 5.5 ± 2.7 cm. The majority 
of the patients (93%) diagnosed with invasive ductal carcinoma (IDC), while 4% of the patients had invasive 
lobular carcinoma (ILC), and 3% had invasive metaplastic carcinoma (IMPC). Moreover, 62% and 60% of the 
patients had tumours with positive estrogen (ER +) and progesterone (PR +) receptors, respectively, whereas 
30% of the patients had tumours with positive Her2/Neu receptor (HER2 +), and 25% of the patients had a triple 
negative tumour. For NAC, 50% of the patients received adriamyacin, cytotoxan followed by paclitaxel (AC-T), 
42% received 5-fluorouracil, epirubicin, cyclophosphamide followed by docetaxel (FEC-T), 6% received doxo-
rubicin, cyclophosphamide followed by docetaxel (AC-D) and 3% received doxorubicin and cyclophosphamide 
(TC). Also, all patients with HER2 + tumours received monoclonal antibody traztuzumab (TRA). The treatment 
regimen was not modified based on the imaging findings during this observational study.

Figure 1 depicts representative CT images with parametric map overlays of the all 8 GLCM textural feature 
images for a representative responding and non-responding patients prior to the start of NAC. Different patterns 
of spatial variation were detectable in the corresponding parametric maps of the responding and non-responding 
patients. However, the differences were more evident in ENT, HOM, COR, MEA, CON and STD parametric 
maps. Additionally, the spatial patterns in HOM, STD and ENE parametric maps were generally comparable to 
those in CON, MAX and ENT, respectively.

The raw data and statistical distribution of the feature values between the responding and non-responding 
patients have been illustrated in Fig. 2. Although the range of feature values corresponding to the two patient 
cohorts demonstrated large overlaps, the mean values of ENE, COR, MEA, STD and ENT were considerably 
different. Similar to what observed in Fig. 1, ENE and CON as well as ENT and COR indicated comparable 
distributions.

Figure 3 demonstrates the inter-feature correlations. The highest coefficients of determination were found 
for ENE-ENT (R2 = 0.92), HOM-CON (R2 = 0.81), MAX-ENE (R2 = 0.77) and STD-ENT (R2 = 0.77). In contrast, 
CON-COR, HOM-COR, HOM-MEA and CON-MEA possessed the smallest coefficients of determination (R2: 
0.01–0.1). The best feature subset obtained from feature selection included ENT, MAX, CON and MEA. This is 
in agreement with the results of inter-feature correlation analysis where HOM, STD and ENE parameters dem-
onstrated high levels of correlation with CON, ENT and MAX (R2: 0.67–0.92), suggesting that these features 
potentially carry redundant information.

Table 2 presents the results of cross-validated response prediction using the selected feature subset with 
different classifiers. Results indicated that the Adaboost-DT methodology provided the most promising results 
among all the developed classifiers with cross-validated scores of AUC0.632+ = 88.7%, accuracy = 83.7%, speci-
ficity = 88.1%, sensitivity = 80.4%, precision = 89.9% and f-score = 84.9%. Figure 4 shows the ROC curve of this 
classifier. The mean square error of prediction over all folds was 0.13 ± 0.26. The high value of standard variation 

Table 1.   Clinical and pathological characteristics of patients.

