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Abstract
Small-cell lung cancer (SCLC) is an exceptionally lethal malignancy characterized by 
extremely high alteration rates and tumor heterogeneity, which limits therapeutic op-
tions. In contrast to non-small-cell lung cancer that develops rapidly with precision 
oncology, SCLC still remains outside the realm of precision medicine. No recurrent and 
actionable mutations have been detected. Additionally, a paucity of substantive tumor 
specimens has made it even more difficult to classify SCLC subtypes based on genetic 
background. We therefore carried out whole-exome sequencing (WES) on the largest 
available Chinese SCLC cohort. For the first time, we partitioned SCLC patients into 
three clusters with different genomic alteration profiles and clinical features based 
on their mutational signatures. We showed that these clusters presented differences 
in intratumor heterogeneity and genome instability. Moreover, a wide existence of 
mutually exclusive gene alterations, typically within similar biological functions, was 
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1  |  INTRODUC TION

Small-cell lung cancer accounts for approximately 15% of lung can-
cer. Due to its elusive nature, minimal improvements have been 
made in SCLC treatments in recent years, rendering it a recalcitrant 
disease.1 Recently, immunotherapy has brought hope to SCLC pa-
tients.2 However, prolongations in progression-free survival and OS 
for SCLC patients are limited and modest, with a vast majority of pa-
tients experiencing drug resistance and disease recurrence.3,4 Non-
small-cell lung cancer has entered a precision therapy era under the 
guidance of driving genes and achieved great success, whereas SCLC 
is still in the traditional unselective treatment era. In addition, SCLC 
is rarely treated by surgery and few specimens are available for ge-
nomic characterization. Therefore, a deeper understanding of SCLC 
genetic properties is required to guide new treatment strategies.

Recently, some progress has been made in the exploration of SCLC 
patients’ treatments. It has been proposed that SCLC can be classi-
fied into four major subtypes: SCLC-A, SCLC-N, SCLC-P, and SCLC-Y, 
distinguished by ASCL1, NeuroD1, POU2F3, and YAP1 transcriptional 
regulators, respectively.5 Further studies have updated an inflamed 
SCLC subtype, SCLC-I, which is not defined by YAP1 expression.6 It 
is worth noting that, traditionally, SCLC subgroups were believed to 
not be distinguished by genetic characteristics. Theoretically, SCLC 
genomic hallmarks, biallelic loss of RB1 and TP53, are so prevalent 
that they cannot be used to define subclasses.7 Additionally, there is 
not a large number of sample sequencing data available, so it is even 
more difficult to classify SCLC subtypes based on genetic landscape. 
However, a comprehensive analysis of SCLC’s genetic characteristics 
is crucial for the discovery of driving genes and new subtype defini-
tions, which will directly guide individualized treatments. Moreover, 
previous studies involving the MYC and NOTCH families reported 
the feasibility and importance of gene-driven individualized therapy 
for SCLC.8,9 Therefore, the description of SCLC molecular subtypes 
based on genomic characteristics is required.

In our current study, we proposed three SCLC molecular classi-
fications based on mutational signatures by WES among a Chinese 
cohort. Data from 178 SCLC patients were collected from SCH, the 

largest genome-sequencing study on Chinese SCLC to date. We an-
alyzed the differences between the three molecular classifications in 
SNV, CNV, genomic instability, and immunity, and proposed an indi-
vidualized treatment strategy. Our study provide an in-depth insight 
into the genome characteristics of the Chinese SCLC cohort, defin-
ing distinct molecular subtypes as well as subtype-specific therapies 
and biomarkers. It also represents an important step forward to tai-
lor optimal and personalized treatments for SCLC patients.

2  |  MATERIAL S AND METHODS

2.1  |  Sample collection, processing, and genomic 
DNA extraction

We recruited histologically confirmed SCLC patients from SCH. All 
diagnoses were independently confirmed by two experienced pa-
thologists. In addition to blood samples (2  ml), tumor tissue sam-
ples were obtained by biopsies. A strict quality inspection was 
undertaken to remove contaminated and insufficient DNA samples. 
Finally, 178 patients were enrolled. The OS was defined as the in-
terval between diagnosis and death/the last observation point. For 
surviving patients, data were censored at the last follow-up (26 
November 2020). Clinicopathologic data were retrieved. This study 
was approved by the Ethics Committee of the SCH. All patients in-
cluded in this study provided written informed consent.

