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Abstract: Reliable estimates of future health impacts due to climate 
change are needed to inform and contribute to the design of efficient 
adaptation and mitigation strategies. However, projecting health bur-
dens associated to specific environmental stressors is a challenging 
task because of the complex risk patterns and inherent uncertainty of 
future climate scenarios. These assessments involve multidisciplinary 
knowledge, requiring expertise in epidemiology, statistics, and cli-
mate science, among other subjects. Here, we present a methodologic 
framework to estimate future health impacts under climate change 
scenarios based on a defined set of assumptions and advanced statis-
tical techniques developed in time-series analysis in environmental 
epidemiology. The proposed methodology is illustrated through a 
step-by-step hands-on tutorial structured in well-defined sections that 
cover the main methodological steps and essential elements. Each 
section provides a thorough description of each step, along with a 
discussion on available analytical options and the rationale on the 
choices made in the proposed framework. The illustration is comple-
mented with a practical example of study using real-world data and a 
series of R scripts included as Supplementary Digital Content; http://
links.lww.com/EDE/B504, which facilitates its replication and ex-
tension on other environmental stressors, outcomes, study settings, 
and projection scenarios. Users should critically assess the potential 
modeling alternatives and modify the framework and R code to adapt 
them to their research on health impact projections.
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Climate change is one of the most important environ-
mental challenges that humanity will face in the coming 

decades. Quantifying future health burdens associated with 
global warming is therefore a major priority for the scientific 
community, as attested by the increasing number of publica-
tions on health impact projections. Several studies have fo-
cused on direct impacts of environmental stressors, such as 
nonoptimal temperature and air pollution.1–5 Generally, these 
projection studies follow a common methodologic scheme. 
The basic idea consists in applying risk functions on sim-
ulated future exposure distributions generated by climate 
change models under specific emissions scenarios. However, 
this scheme entails important methodologic challenges due, 
for instance, to the complex patterns of health risks associated 
with environmental stressors, the inherent uncertainty of po-
tential future climate change processes, and the set of (rarely 
stated) assumptions.6 A wide variety of data sources, statis-
tical approaches and assumptions have been applied so far, as 
summarized and discussed in previous reviews.6–8 However, a 
structured illustration that covers the important steps and dis-
cuss the most recent statistical developments is still lacking.

Here, we illustrate a methodologic framework to estimate 
health impact projections under climate change scenarios, built 
on clearly defined assumptions and state-of-the-art statistical 
methodologies developed in time-series analysis in environ-
mental epidemiology. This contribution extends a methodology 
previously presented to project temperature-related excess mor-
tality in climate change scenarios.5,9 The proposed framework is 
illustrated through a hands-on tutorial, structured in well-differ-
entiated steps that cover each of the methodologic issues and the 
essential elements. Each section provides a detailed description 
of the methodology and a discussion on the potential assump-
tions and limitations, compared to other available choices. The 
text is complemented with a practical illustration of a projection 
study using real-world data, and a series of R scripts included 
as Supplementary Digital Content; http://links.lww.com/EDE/
B504, with updated versions available in the personal Web site 
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and GitHub repository of the author A.G. The methodologic 
framework and R code can be modified and adapted to a broad 
range of health impact projection studies, optionally assessing 
different environmental stressors and health outcomes, and with 
different study settings.

ILLUSTRATIVE EXAMPLE
The practical example consists of a projection study on 

temperature-related mortality impacts in the city of London, 
United Kingdom. The dataset includes observed daily mean 
temperature and total number of deaths in London between 
1990 and 2012. This is part of the large database collected 
within the Multi-City Multi-Country (MCC) Multi-Country 
Multi-City Collaborative Research Network network (http://
mccstudy.lshtm.ac.uk/) and has been previously used as ex-
ample in other manuscripts.10 We complement these observed 
data with daily-modeled temperature series for historical 
(1950–2005) and future (2006–2100) periods, projected 
under scenarios defined within the Coupled Model Intercom-
parison Project Phase 5 of Intergovernmental Panel on Cli-
mate Change.11 Climate data were obtained, processed, and 
made available by the Inter-Sectoral Impact Model Intercom-
parison Project (https://www.isimip.org/).12 Further details 
on the modeled data are provided in section headed “Pro-
jected Exposure and Health Outcome Series” of the tutorial.

