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Ni-catalyzed asymmetric hydrogenation of N-aryl
imino esters for the efficient synthesis of chiral α-
aryl glycines
Dan Liu1, Bowen Li1, Jianzhong Chen1, Ilya D. Gridnev2, Deyue Yan1 & Wanbin Zhang 1✉

Chiral α-aryl glycines play a key role in the preparation of some bioactive products, however,

their catalytic asymmetric synthesis is far from being satisfactory. Herein, we report an

efficient nickel-catalyzed asymmetric hydrogenation of N-aryl imino esters, affording chiral α-
aryl glycines in high yields and enantioselectivities (up to 98% ee). The hydrogenation can be

conducted on a gram scale with a substrate/catalyst ratio of up to 2000. The obtained chiral

N-p-methoxyphenyl α-aryl glycine derivatives are not only directly useful chiral secondary

amino acid esters but can also be easily deprotected by treatment with cerium ammonium

nitrate for further transformations to several widely used molecules including drug inter-

mediates and chiral ligands. Formation of a chiral Ni-H species in hydrogenation is detected

by 1H NMR. Computational results indicate that the stereo selection is determined during the

approach of the substrate to the catalyst.
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Chiral α-amino acids have found broad applications in the
fields of pharmaceutical, biological, and synthetic
chemistry1,2. Therefore, the synthesis of these compounds

is of considerable importance. In the past decades, the synthesis
of chiral α-alkyl amino acids, mainly via the asymmetric hydro-
genation of the corresponding α-dehydroamino acid derivatives,
has been widely investigated affording excellent results3–7. A
prominent example is the industrial preparation of L-DOPA
developed by Knowles, which has received high praise and won
the Nobel Prize in Chemistry in 20018. As another category of α-
amino acids, chiral α-aryl glycines play a key role in synthetic
drugs as well as bioactive natural products (Fig. 1a)9–12.

In order to obtain these building blocks, many methodologies
have been developed13–17. Among various approaches, the

transition-metal-catalyzed asymmetric hydrogenation of α-aryl
imino esters provides a promising route in terms of both effi-
ciency and practicality. However, due to the coexistence of Z/E
isomers and the intrinsically low activity of the substrates, stu-
dies in this area are still far from satisfactory18–30. Although
several strategies have been developed to overcome these
drawbacks, including introducing activated groups like N-sul-
fonyl imino esters or using cyclic imino esters, the corre-
sponding products either contain groups which cannot be easily
removed or are limited to cyclic derivatives18–27. As an alter-
native, N-p-methoxyphenyl (PMP) substrates have the advan-
tages of possessing a readily removable PMP group and greater
substrate diversity. Some asymmetric hydrogenations of N-PMP
α-aryl imino esters based on noble transition-metal catalysts of
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Fig. 1 Asymmetric hydrogenation of N-aryl imino esters for the synthesis of chiral α-aryl glycines. a Representative chiral products bearing chiral α-aryl
glycine skeletons. b Previous work about asymmetric hydrogenation of N-aryl imino esters. c Previous work about Ni-catalyzed asymmetric hydrogenation
of activated imines. d This work: Ni-catalyzed asymmetric hydrogenation of imino esters.
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Pd, Rh, and Ir have been reported with good results (S/C up to
1000, Fig. 1b)28–30.

In view of current interest in the development of earth-
abundant metal catalysts in asymmetric hydrogenation31–41,
which are inexpensive and environmentally friendly, the use of
nickel has drawn increasing attention24,31–41. Although Ni-
catalyzed asymmetric reduction has seen rapid development, the
asymmetric hydrogenation of imines is still in its infancy24,42–44.
To date, only a few Ni-catalyzed asymmetric hydrogenations of
imines have been reported by Zhang24,43,44 and our group42, and
the imines substrates are all activated by N-sulfonyl group-
s (Fig. 1c). The electronic-withdrawing sulfonyl substituents at the
nitrogen atom can increase the electrophilicity of the
imine carbon, which is more vulnerable to hydride attack. To the
best of our knowledge, there is still no Ni-catalyzed asymmetric
hydrogenation of unactivated N-aryl imines. Continuing our
pursuit of earth-abundant metal-catalyzed asymmetric hydroge-
nation38,39,42, herein we disclose an efficient Ni-catalyzed asym-
metric hydrogenation of N-PMP imino esters for the synthesis of
useful chiral α-aryl glycines (Fig. 1d).