Biopsied tumor tissues were fixed with formalin, then embed-
ded in paraffin. Corresponding blood samples were set as controls. 
Genomic DNA was extracted from each FFPE sample using the 
GeneRead DNA FFPE Kit (Qiagen) and from the blood sample using 
the DNA Blood Midi/Mini kit (Qiagen).

2.2  |  DNA library construction and WES, data 
processing, and alignment

The detailed procedures are provided in Appendix S1.

detected and suggested a high SCLC intertumoral heterogeneity. Particularly, Cluster 
1 presented the greatest potential to benefit from immunotherapy, and Cluster 3 
constituted recalcitrant SCLC, warranting biomarker-directed drug development and 
targeted therapies in clinical trials. Our study would provide an in-depth insight into 
the genome characteristics of the Chinese SCLC cohort, defining distinct molecular 
subtypes as well as subtype-specific therapies and biomarkers. We propose tailoring 
differentiated therapies for distinct molecular subgroups, centering on a personalized 
precision chemotherapy strategy combined with immunization or targeted therapy 
for patients with SCLC.

K E Y W O R D S
small-cell lung cancer, somatic mutational signature, subtype classification, therapeutic 
strategy, whole-exome sequencing
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2.3  |  Public data of Caucasian SCLC patients

The WES mutation files of 45 Caucasian SCLC patients were re-
trieved from George et al8 data that used a Caucasian SCLC cohort 
for somatic mutational signature and alteration frequency analyses. 
The Caucasian ancestry of these patients was confirmed according 
to their clinical information.

2.4  |  Mutational signature analysis

Somatic mutational signatures were de novo analyzed from the clean 
WES data by the “Somatic Signatures” R package (version 2.20.0),10 
according to a non-negative matrix factorization. Four highly con-
fident mutational signatures were derived in the SCH cohort. They 
were then compared with the consensus signatures in the COSMIC 
dataset (https://cancer.sanger.ac.uk/cosmi​c/), based on the Cosine 
similarity analysis to nominate each derived signature with the high-
est COSMIC dataset similarity (i.e. SBS4 [S4], SBS2 [S2], SBS6 [S6] 
and SBS5 [S5]) for the SCH cohort.

To further determine mutational signatures’ distribution and 
frequencies of each patient, deconstructSigs (version 1.9.0) was 
used as previously described.11 Patients harboring S2, S4, S5, and 
S6 mutations, as well as S2, S4, S5, and S6 weights in clonal and 
subclonal mutations, were compared using the Wilcoxon rank-sum 
test between two clusters and Kruskal–Wallis test among the three 
clusters. Correlations between signatures and categorical clinical 
feature variables were undertaken as described in Appendix S1.

2.5  |  Mutational signature clustering for SCLC 
subgroup classification

Mutational signatures of each patient were considered to determine 
SCLC subgroups in the SCH cohort, based on the four mutational 
signatures’ weights in each patient using “Ward. D2’s method” R 
package based on maximum distance.12

2.6  |  Somatic mutation variants detection and 
driver gene prediction

Somatic SNVs were identified from clean sequencing data by 
MuTect13 and somatic small indels were detected by GATK 
Somatic Indel Detector. The ANNOVAR software was used for 
variants annotation based on multiple databases as previously 
described.14 After annotation, the retained nonsynonymous SNVs 
were screened from disease databases for further analysis with 
VAF (cut-off ≥3%) or VAF for cancer hotspots (cut-off ≥1%). Tumor 
mutation burden was calculated with the total numbers of nonsyn-
onymous SNVs and indel variants per megabase of coding regions. 
Dominant tumor neoantigens were predicted using OptiType to 
infer the individual HLA type.15 Tumor neoantigen burden was 

calculated with the total numbers of neoantigens per megabase 
of coding regions. Significant driver genes were identified by com-
bining MutsigCV and dNdScv, as previously described,16,17 with an 
FDR cut-off <5%.

2.7  |  Copy number variation identification

Copy number variations, for all patients on the SCH cohort, were 
first identified using the GISTIC 2.0 algorithm.18 At the chro-
mosomal arm-level, significant amplifications or deletions were 
screened with FDR (cut-off <10%) for further analyses. At a focal 
CNV level, significant amplification was screened with FDR (cut-
off <5%) and G-score (cut-off >0.3). Significant deletion was 
screened with FDR (cut-off <5%) and G-score (cut-off <−0.2) for 
further analyses.