TUTORIAL ON THE MODELING FRAMEWORK

Estimation of Exposure–Response Associations
One critical step in health impact projection studies is to 

appropriately define the relationship between the exposure to 
the environmental stressor of interest and the health outcome. 
Although this information can be based on association esti-
mates reported in the literature,13,14 this often requires strong 
assumptions due to extrapolation across geographic areas and 
simplification of usually complex relationships.

A more appropriate approach is to directly estimate the 
relationship using actual epidemiologic data, for which sev-
eral statistical methods are available.15,16 Among these, time-
series analysis using aggregated data has been shown to be 
ideal to assess short-term associations in environmental ep-
idemiology,17 and often applied in climate change projection 
studies.1,18,19

A representation of the standard time-series regression 
model is provided by the following equation:

log[ ( )] ; ; ;E Y f x s t h zt t
p

P

p pt= + ( ) + ( ) + ( )
=

∑α θθ ββ γγ
1

p � (1)

where typically the outcome Y t corresponds to daily counts 
assumed to follow a Poisson distribution with overdispersion, 
the function f xt ;θθ( )  specifies the association with the envi-
ronmental exposure of interest x at time t , s t;ββ( ) represents the 
baseline trend which captures the effect of confounders chang-
ing slowly over time (i.e., seasonal and long-term trends), and 

h zp pt ;γγ p( ) models the contribution of other confounders vary-
ing on a daily basis.

The exposure–response association can be modeled 
using different types of function f , ranging from simple indi-
cators for extreme exposure events, to linear or linear-thresh-
old shapes, to distributed lag nonlinear models representing 
complex exposure–lag–response surfaces.20 The selection of 
the function depends on the environmental stressor, for in-
stance measured as a continuous exposure (e.g., temperature, 
rainfall) or defined extreme event (e.g., heat wave, floods), and 
the assumed dependency with the health outcome. As shown 
below, wrong assumptions on the shape of the dependency can 
introduce important biases in estimates and projections.

In our example, the environmental stressor and the out-
come corresponds to historical series of daily mean tempera-
ture and death counts (Tobs and Dobs). Our main choice for the 
exposure–response function f xt( )is represented by a distrib-
uted lag nonlinear model through a bi-dimensional cross-basis 
term, using flexible natural cubic spline functions to model 
both exposure–response and lagged-response dimensions, 
accounting for 21 days of lag, following previous work.10 As 
further described in section headed “Extrapolation of Expo-
sure–Response Curves” of this tutorial, the choice of natural 
splines allows the log-linear extrapolation of the function be-
yond the boundaries of the observed series, a step needed to 
project the risk using the modeled temperature. Figure  1A 
shows the resulting three-dimensional plot of the estimated 
exposure–lag–response association, and Figure 1B represents 
the overall cumulative exposure–response association across 
up to 21 days of lag. As expected, we observe a nonlinear 
temperature–mortality relationship, with increases in relative 
risk (RR) above and below the minimum mortality tempera-
ture (Tmm) that correspond to heat and cold associations, re-
spectively. At the same time, risks are distributed differently 
across time, with immediate heat-mortality and more delayed 
cold-mortality associations (Figure 1A).

Alternative models with different specifications of the 
exposure–response association, such as linear or double-
threshold parameterizations, are shown in Figure  1C. Al-
though simpler, these choices seem less ideal for modeling 
the mortality risk of nonoptimal temperature, highlighting the 
importance of the selection of suitable functions to represent 
the association of interest and the potential bias of inappro-
priate simplifications.

Projected Exposure and Health Outcome Series
Two additional essential elements needed in health im-

pact projection studies are the information on future climate 
and population scenarios.

Data on future distribution of the environmental stressor 
(e.g., temperature, precipitation, air pollution levels) are com-
monly based on specific scenarios that account for changes 
in multiple and often interrelated factors. For instance, socio-
economic and technological changes, population growth, and 

http://mccstudy.lshtm.ac.uk/
http://mccstudy.lshtm.ac.uk/
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land use changes can affect pathways of greenhouse gas emis-
sions or atmospheric concentrations of other pollutants, which 
in turn will determine trends in global warming and potential 
levels of specific environmental exposures.21 Under each sce-
nario, these trends can be generated from general circulation 
models (GCMs), which offer projections of future conditions 
based on specific and simplified assumptions.21 To have a bet-
ter representation of future trends, the usual approach is to 
combine impact estimates obtained either using more than one 
model per scenario or using ensemble members’ output from 
multiple runs of the same climate model, but with different 
initial conditions. 6,7