Characteristics Mean ± Standard deviation/Percentage

Age 52.7 ± 11.9 years

Initial tumour size 5.5 ± 2.7 cm

Histology

Invasive ductal carcinoma: 93.4%

Invasive lobular carcinoma: 4.1%

Invasive metaplastic carcinoma: 2.5%

Tumour grade

Grade I: 1.4%

Grade II: 50.9%

Grade III: 47.7%

Molecular features

ER + : 62.3%

PR + : 59.7%

HER2 + : 30.1%

Triple negative: 25%

ER + /PR + / HER2 + : 16.7%

ER + /PR + /HER2−: 41.7%

ER−/PR−/HER2 + : 8.3%

Residual tumour size 3.2 ± 4.3 cm

Response

Responding patients: 77.8%

Non-responding patients: 22.2%
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Figure 1.   Representative CT images (A) with parametric map overlays (B) acquired for a responding and 
a non-responding patient. The parametric maps demonstrate entropy, homogeneity, maximum GLCM 
probability, correlation, GLCM mean, contrast, GLCM standard deviation and energy. The color bar represents 
a scale of the range [1.5, 2.5] for ENT, [0, 0.8] for HOM, [− 0.1, 0.8] for MAX, [− 0.2, 0.7] for COR, [0, 50] for 
MEA, [0, 100] for CON, [− 0.9, 8] for STD and [0.1, 0.8] for ENE. The scale bar represents 2 cm.
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was expected because there was only one prediction for each fold in the LOPO cross validation scheme. The 
SVM provided the fastest train and test performance on the LOPO bootstrapped samples and completed the 
classification process (Supplementary Fig. 2) quickly in 6.5 s. Among the applied classifiers, MLP was the slowest 
in classification and its performance was not outstanding. The hybrid method outperformed the SVM, but its 
result was not better than Adaboost-DT and was comparable to RF methodology.

Discussion and conclusions
This study, for the first time, explored the potential of utilizing qCT biomarkers to predict LABC responses to 
NAC prior to the start of treatment. Contrast-enhanced CT images were acquired from seventy two patients 
diagnosed with LABC before chemotherapy initiation. The patients were followed up during and after the course 
of chemotherapy and treatment outcomes were assessed using standard clinical methods. Several textural features 
were derived from each CT image using a GLCM approach and evaluated as potential chemotherapy response 
predictors. A sequential forward feature selection technique in conjunction with mRMR and AUC0.632+ meth-
ods were used to find the best feature subset. The best feature subset consisted of four features including ENT, 
MAX, CON and MEA. The best feature subsets were utilized in conjunction with different classifiers for response 

Figure 2.   Statistical distribution of the feature values between the two groups of patients, i.e. responders (R) 
and non-responders (NR). The dash lines show the quartiles. All features were normalized according to a range 
between first and the third quartiles of their distribution.
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Figure 3.   Heat map of the inter-feature correlations. The values show the coefficient of determination (R2).

Table 2.   Summery of the classifier performance evaluation utilizing the best feature subset, i.e.[‘ENT’, ‘MAX’, 
‘CON’, ‘MEA’]. The best result in each column is underlined.

Classifier/
score

AUC0.632+ 
(%) Accuracy (%) AUC (%)

Specificity 
(%)

Sensitivity 
(%) Precision (%) F-Score (%) Time (Sec)

SVM 80.32 75.27 74.79 78.26 72.34 77.27 74.73 6.6

MLP 79.76 73.12 74.12 73.91 72.34 73.91 73.12 2,231

RF 84.15 80.65 80.23 84.78 76.60 83.72 80.00 139

Adaboost-
SVM 83.11 78.49 78.03 82.16 74.47 81.40 77.78 1,493

Adaboost-DT 88.72 83.67 84.23 88.10 80.36 89.95 84.91 265

Hybrid 84.29 79.57 79.83 84.78 74.47 83.33 78.65 471

Figure 4.   ROC curve of adaboost_DT classifier.
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prediction. A LOPO cross validation was used to evaluate the performance of the developed classifiers for 
response prediction. The Adaboost-DT provided the best performance with an accuracy, f-score and AUC0.632+ 
of 83.7%, 84.91% and 88.7%, respectively. However, the SVM performed faster compared to the other classifiers.

The parametric maps generated for the GLCM textural features indicated considerable differences between 
the responding versus non-responding tumours prior to start of chemotherapy. The textural features quantify 
spatial variations in the CT voxel intensities that can characterize the underlying tissue micro-structure. The 
micro-structural characteristics of a tumour are potentially linked to its aggressiveness and responsiveness to 
chemotherapy, as demonstrated by a number of previous studies30,69–71. Although the spatial resolution of clini-
cal CT images is low to visualize details of cellular structures, variations in tissue micro-structure can still be 
partially detected in these images as each voxel intensity maps the weighted average of attenuation coefficient 
corresponding to all elements within the voxel (partial volume effect)33.