Focal CNV-related gene analysis was undertaken for each pa-
tient based on paired tumor–normal WES data using GATK. Then 
focal CNV-related genes were filtered according to the COSMIC 
cancer gene census database (https://cancer.sanger.ac.uk/cosmi​c/) 
to obtain a cancer-related focal CNV gene list.

2.8  |  Pathway and functional enrichment analysis

Somatic mutation and focal CNV-related genes that enriched bio-
logical functions and involved pathways were analyzed using the on-
line tool metascape (https://metas​cape.org/gp/index.html#/main/
step1), based on the Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) databases (https://www.kegg.jp/kegg/
kegg1.html).

Somatic mutations and focal CNV-related genes were evalu-
ated by canonical oncogenic signaling and DDR pathways mapping, 
according to the templates from The Cancer Genome Atlas Pan-
Cancer Atlas project.19,20 A pathway was considered “altered” when 
it contained equal to or more than 1 gene altered in a specimen. The 
number of oncogenic signaling or DDR pathway alterations of each 
specimen was also calculated.

2.9  |  Tumor heterogeneity and genome 
instability analysis

To investigate ITH, MATH values for each tumor sample were calcu-
lated from the MAD and the median of its mutant-allele fractions at 
tumor-specific mutated loci: MATH = 100 × MAD/median. Detailed 
information can be found in Appendix S1.

2.10  |  Immunohistochemical staining, PD-L1 
expression, and CD8+ T cell infiltration

The detailed procedures are reported in Appendix S1.

https://cancer.sanger.ac.uk/cosmic/
https://cancer.sanger.ac.uk/cosmic/
https://metascape.org/gp/index.html#/main/step1
https://metascape.org/gp/index.html#/main/step1
https://www.kegg.jp/kegg/kegg1.html
https://www.kegg.jp/kegg/kegg1.html
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2.11  |  Statistical analyses

The R Foundation for Statistics Computing Package (R package, ver-
sion 3.3.3) was used. Fisher’s exact test (for somatic mutation genes, 
CNV-related genes, and pathway alterations) and the Wilcoxon 
rank–sum test were used to analyze the relationships between clus-
ters. The Kruskal–Wallis test was used to examine trends among the 
three clusters. The Kaplan–Meier test was used to estimate effects 
on OS based on log–rank tests. A p value less than 0.05 was consid-
ered statistically significant. Hazard ratios of multiple factors on OS 
were obtained from the Cox proportional hazards model.

3  |  RESULTS

3.1  |  Research design

As illustrated in Figure S1, WES was carried out on FFPE specimens 
of primary lung tumor (n  =  145), lymph node (n  =  30), and other 
(n = 3) biopsies and matched WBC (n = 178). Whole exome sequenc-
ing had an average sequencing depth of 362× (range, 216–570) 
for tumor tissues and 182× (range, 116–274) for WBCs. The mean 
genomic coverage of ≥20 reads was 97.7% (Table S1).

3.2  |  Small-cell lung cancer subtype molecular 
classification based on somatic mutational 
signatures and their distinct prognostic and 
clinical features

Mutational signatures were de novo calculated and character-
ized from 178 specimens based on the 96 possible mutation types 
(Figure  S2A), according to a previously published method.10,11,21 
Four highly-confident signatures were derived and compared to the 
COSMIC mutational signature database: smoking-related S4 (97.2% 
of similarity), AID/APOBEC family-related S2 (72.5%), MMR-related 
S6 (75.5%), and unknown S5 (84.3%) (Figure  S2B). Based on four 
mutational signature proportions in each sample and using unsuper-
vised clustering, patients were divided into three clusters: cluster 
1 (n = 47; 26.4%); cluster 2 (n = 50; 28.1%); and cluster 3 (n = 81; 
45.5%) (Figure  1A and Table  S2A). Each somatic mutation signa-
ture weight was significantly different between clusters. Cluster 1 
mostly presented S4 mutations (median = 0.70 [range, 0.56–0.93]) 
and had the lowest proportion of S2 mutations (median = 0 [0.0–
0.1]). Cluster 3 mostly harbored S5 mutations (median = 0.48 [range, 
0.0–0.76]), followed by similar proportions of S6 (median  =  0.24 