Results
Investigation of reaction conditions. Initially, our investigations
were performed using (Z/E)-methyl-2-((4-methoxyphenyl)
imino)-2-phenylacetate (1a) as a model substrate with 1 mol%
catalyst under 30 bar H2 at 50 °C for 24 h. As listed in Table 1, a
variety of chiral diphosphine ligands (entries 1–7) and commonly
used solvents (entries 8–14) were explored.

When (S)-BINAP was used, only a trace amount of product
was obtained (entry 1). By replacing (S)-BINAP with the
electron-rich ligand (S)-SegPhos, the conversion of 1a was
improved from 7% to 50% (entry 2). To our delight, introducing
a more electron-rich alkyl phosphine to the ligand could
dramatically increase the reaction activity (entries 3-7), and full
conversion with the best enantioselectivity (99% conv, 96% ee)
was obtained by using the chiral dialkyl phosphine ligand (R,R)-
BenzP* (entry 7). In solvent screening experiments, 2,2,2-
trifluoroethanol (TFE) provided the best result for this reaction.
Other protic solvents, such as MeOH, EtOH and (CF3)2CHOH,
were viable but gave the desired product with low ee values
(entries 8-10), whereas the use of aprotic solvents, such as
toluene, CH2Cl2, EtOAc, and THF resulted in no or little
reactivity (entries 11-14).

Scope of asymmetric catalysis of N-PMP α-aryl imino esters.
With the optimized reaction conditions in hand (Table 1, entry
7), we next investigated the substrate scope of this asymmetric
hydrogenation (Table 2). Substrates with both electron-donating
(Me, MeO, etc.) and electron-withdrawing (F, Cl, Br, etc.) groups
could be hydrogenated to the corresponding products with good
to high yields and excellent ees (2b-2t, 90–98% ee) regardless of
the positions on the aryl moieties. To our delight, the 3-NO2

substituted N-aryl imino ester 1k was also amenable to the
reaction conditions (83% yield, 90% ee) with no reduction of the
NO2 group being observed, even at a higher temperature. Dis-
ubstituted and naphthyl substrates were also evaluated in the
catalytic reactions, affording excellent results (2u-2ab, 92–98%

Table 1 Reaction optimizationa.
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        ligand (1 mol%)

H2 (30 bar), solvent, 50 °C, 24 h
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entry Ligand Solvent Conv %b ee %c

1 (S)-BINAP TFE 7 82
2 (S)-SegPhos TFE 50 84
3 (R,Sp)-JosiPhos TFE 95 65
4 (Rc,Sp)-DuanPhos TFE 99 83
5 (S,S)-Ph-BPE TFE 99 91
6 (R,R)-QuinoxP* TFE 99 92
7 (R,R)-BenzP* TFE 99 96
8 (R,R)-BenzP* MeOH 99 43
9 (R,R)-BenzP* EtOH 58 50
10 (R,R)-BenzP* (CF3)2CHOH 98 76
11 (R,R)-BenzP* Toluene 0 –
12 (R,R)-BenzP* CH2Cl2 0 –
13 (R,R)-BenzP* EtOAc 0 –
14 (R,R)-BenzP* THF trace –
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bThe conversions were calculated by 1H NMR spectra.
cThe ee values were determined by HPLC using chiral stationary phase.
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ee). Altering the ester groups showed no obvious influence on the
reactivity and enantioselectivity (2ac-2ae). Changing the esters to
amide groups also afforded good results with only slightly lower
yields of the corresponding products (2af and 2ag). The reaction
was also applicable to heteroaryl substituents (1ah and 1ai)
affording the desired products in 90%/23% yield and 73%/39% ee,
respectively. Excellent results were also obtained when replacing
the PMP with other aryl groups (2aj-2am, 94–98% ee). It should
be noted that methyl substituted substrate 1am was smoothly
hydrogenated to product 2am with 94% yield and 98% ee, which
is a key intermediate for the synthesis of the chiral fungicide (R)-
metalaxyl45. The absolute configuration of product 2a was
assigned to be R by X-ray crystallographic analysis.

