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Abstract: Cardiovascular disease (CVD) currently represents one of the leading causes of death
worldwide. It is estimated that more than 17.9 million people die each year due to CVD manifestations.
Often, occlusion or stenosis of the vascular network occurs, either in large- or small-diameter blood
vessels. Moreover, the obstruction of small vessels such as the coronary arteries may be related to
more pronounced events, which can be life-threatening. The gold standard procedure utilizes the
transplantation of secondary vessels or the use of synthetic vascular grafts. However, significant
adverse reactions have accompanied the use of the above grafts. Therefore, modern therapeutic
strategies must be evaluated for better disease administration. In the context of alternative therapies,
advanced tissue-engineering approaches including the decellularization procedure and the 3D
additive bioprinting methods, have been proposed. In this way the availability of bioengineered
vascular grafts will be increased, covering the great demand that exists globally. In this Special
Issue of Bioengineering, we tried to highlight the modern approaches which are focused on CVD
therapeutics. This issue includes articles related to the efficient development of vascular grafts, 3D
printing approaches and suitable atherosclerosis models.

Keywords: cardiovascular disease; tissue engineering; small-diameter vascular grafts; mesenchymal
stromal cells; 3D printing; decellularization; macrophages

The development of functional vascular grafts, which can be applied in cardiothoracic
surgeries, represents currently one of the greatest goals of tissue engineering. In particular,
great effort has been made in order to better optimize the manufacturing procedures for the
development of small-diameter vascular grafts (SDVGs) Globally, there is a great demand
for this type of graft, applied mostly in coronary artery bypass grafting (CABG) [1,2].
Coronary artery obstruction represents one of the common manifestations of CVD [3].
CVD is a complex group of disorders, which involves peripheral arterial disease (PAD),
coronary artery disease (CAD), cerebrovascular disease (CBD) and rheumatic heart disease
(RHD) [1–4]. According to the World Health Organization (WHO), CVD is one of the
leading causes of death globally, estimated to cause more than 17.9 million casualties each
year [5]. The modern way of life such as daily diet, increased stress accompanied with high
working hours and lack of physical exercise are the major factors that are related to the
increased CVD occurrence [6,7]. Moreover, the proper management of CVD still represents
a great burden from an economical point of view and on national health care systems,
which are also characterized by major deficiencies in their daily routine [8,9].

The primary reason for CVD development is atherogenesis and developing atheroscle-
rosis in the patient’s vascular network [3,10]. In addition, an individual’s genetic back-
ground plays a crucial role in disease progression. Therefore, the understanding of the
underlying, associated pathogenetic factors may provide further insight for the better
administration of CVD.

Currently, advanced therapeutic strategies are utilized in CVD patients, including the
use of pharmaceutical regimens and modern vascular graft bioengineering applications [3].
To date, the gold standard procedure for the replacement of the occluded coronary arteries
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relies on the use of autologous secondary vessels such as the internal thoracic artery and
saphenous vein [11]. In addition, fabricated vascular grafts made of synthetic materials
such as Dacron and expanded polytetrafluoroethylene (ePTFE) have been applied in pa-
tients, although the success rate is variable [12]. Intriguingly, significant adverse reactions
have occurred regarding the use of both strategies. Moreover, suitable autologous vas-
cular grafts can be found in less than 30% of CVD patients, while synthetic SDVGs are
characterized by a reduced patency rate (<60%) within the first year of application [3].
Other common manifestations include neointima formation and vessel occlusion, initiation
of the calcification process and a severe host immune reaction [3]. These manifestations
could lead to new vascular graft transplantation, which represents an unfavorable situa-
tion for the majority of the patients. Importantly, the application of synthetic SDVGs in
pediatric patients is prohibited, due to their poor biological properties such as limited size
alteration [3].