In our worked example, we applied the first approach 
by including modeled temperature data from five different 
GCMs for two climate change scenarios, defined as repre-
sentative concentration pathways 4.5 and 8.5 (RCP4.5 and 
RCP8.5).22,23 Figure 2 shows the temporal trends in temper-
ature for the historical (1971–2005) and future (2006–2100) 
periods projected in London under the two scenarios, depicted 
as GCM-ensemble averages (solid lines) and associated var-
iability (shaded areas). As discussed later in section headed 
“Ensemble Estimates and Quantification of Uncertainty,” the 
availability of exposure trends from multiple models can be 
used to determine the related uncertainty of the projected 
health impacts.

Projection exercises also depend on representations of 
future mortality trends, determined by the demographic struc-
ture and outcome baseline rates. Data on these population 
scenarios can be built following different approaches based 
on the adopted assumptions. The simplest procedure consists 
in assuming that populations and outcome rates will remain 
constant in the future, thus isolating the climate effect from 

other important trends.24–26 However, other studies relied on 
population projections derived from predictive models under 
varying levels of future fertility, mortality, and migration,27–29 
a procedure that requires additional assumptions.

FIGURE 1.  Temperature-related mortality in London (1990–2012). A, three-dimensional plot showing the estimated exposure–
lag–response association between temperature and mortality. B, Overall cumulative mortality risk (relative risk (RR) and 95% con-
fidence interval). C, Comparison between the exposure–response shapes estimated using three modeling approaches.

FIGURE 2.  Temporal trends in projected temperature in London 
(1971–2099). Solid lines correspond to the mean annual tem-
perature estimated across the five GCM-specific modeled series. 
The shaded area shows its variability, corresponding to the range 
for each year. The two horizontal bars in the right correspond to 
the average annual maximum and minimum for each modeled 
temperature series. Representative concentration pathway (RCP).



Copyright © 2019 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

Vicedo-Cabrera et al.	 Epidemiology  •  Volume 30, Number 3, May 2019

324  |  www.epidem.com	 © 2019 Wolters Kluwer Health, Inc. All rights reserved.

In our example, we illustrate an application of the 
former method. First, we compute an annual series of total 
mortality counts as the average for each day of the year from 
observed daily deaths, thus keeping into account the seasonal 
structure of the observed mortality series (Figure 3). The an-
nual series is then replicated along the whole projection pe-
riod. The extension to more complex scenarios requires the 
derivation of age-specific mortality series, obtained using pro-
jection methods that model changes in the demographic struc-
ture and baseline rates, as further explained in section headed 
“Accounting for Complex Scenarios: Demographic Changes 
and Adaptation” of this tutorial.

Downscaling and Calibration
Climate simulations of historical periods usually show 

systematic deviations from the real-world observations. This 
can be explained by real differences due to the different geo-
graphical resolution of the data (gridded vs. point source), or to 
biases due to poor performance of climate models, occurring 
in areas with sparse information from meteorological stations. 
These deviations should be carefully considered in climate 
change projection studies, as the predicted impacts will de-
pend on the alignment of observed and modeled series.30,31 
Corrections of biases related to these two aspects have been 
defined separately as downscaling and calibration, although 
in most cases they rely on similar analytic procedures. Down-
scaling refers to the process of obtaining location-specific cli-
mate information from global or regional models that provide 
data at a larger geographic resolution and is based on either 
dynamic or statistical methods.7 Conversely, calibration is a 
more general concept of realigning two series of data, in this 
case observed and modeled series.

Bias-correction methods have been proposed for both 
statistical downscaling and calibration, and encompass var-
ious different techniques with varying degree of complexity, 
ranging from basic statistical approaches (i.e., use of additive 
or multiplicative corrections, shifted distribution) to more 
complex statistical procedures.31 However, limited evidence 
exists about the potential impact of the choice of method on 
the estimated projections.