Synthetic utility of chiral α-aryl glycine products. To demon-
strate the synthetic utility of this method, a gram scale experiment
with a high substrate/catalyst ratio (S/C= 2000) was carried out
(Fig. 2a). As a result, 1a was hydrogenated to produce 2a with
92% yield and 93% ee. It should be noted that a high Ni/ligand
ratio was vital for the reaction efficiency (see SI for details). Next,
several transformations of the chiral α-aryl glycine derivatives
were conducted. The PMP group of product 2a could be
smoothly removed by the use of cerium ammonium nitrate
(CAN) to give the deprotected product 3 in high yield and
without an obvious loss of enantioselectivity (Fig. 2b). The chiral
primary amine 3 is an intermediate for the synthesis of the
marketed drug Ampicillin (Fig. 2b)46. The hydrolysis of 3 gave

Table 2 Substrate scopea.
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the chiral α-aryl glycine hydrochloride 4, which could be further
transformed to chiral compound 5, an intermediate for the
synthesis of the commercial drug Elobixibat hydrate (Fig. 2c)47.
The compound 3 was also reduced with NaBH4 to afford the
corresponding amino alcohol 6, which was further transformed to
chiral compound 8 via intermediate 7 (Fig. 2d). Chiral compound
8 has been widely used as a ligand for numerous asymmetric
catalytic reactions48. Chiral (S)-6 derived from (S)-3 could be also
transformed to 9, which is an intermediate for the synthesis of the
HCV NS5B polymerase inhibitor (Fig. 2e)49.

The studies of coordination and Ni-H species. Active chiral
metal hydride species are the crucial intermediates in the
transition-metal-catalyzed asymmetric hydrogenation process,
but they are very difficult to detect and isolate due to their high-
activities and generation in only trace amounts50. Thus, the active
chiral nickel hydride species has remained undetected, albeit
several chiral diphosphine ligand nickel complexes have been well
studies. In this study, at first, based on our previous studies of Ni
catalysts39,42, the coordination behaviors of Ni salt and the ligand
BenzP* were studied. Unlike previous investigations39,42, (R,R)-
BenzP* (L) coordinates with Ni(OAc)2·4H2O (M) to form a dual-
ligand coordinated complex 10 with different L/M ratios in
CF3CD2OD, with none of the mono-ligand coordinated complex
11 being detected by 1H NMR and HRMS, probably because it
exists in trace amounts in an equilibrium with the dominating
complex 10 (Fig. 3a). Afterwards, a sample analyzed upon
hydrogenation of the solution containing a 1:1 ratio of L/M
exhibited a weak hydride signal at δ=−13.52 ppm (t, 2JP-H=
14.8 Hz) (Fig. 3b). The triplet structure of this signal is evidence
of its coupling with two equivalent cis-phosphorus atoms that
strongly supports the presence of the structure 12. Similar species
were previously detected for the analogous Pd complex50, and it is
commonly accepted that these species are real catalysts in Pd-
catalyzed hydrogenations. Hence, our experimental observation
supports previous studies, in that a nickel hydride complex most
likely acts as the catalyst39,42.

Z/E isomers interconversion and deuterium labeling experi-
ments. The 1H NMR spectrum of a crystal of (Z)-1a dissolved in
the solvent showed a mixture of Z/E isomers, indicating that there
is rapid interconversion between the two isomers (Supplementary
Fig. 5). Furthermore, complete deuteration occurred at the pro-
chiral carbon atom in a deuterium labeling experiment using D2

(Supplementary Fig. 6).

Mechanistic considerations. Based on the above experimental
results, we have computed a catalytic cycle for the reaction under
study considering four competing reaction pathways (R- and S-
pathways for (Z)-1a and (E)-1a, e.g. Fig. 4a). On approach of (Z)-
1a or (E)-1a to the catalyst 12, we have located four diastereomers
of the chelate complex 13. Further approach along the same
coordinate results in the hydride transfer producing intermediate
14. Coordination of H2 to 14 forms complex 15, which undergoes
subsequent sigma-bond metathesis to give complex 16. Finally, 2a
is released to regenerate the Ni-H species necessary for the next
catalytic turnover.

Enantioselectivity is generated during hydride transfer via TS1.
Among four computed transition states, the two most stable
originate from (E)-1a; TS1(R) is 1.8 kcal/mol more stable than TS1
(S) (see SI for details). The main structural difference leading to the
notable alteration in their energies is the interaction of the
carboxymethyl substituent with the hydride being transferred from
Ni to carbon. This is illustrated in Fig. 4b: in the S transition state
only one quite long H…O contact of this type can be found, whereas
in the R transition state the carboxymethyl group is completely
involved in stabilization of the TS1(R) transition state via
appropriately distanced intramolecular interactions (the distance C
(carbonyl)-H(hydride) is 2.03 Å). This is further illustrated in Fig. 4c.