Therefore, and in order to avoid the aforementioned side effects, modern approaches
in CVD must be evaluated as alternative therapeutic strategies. In this way, the application
of advanced tissue engineering methods such as the decellularization protocol is currently
being investigated for the potential SDVGs manufacturing [13–15]. The application of the
decellularization method for the efficient production of SDVGs has gained attraction from
the scientific community over the last decade [3]. Decellularization aims to produce an
acellular biological scaffold through the removal of the tissue-resident cellular popula-
tions, while at the same time preserving adequately the extracellular matrix (ECM) [13–15].
The choice of the decellularization protocol is dependent on the tissue’s origin and is
necessary in order to produce a well-defined acellular scaffold. Utilizing the decellulariza-
tion procedure, biological scaffolds can be efficiently derived from large animal models
(such as porcine and bovine animal models), cadaveric donors, or discarded biological
materials [13–15]. Besides the proper scaffold production, recellularization with host cel-
lular populations must be performed in order to reduce any adverse reactions incidence.
Taking into consideration the above, human umbilical arteries (hUAs) may represent a
valuable alternative source for the production of functional SDVGs [16]. HUAs can be
noninvasively isolated after gestation from the umbilical cord. Their inner lumen diameter
ranges between 1–6 mm, and are characterized by three different wall layers (tunica intima,
media and adventitia) and hence could resemble the structural function of human coronary
arteries [16]. Additionally, animal-derived and biohybrid-fabricated vessels have been
proposed [3]. However, the persistence of α-gal epitopes in decellularized scaffolds and the
low biomechanical properties could limit their off-the-shelf application [17]. Additionally,
advanced 3D bioprinting methods could enhance the SDVGs production process [18]. New
bioprinting methodologies such as 4D printing will create a new era for the production of
the next-generation (shape-shifted) vascular grafts [19]. In the near future, repopulated
SDVGs with genetically engineered cellular populations, will be presented and used suc-
cessfully in CVD patients, efficiently prolonging their lifetime. In the context of advanced
approaches in CVD, the current Special Issue of Bioengineering aimed to gather modern
studies related to translational vascular medicine. The current Special Issue included three
original articles, two review articles and one editorial article.

The first article published by Mallis et al. [20] provided a comprehensive review
regarding the fabrication of SDVGs and also the future perspectives, which will accompany
their potent application.

Furthermore, Kozaniti et al. [21] presented the last evidence regarding the 3D printing
approach and how can be associated with the production of functional vascular grafts.

Moreover, Garcia-Sabate et al. [20] developed a novel biomimetic 3D model to mimic
atherosclerosis in order to investigate thoroughly the role of monocytes and macrophages
in disease progression. Their work proved that the collagen density in the atherosclerotic
plaque is the driving cause, thus inducing the secretion of specific adipokines and growth
factors from the macrophages. The macrophage modulation mediated by the collagen
density is further related to the atherosclerosis disease progression [22].
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This Special Issue also involved an additional original research article prepared by
Mallis et al. [23] More specifically, this study provided evidence regarding the improvement
of the repopulation methodology utilizing the cord blood platelet lysate (CBPL). In this
study, the Mesenchymal Stromal Cells (MSCs) were dynamically seeded on decellularized
vascular grafts. The performed histological analysis indicated the efficient repopulation
of the vascular grafts with the MSCs. Indeed, vascular grafts treated with CBPL showed
higher MSCs repopulation efficacy compared with the control group, as was determined by
Ki67 and mitogen-activated protein (MAP)-kinase expression [23]. This proof-of-concept
study indicated that the CBPL may improve the repopulation process, which may further
reduce the processing time for bioengineered vascular graft production. Global research
effort must be focused on the improvement of the functional vascular grafts manufacturing
process. We hope that the current Special Issue of Bioengineering will motivate and inspire
researchers of the field, worldwide. In this way, more data will be gathered, highlighting
significant aspects which can be utilized in cardiovascular therapeutics, and in parallel
improving the application of these advanced methods in terms of economics and quality.
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