In the present tutorial, the model outputs from the 
GCMs are first downscaled through bilinear interpolation 
at a 0.5°×0.5° spatial resolution and linearly interpolated by 
day of the year. The resulting series are then calibrated with 
the observed data using the bias-correction method devel-
oped within Inter-Sectoral Impact Model Intercomparison 
Project.32 This ensures that the trend and variability of the 
original data are preserved by adjusting the cumulative dis-
tribution of the simulated data to the observed one. In detail, 
the monthly variability and mean are corrected only using a 
constant offset or multiplicative correction factor that corrects 
for long-term differences between the simulated and observed 
monthly mean data in the historical period.32 Figure 4 shows a 
comparison between the modeled series from a specific GCM 
(Tmod, green area and line), and the observed series (Tobs, black 
area and line), in terms of their overall and cumulative distri-
bution (left and right panels, respectively). It can be noted that 
the modeled series is shifted toward colder ranges, likely for 
the reasons mentioned above. As discussed, this would cre-
ate a bias in the future projections. The bias-correction pro-
cedure described above calibrates the modeled series (Tmod

* , 
green dashed line), realigning it to the observed one (Figure 4, 
right panel).

Extrapolation of Exposure–Response Curves
Risk estimates obtained over historical periods do not 

automatically apply to future scenarios because of several 
reasons. For instance, it is possible that the estimated expo-
sure–response association will be different in the future, due 
to for example adaptation or changes in vulnerability of the 
population. However, even when assuming no changes in risk, 
the future distribution of a specific environmental stressor is 
likely to be different from that observed in the present days 
and can extend further than the region of the estimated expo-
sure–response curve. Thus, we need to perform an additional 
step consisting in the extrapolation of the exposure–response 
beyond the observed boundaries. This, however, implies the 
adoption of additional assumptions on the hypothetical shape 
of the association over the unobserved range.

As shown in Figure 5 (top panel), a viable method is 
based on a log-linear extrapolation of the curve beyond the 
observed boundaries. The use of a natural cubic spline func-
tion to model the exposure–response dimension ensures 
this nonlinear extrapolation, although this step can be more 
problematic when applying different functions. Nonetheless, 
this entails a series of strong assumptions on the future risk 

FIGURE 3.  Seasonal mortality trends in London. Gray dots 
correspond to the observed daily mortality counts registered 
in each day of the year between 1990 and 2012. The blue line 
depicts the mean number of deaths per day of the year.
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associated to environmental factors. The first assumption, 
mentioned above, is that the exposure–response association 
estimated on the currently observed range will not change 
in the future, for instance as a result of changes in suscep-
tibility of the population, as discussed in section headed 
“Accounting for Complex Scenarios: Demographic Changes 
and Adaptation.” The second assumption is that the extrap-
olation represents appropriately the risk over the unobserved 
range. In addition, because of the nature of the epidemiologic 
approaches, the extrapolation of the curve over unobserved 
ranges constitutes an important source of uncertainty to our 
projection estimates. This last issue will be further described 
in section headed “Ensemble Estimates and Quantification of 
Uncertainty.”

Projection and Quantification of the Impact
The next step of the proposed analytical framework 

consists of estimating the projected health impact esti-
mates by applying the exposure–response association esti-
mates over the modeled series of the specific environmental 
stressor and outcome. Previous studies reported measures of 
impact using various measures, for instance in terms of per-
cent changes in the rate of the outcome, excess mortality 

or morbidity, or attributable fractions.5,18,33 Our framework 
incorporates the procedure previously developed to esti-
mate the impacts in terms of attributable fractions within 
time-series analysis, applicable either with the distributed 
lag nonlinear model framework or with simpler exposure–
response dependencies.34

In brief, the method consists of computing for each day 
of the series the number of cases attributed to a specific envi-
ronmental stressor based on the estimated risk and the level of 
exposure in that specific day. Then daily attributable numbers 
are aggregated by defined intervals of time in the future pe-
riod. It can be also expressed in terms of attributable fraction 
computed as the ratio with the corresponding total number 
of cases. Finally, projection studies are mostly interested in 
obtaining comparative measures of impact between climate 
change scenarios or timeframes, which can be easily com-
puted as differences in attributable numbers or fractions.

In the specific setting of the example of study, we esti-
mate the attributable number of deaths Dattr due to nonopti-
mal temperatures using the calibrated temperature series Tmod

*  
following:

FIGURE 4.  Bias correction of the modeled temperature series. Comparison between the distribution (left panel) and cumulative 
distribution (right panel) of the raw and bias-corrected modeled temperature( , )*T Tmod mod , and the observed temperature series Tobs( ).  
GCM indicates general circulation model.
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where f * and θθ* represents the uni-dimensional overall cumu-
lative exposure–response curves with reduced lag dimension, 
derived from the bi-dimensional term estimated in the section 
headed “Estimation of Exposure–Response Associations” of 
the tutorial. In Eq.2, we can also separate components due to 
heat and cold by summing the subsets corresponding to days 
with temperatures higher or lower than Tmm.10 The same com-
putation can be used with simpler exposure–response func-
tions, and the equation simplifies to the usual (RR − 1)/RR in 
the case of linear or binary unlagged relationships.