Usually, migratory insertion of a metal hydride proceeds via
gradual elongation of the M–H bond supported by gradual
shortening of the H–C distance and formation of an M–C (or
M–N) bond. These processes are characterized by high absolute
values of the imaginary vibrations in the corresponding transition
states.

In all four computed reaction pathways, the hydride insertion
proceeds differently: the very low barrier (1-2 kcal/mol) or even
barrierless hydride transfer takes place after the formation of a
configuration with coplanar orientation of Ni-C and Ni-H bonds
that requires initial elongation of the C-N bond resulting in the
appearance of the activation barrier (Fig. 5, see SI for details)51.
Hence, stereoselection actually occurs at the stage of achieving a
proper mode of the substrate coordination for the subsequent
hydride transfer52, which parallels that of Rh-catalyzed asym-
metric hydrogenation53,54.

Experimentally observed enantioselection (96% ee) attests to a
higher energy difference (about 2.3 kcal/mol). Our computations
suggest that the alternative pathways, avoiding formation of
chelating complexes 13, can be more stereoselective, and their
interference may improve the optical yields.

To gain further insight into the asymmetric pathways, detailed
computational studies of the approach of the substrate to the
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catalyst were conducted. From Fig. 6, it is clear that stereo
differentiation could be effectively achieved at this stage. Thus,
both pathways leading to the experimentally observed R-product
are continuously lower in energy than both alternative pathways
starting from the separation distance of 4 Å. The energy gap
between the approaching curves for ES and ZR is continuously
maintained at approximately 6.9 kcal/mol which is enough to
secure perfect enantioselection. Of course, thermodynamics
should favor the formation of the complexes 13, but the
interference of the pathways shown in Fig. 6 cannot be excluded.

It should be noted that the steep drop in the molecular
relative energy starting at each of the four pathways at
approximately 2.4 Å corresponds to the building of Ni–C
bonding, since at that stage the length of the Ni–H bond is not
yet increasing. Really, barrierless migratory insertion begins at
approximately 2.1 Å in each case, i.e. in the area when the
difference between the relative energies of the four pathways
can be neglected (Fig. 6). Hence, the stereodiscrimination in
this case is also achieved on the stage of the approach of the
substrate to the catalyst.
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Discussion
In summary, we have developed an efficient Ni-catalyzed asym-
metric hydrogenation of N-aryl imino esters to synthesize chiral
α-aryl glycines in high yields and with excellent enantioselec-
tivities (up to 98% ee). The reaction proceeded smoothly on a
gram scale at a low catalyst loading (S/C up to 2000). The
obtained products were directly useful chiral secondary amino
acid ester or further applied to the synthesis of several widely used
molecules including drug intermediates and chiral ligand. A
chiral active Ni–H species has been discovered first using NMR
spectroscopy. Computational results indicate that the stereo
selection is determined during the approach of the substrate to
the catalyst.

Methods
General procedure for asymmetric hydrogenation of N-aryl imino esters/
amides. To a hydrogenation tube, Ni(OAc)2·4H2O (0.75 mg, 0.003 mmol), (R,R)-
BenzP* (0.85 mg, 0.003 mmol) and the substrate (S/C= 100) were added, and then
the mixture was transferred to a nitrogen-filled glovebox. The degassed and
anhydrous trifluoroethanol (TFE, 1.0 mL) was added. The reaction was performed
with H2 (30 bar) at 50 °C for 24 h. After carefully releasing hydrogen gas, the pure
product is obtained by column chromatography (PE/EtOAc). The enantiomeric
excess was determined by chiral HPLC.

Data availability
The authors declare that the data supporting the findings of this study are available
within the article and its Supplementary Information file. For the experimental
procedures, data of NMR and HPLC analysis and Cartesian coordinates of the optimized
structures, see Supplementary Methods in Supplementary Information file. The X-ray
crystallographic coordinates for structures reported in this article have been deposited at
the Cambridge Crystallographic Data Centre (Z-1a: CCDC 2011640 [https://www.ccdc.
cam.ac.uk/structures/Search?access=referee&ccdc=2011640&Author=Liu+Dan], R-2a:
CCDC 2011648 [https://www.ccdc.cam.ac.uk/structures/Search?access=referee&ccdc=
2011648&Author=Dan+Liu]). These data could be obtained free of charge from The
Cambridge Crystallographic Data Centre (https://www.ccdc.cam.ac.uk/structures/).
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