The working hypothesis is that as tumours become more aggressive and less likely to respond to chemotherapy 
structurally tumour cells become more dysmorphic and as aggregates, they become more disorganized. The use 
of texture analysis on CT images becomes therefore a useful tool to characterize tumour micro-structure as it 
can be readily used to assess heterogeneity-linked changes. Analysis of the texture-based qCT parameters in 
conjunction with patient tumour responses to neoadjuvant chemotherapy can establish parameters that correlate 
with response to standard chemotherapy and can be thus used predictively.

A number of previous studies have investigated the applications of textural analysis on various imaging 
modalities including MRI, PET, DOI and US for breast cancer therapy response prediction16,23,30,72–74. Signifi-
cant differences in texture parameters, including contrast, variance and entropy, has been reported in contrast-
enhanced MR images between responding and non-responding patients prior to NAC treatment in72,73. Another 
study has demonstrated that the textural features of 18F-FDG PET images could be used to predict the pathologi-
cal complete response to NAC after two cycles of treatment in both HER2- and HER2 + patients16. Additionally, it 
has been shown that DOI-based textural and mean-value parameters considerably change in LABC tumours in 
response to chemotherapy19,23. Tadayyon et al. have demonstrated that ultrasound textural features can quantify 
micro-structure and functional characteristics of tumour to predict the response to NAC30. On the other hand, 
recent studies have demonstrated that CT images can be utilized to simulate US images46,74, implying potential 
correlations between the anatomical and physiological information within US and CT. The results in the afore-
mentioned studies are in agreement with observations in this study, in which microstructural characteristics of 
tumour were quantified by qCT parameters. Currently, contrast-enhanced CT imaging is used for detecting and 
characterizing breast tumours based on physical and anatomical measurements46. These available images can be 
used to extract the qCT biomarkers proposed in this study to predict the likelihood of standard chemotherapy 
response, potentially reducing the cost and side effects of futile treatments while improving the overall treatment 
outcome and patient survival.

In this study, a hybrid down-sampling/up-sampling method was used to balance the dataset. The SMOTE and 
bootstrapping methods were utilized for up-sampling the minority and down-sampling the majority, respectively. 
Results indicated that the misclassification rate of minority class remained the same after oversampling, e.g. 4 
out of 16 versus 8 out of 32 for SVM classifier. In fact, the oversampling improved the results by preventing the 
classifiers from over-fitting toward the majority group.

The methodology proposed in this study for prediction of therapy response at pre-treatment can facilitate 
early therapy adjustments on an individual patient basis by modifying regimen, dose or priority of treatment 
options. The sensitivity (specificity) in this study refers to the proportion of the responders (non-responders) 
whose response to treatment was predicted correctly by the model. The specificity of the model could be shifted 
toward 100% by changing the threshold on the predicted probability of response. However, an optimal threshold 
should be determined very carefully as it makes a trade-off between the sensitivity and specificity of the model. 
Whereas predicting the non-responders to standard treatment reliably is crucial to implement early treatment 
adjustment for them, unnecessary modification of standard treatment for responding patients can affect their 
treatment outcome, increase their therapeutic side effects and influence their quality of life. Therefore, in this 
study the optimal thresholds were set such that an equal importance was assigned to both a high true positive 
rate as well as a low false positive rate.

In conclusion, this study demonstrated that qCT biomarkers can be used to predict LABC tumour response to 
chemotherapy at pre-treatment, with high sensitivity and specificity. The promising results obtained in this study 
is a step forward towards adapting quantitative imaging in conjunction with machine learning techniques for 
prediction of treatment response and outcome in cancer patients. Further investigations are, however, required to 
evaluate the efficacy of the proposed biomarkers on a larger cohort of patients. Nevertheless, given the ubiquitous 
use of CT scanning in medicine the markers are particularly interesting and the approach potentially applicable 
to a large number of different patients beyond the work presented here. Moreover, higher-order biomarkers of 
response may still remain unrevealed in breast CT images and have not been explored in this study due to the 
limited sample size. Therefore, more powerful feature extraction methods have been planned to be investigated 
in future studies on larger patient populations to extend the qCT biomarkers assessed in this study and evaluate 
them with higher statistical power.
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