[range, 0.0–0.79]) and S4 (median = 0.2 [range, 0.0–0.42]), and lower 
S2 (median = 0.07 [range, 0.0–0.31]}. Cluster 2 presented an inter-
mediary profile between clusters 1 and 3 (Figure 1B). Consistent re-
sults were observed on the clonal and subclonal somatic mutations 
analysis between the three clusters, except for the S6 weight, that 
increased in all subclonal mutations (Figure  S2C). This indicated a 
possible molecular change of the evolution trajectory during SCLC 
tumor development, and implied the presence of therapeutic vul-
nerabilities for different SCLC subtypes and stages. Additionally, the 
three clusters had distinct prognostic and clinical features. Cluster 1 
had a significantly longer OS (p = 0.007 vs. cluster 2 and p = 0.0003 
vs. cluster 3), while the OS of clusters 2 and 3 did not differ 
(p = 0.25) (Figure 1C). Cluster 1 predominantly consisted of women 
(p  =  7.25 × 10−12), and fewer smokers (p  =  3.78 × 10−10) and drink-
ers (p = 0.003) (Figure 1D, Table S3). Cluster 3 were predominantly 
male, smokers, drinkers, older (>60 years, p = 0.036), and extensive-
stage patients (p = 0.008) (Figure 1D, Table S3). Specimen type and 
family history of cancer did not significantly differ among the three 
clusters (Figure S2D,F). Cox regressive analysis confirmed that clus-
ter 1 (C1) and limited-stage were independent influence factors for 
longer OS times (p = 0.046 and 0.002, respectively) (Figure S2E).

Additionally, we further validated the de novo signature clas-
sification in a Caucasian SCLC cohort dataset8 and obtained three 
clusters of patients. Clusters 1 and 2 presented higher proportions 
of S4 mutations, whereas cluster 3 harbored elevated S2 mutations 
and significantly less S4 mutations (Figure 1E, Table S2B). S6 muta-
tions were not identified in the Western SCLC cohort. The OS did 
not significantly differ among the three clusters of Caucasian SCLC 
(p = 0.65) (Figure 1F). These classification differences might be de-
rived from the small patient population in the Caucasian cohort, or 
different SCLC genetic alteration features between Chinese and 
Caucasian cohorts, which requires future studies.

3.3  |  Higher TMB and lower intratumor 
heterogeneity in cluster 1 patients

The WES revealed 53,933 somatic nonsynonymous (nonsilent) 
SNVs/indels in the Chinese SCLC cohort. Cluster 1 had a median of 
461 (range, 195–884), cluster 2 of 253 (range, 126–772), and cluster 
3 of 187 (range, 64–726) mutations (Table S4A), suggesting the high-
load somatic mutation of SCLC.9 Except for TMEM132D (20.2%), a 
neural cell transmembrane gene that significantly recurred in clus-
ter 2, 35 mutations recurred more frequently (≥15%) in cluster 1 
compared to other clusters (Figure  S3A). Furthermore, cluster 1 
presented significantly higher TMB (median 11.2; range, 4.7–21.5), 

F I G U R E  1  Molecular classification of patients with small-cell lung cancer (SCLC) and their mutational signature and clinical features. (A,E) 
Classification of 178 Chinese and 45 Caucasian SCLC patients into three clusters (C1–C3), based on somatic mutational signatures. Relatively 
clinical features of each patient are indicated at the bottom of the graph. (B) Weights of different somatic mutational signatures in each 
cluster. (C,F) Survival analysis of patients in each cluster and overall survival based on log–rank test for the (C) Chinese and (F) Caucasian 
cohorts. (D) Comparisons of clinical features among SCLC patients among the three clusters based on the Kruskal-Wallis test. p-values 
<0.05 or <0.01 denote a significant or an extremely different level, respectively.
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clonal SNV/indel fraction (median 0.82; range, 0.62–0.96), and VAF 
(median 0.39; range, 0.03–1.0), and the lowest fraction of LOH gene 
regions (p < 0.01) (Figure 2A). This indicated that, although patients 
in cluster 1 had significantly higher TMB, they also had lower intratu-
mor heterogeneity compared to other clusters, especially cluster 3.