The selection of the Tmm is a critical step in the quan-
tification of the attributable mortality. Although this step has 
been shown to have little impact in well-powered multilocation 

studies relying on best linear unbiased predictions, this choice 
can be problematic in single-location analyses that can be af-
fected by highly imprecise exposure–response curves.10,35

Figure 5 (mid and bottom panels) shows the distribu-
tions of temperatures and estimated attributable mortality, re-
spectively, for the historic and future period in London under 
the assumption of stable populations and no changes in vul-
nerability. We can observe that the mortality burden due to 
cold temperatures is currently much larger than that for heat, 
especially across the moderate cold temperatures. However, 
if we compare the estimates between each of the two periods, 
we can see that heat-attributable mortality will substantially 
increase in the future by 4.0% (95% empirical confidence in-
terval [eCI] = 0.7, 6.8), whereas mortality due to cold will be 
reduced by 3.3% (95% eCI = 4.3, 1.9). A description on the 

FIGURE 5.  Temperature and excess mortality in 
London for present and future periods. Top panel: 
exposure–response curve represented as mortality 
RR across the temperature (°C) range, with 95% 
empirical confidence intervals (gray area). The 
dotted vertical line corresponds to the minimum 
mortality temperature (Tmm) used as reference, 
which defines the two portions of the curve re-
lated to cold and heat (blue and red, respectively). 
The dashed part of the curve represents the ex-
trapolation beyond the maximum temperature 
observed in 2010–2019 (dashed vertical line). Mid 
panel: distribution of Tmod

*  for the current (2010–
2019, gray area) and at the end of the century 
(2090–2099, green area), projected using a spe-
cific climate model (NorESM1−M) and scenario 
(RCP8.5). Bottom panel: the related distribution 
of excess mortality, expressed as the fraction of 
additional deaths (%) attributed to nonoptimal 
temperature compared with Tmm.
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computation of the eCI is provided in the following section. 
The same methodologic procedure can be applied to derive at-
tributable mortality for more complex scenarios, as illustrated 
in section headed “Accounting for Complex Scenarios: Dem-
ographic Changes and Adaptation.”

Ensemble Estimates and Quantification of 
Uncertainty

A key methodologic issue in projection studies is to 
properly identify and deal with the different sources of uncer-
tainty involved in the projection of impacts in future scenarios. 
These include those related to purely statistical aspects, such 
as the imprecision of the estimated exposure–response func-
tion, and the inherent uncertainty of the exposure simulations 
obtained from the climate and circulation models.6

Based on the proposed framework, uncertainty arises 
mainly from two main sources: the estimation of the expo-
sure–response function, especially regarding the range over 
which we extrapolated the curve, and climate projections. 
These are represented by the covariance matrix V bθθ( )  of the 
model coefficients estimated in Eq. 1 defining the exposure–
response function, and the variability of the modeled series 
generated in each GCM (Figure 2), respectively. In the tuto-
rial, we quantify this uncertainty by generating 1000 samples 
of the coefficients through Monte Carlo simulations, assum-
ing a multivariate normal distribution for the estimated spline 
model coefficients, and then generating results for each of the 
five GCMs.34 We report the results as point estimates, using 
the average across climate models (GCM ensemble) obtained 
by the estimated coefficients, and as eCI, defined as the 2.5th 
and 97.5th percentiles of the empirical distribution of the at-
tributable mortality across coefficients samples and GCMs. 
These eCIs account for both sources of uncertainty.

As briefly mentioned before, we did not account for 
additional uncertainty derived from the estimation of Tmm. If 
desired, it is possible to quantify it using probabilistic meth-
ods showed in recent publications.35,36 Likewise, other sources 
of uncertainty can arise in more complex projection scenarios, 
such as those assuming changes in vulnerability (adaptation) 
and population structure. However, these can be more difficult 
to integrate quantitatively in the overall estimate of uncertainty.