3.4  |  Driver and recurrent somatic mutation genes 
among the three clusters

Due to the extremely high mutation rates in SCLC genomes,8 the 
abundance and heterogeneity of different unknown-significant so-
matic mutations hamper the definition of pathophysiological functions 
of those mutations in SCLC. Therefore, we used MutSigCV and dNd-
Scv (FDR q < 0.1) to identify somatic mutation driver genes (Figure 2B, 
Table  S4B). Beyond TP53 (93.3%), RB1 (44.4%), KMT2D (24.7%), 
NOTCH1 (20.2%), CREBBP (17.9%), TP73 (10.1%), ARID1A (9.6%), and 
PTEN (6.2%), previously reported as recurrent in SCLC,8,22–25 other 
driver genes were predicted, and most of them recurred evenly among 
the three clusters in the Chinese SCH cohort. Noteworthy, as high as 
54.6% inactivation mutations were observed among the predicted 
driver genes (Figure 2B). Approximately 81% of TP53, 84% of RB1, and 
82% of PTEN mutations were LOH ones (Figure S3B), Table S4C), con-
firming a high level of biallelic inactivation in essential genes in SCLC.

These driver genes were most significantly enriched in transcrip-
tion coactivator activity, transcription initiation from RNA polymerase 
II promoter, and protein phosphatase binding involved in functions 
such as regulation of cell cycle process, response to biotic stimulus, T 
cell proliferation, chromosome segregation regulation, and ECM struc-
tural constituents, and many fundamental cellular catabolic processes 
(Figure 2C). The mutations significantly impacting OS were enriched 
in different functions (Figure 2D, Table S4D), indicating their different 
crucial roles in SCLC initiation and development.

3.5  |  Increased copy number variations and 
chromosomal instability in SCLC patients from 
clusters 1 to 3

Regarding chromosome level somatic CNVs, we observed sig-
nificantly recurrent deletions in 3p (ROBO1/ROBO2 at 3p12.3), 4p 
(FGFR3, 4p16.3), 5q (FLT4, 5q35.3), 10q (PTEN, 10q23.31), 13q (RB1 
and CYSLTR2, 13q14.2), 17p (TP53, 17p13.1), and 22q (RAC2, 22q13.1) 
regions, as well as amplification in 1p (Table  S5). These CNVs were 
previously reported in Western cohorts.5,8 Also, we used the GISTIC 
method and cancer-related genes in the COSMIC database and identi-
fied deletions in the 2p/q, 4q, 5p, 10p, 15q, and 16q regions with recur-
rent CTNNA2, RGPD3, ZNF479, and LRIG3 oncogenes among the three 
clusters; as well as amplifications in the 1q, 3q, 12q, 17q/p, 18q/p, 
19q/p, 20q/p, and 22q regions with recurrent TERT and PTPN6 among 
the three clusters (Figure 3A and Figure S4A, Table S5A–C). Less shared 
CNV-amplification genes were identified in clusters 2 and 3 compared 
to cluster 1, indicating their higher intertumoral heterogeneity on the 

CNV level. More amplification of MYC family genes was identified in 
cluster 3, including 3.9% MYC, 7.9% MYCL, and 1.1% MYCN. These 
amplifications were lower than those reported in the Western cohort 
(approximately 6%–25%, 7.8%–12%, and 2%, respectively),5,7,26 sug-
gesting different SCLC chromosomal alteration contexts between 
Chinese and Western cohorts. Other MYC pathway genes, includ-
ing MNT (6.2%), MXD4 (6.7%), MXD3 (2.3%), MLX (2.8%), MLXIP and 
MLXIPL (0.6%), and MAX (1.1%), but not MGA or BRG1, were exclu-
sively amplified or mutated with MYC family genes (Figure S4B-4C). 
This demonstrated the oncogenic importance of the MYC family and 
pathway in SCLC tumorigenesis and development. MAZ amplification 
has been observed among the178 SCLC patients (Figure S4C).

Increasing focal CNV numbers in clusters 1–3 were observed 
(Figure 3B). Among all 278 significantly differential focal CNV genes 
(239 amplified and 39 deleted), 83.1% focal CNV genes (209 ampli-
fied and 22 deleted) predominated in cluster 3, followed by cluster 
2 (p < 0.05; Fisher’s exact test). This illustrated the higher chromo-
somal instability in cluster 3. The most recurrent CNV-deletion and 
CNV-amplification focal genes were TBC1D3 (41%, 17q12), a tumor 
suppressor gene involved in calmodulin interaction and transmem-
brane trafficking,27 and MAZ (41%, 16p11.2), a MYC-associated 
zinc finger protein gene (Figure  S4D, Table  S5A–C).28 Particularly, 
the MAZ amplification had a significant impact on OS (p  =  0.038, 
Figure  3C). However, MAZ and TBC1D3 expressions and roles in 
SCLC have not been explored.