Accounting for Complex Scenarios: 
Demographic Changes and Adaptation

The example illustrated so far is built under the assump-
tions of no-adaptation and stable populations. Findings from 
this exercise can answer the question: “What will the temper-
ature-related impact be in the future if the current population 
would be exposed to warmer temperatures projected in the 
future?”. However, there is a growing interest in assessing 
environmental impacts under more complex scenarios that 
account for changes in both future risks and baseline popula-
tion, which could a priori approximate more realistically fu-
ture health impacts. This additional section aims at describing 
these potential extensions.

As mentioned before in the section headed “Projected 
Exposure and Health Outcome Series” of the tutorial, changes 
in size and population structure may have a strong influence 
on future health impacts, both by increasing the population at 
risk and by shifting it toward more susceptible groups with 
higher associated risks. Some studies have accounted for this 
using age-specific risks and outcome rates derived from so-
cioeconomic trajectories,18,19,27,37 defined for example in the 
so-called shared socioeconomic pathways.38 This can be in-
corporated in this framework by replicating the proposed pro-
cedure by each age category. This step requires the estimation 
of age-specific exposure–response associations, as shown in 
Figure 6A, and their application over the corresponding future 
age-specific outcome series built under a specific shared so-
cioeconomic pathway. These modeled outcome series can be 
derived by rescaling the observed seasonal counts in the cur-
rent period using age-specific baseline populations and rates 
projected in the future under a specific shared socioeconomic 
pathway. However, it should be noted that, while the “stable 
populations” approach is built on simplistic assumptions and 
cannot provide a realistic representation of future excess bur-
dens, it offers a more straightforward interpretation as it sepa-
rates the impact of global warming from other changes, such 
as those related to demographic variations, that would occur 
anyway even in a stable climate.

Another important issue to be considered in health pro-
jection studies is the potential changes in susceptibility to spe-
cific environmental stressors. For example, evidence obtained 
so far indicates that populations have partly adapted to heat 
stress in the last decades, with related risks showing an attenu-
ation along this period.39 Under these assumptions, exposure–
response associations obtained on historical data would not be 
representative of future risks, and several methods have been 
proposed to address this issue. These include the analog city 
approach,14,40 which makes use of exposure–response esti-
mates from a location with a climate similar to that projected 
in the future, or methods that allows direct changes in the esti-
mated exposure–response function41–44 Both approaches can 
be incorporated into the proposed framework by replacing or 
modifying the estimated exposure–response function. As an 
illustrative example, Figure 6B shows the modified tempera-
ture–mortality curve for London, assuming a decrease in 30% 
in the mortality log-RR associated with heat only, obtained by 
applying a scaling factor to the related part of the curve. How-
ever, one should take into account that this approach, while 
potentially more realistic, often implies simplistic assump-
tions on the form of the future exposure–response shape and 
its changes due to adaptation (e.g., linear-threshold shapes, 
or shifts). In addition, while few studies have used empirical 
evidence from historical data,43 most of them have defined an 
arbitrary set of parameters to model the extent and timing of 
adaptation mechanisms.42 A recent publication has discussed 
problems and limitations of existing methods for modeling 
adaptation, also showing how the choice greatly influences 
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the estimated health impacts, and discussing the difficulties 
in defining and quantifying valid adaptation mechanisms.45 
Thus, further implications on the potential limitations of the 
applied method should be considered and clearly discussed 
when assuming hypothetical changes in vulnerability.

CONCLUSIONS
In this contribution, we have presented a well-structured 

and flexible methodologic framework, based on cutting-edge 
statistical techniques and clearly defined assumptions, to ob-
tain health impact projections under climate change scenarios 
of variable complexity. Shaped as a hands-on tutorial, this ar-
ticle describes the key methodologic steps through a practical 
example of an applied analysis, complemented with real data 
and R code. Although the analytical approaches described 
in the example are tailored to the specific study settings 
and should not be uncritically applied in a “cut-and-paste” 
approach, this tutorial offers the reader the opportunity to 
advance through general methodologic steps, following how 
different statistical choices and assumptions have been trans-
lated in the analysis and code. At the same time, it enables 
the reader to replicate, adapt, and potentially extend the pro-
posed modeling framework by applying alternative modeling 
choices using other environmental stressors, outcomes, study 
settings, and more complex climate change scenarios. In 
a more general context, this tutorial highlights the need of 
multidisciplinary knowledge and skills for projecting health 
impacts under climate change scenarios, involving experts 
working in different research areas, such as epidemiology, 
statistics, and climate science, among other subjects. This 
contribution clearly advocates for collaborative research and 

emphasizes the benefits of reproducibility and transparency 
in science.
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