The amplified CNVs were enriched in nerve cellular metabolic 
processes and oncogenic signaling pathways. Copy number varia-
tion deletions were significantly mapped in cell adhesion molecu-
lar binding, histone modification, and structural molecular activity 
(Figure 3D, Table S5D). This suggested a clear difference in molec-
ular functions and processes between CNV amplifications and de-
letions, which might play essential roles in SCLC development and 
chemotherapy resistance.

3.6  |  Mutually exclusive somatic mutations and 
CNVs enriched in essential pathways reflected SCLC’s 
high intertumoral heterogeneity

Based on somatic mutations and CNVs, we found a wide presence 
of mutually exclusive gene alterations in SCLC, not only within the 
same pathways but also between different ones, including 10 cer-
tain oncogenic signaling pathways19 and eight DDR pathways20,29 
(Figure 4A and Figure S5A, S5B). It suggests that high SCLC inter-
tumoral heterogeneity greatly hinders targeted therapy efficiency 
and treatment among SCLC patients. Therefore, individually func-
tional biomarker-directed drug development and therapy strategies 
deserve attention.

To explore the mutational status and therapeutic potentials of 
essential genes in SCLC, we calculated gene alteration frequencies 
of 10 oncogenic signaling pathways19 and eight DDR pathways20,29 
in our cohort (Figure  4A) and compared them among the three 
clusters (Figure  4B). Pathway-related SNVs/indels were mainly 
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F I G U R E  2  Somatic mutational features and driver genes among three clusters of Chinese patients with small-cell lung cancer (SCLC). 
(A) Comparison of somatic mutational features, including tumor mutation burden (TMB), proportions of clonal, all gene, and loss of 
heterozygosity (LOH) somatic mutation genes among the three clusters (C1–C3). (B) Driver genes predicted using MutSigCV and dNdScv 
(false discovery rate q < 0.1). Driver genes reported in previous SCLC articles are indicated as “Paper” on the left column of the graph. 
Differentially recurrent mutation genes among the three clusters are indicated by asterisks. Yellow, orange, and brown indicate the 
predominately recurrent genes in clusters 1, 2, and 3, respectively. The mutation frequency of each gene is on the right pattern and the 
TMB values are at the top of the graph. (C) Gene Ontology functions enriched by all the driver genes predicted in this study. (D) Kyoto 
Encyclopedia of Genes and Genomes pathways enriched by the somatic mutation genes that significantly affected overall survival in this 
study.
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enriched in cluster 1 and focal CNVs were mainly enriched in cluster 
3 (Figure  4A). The SNVs/indels on Notch (97.9% of cluster 1) and 
Wnt (76.6%) of the oncogenic signaling pathways, and FA (53.2%) 
and BER (53.2%) of the DDR pathways were predominant in cluster 
1 (p < 0.05, Figure  4B). Focal CNVs of Notch (74.1% of cluster 3), 
Wnt (43.2%), RTK/RAS (49.4%), and Hippo (24.7%) of the oncogenic 
signaling pathways, and FA (43.2%), BER (42.0%), and HRR (38.3%) 
of the DDR pathways were significantly enriched in cluster 3, and 
PI3K (42.0%) was enriched in cluster 2 (p < 0.05; Figure 4B, Table S6). 
Thus, alterations of Notch (91.6% of all patients), Wnt (71.9%), FA 
(57.9%), HRR (52.3%), and BER (49.4%) pathways were predomi-
nant in SCLC and might be important for SCLC tumorigenesis. MYC 
(36.0% of all patients) and MMR (51.6%) pathway alterations might 
contribute to SCLC development on extended stages.

We noted that SCLC patients harboring PI3K and TGF-β pathway 
SNVs had longer OS (Figure 4C), indicating potential benefit from 
current chemotherapies. However, patients harboring NRF2 path-
way SNVs, and PI3K and CPF pathway CNVs did not benefit from 
chemotherapies. Except for these four pathways, no relationship 
with OS was detected for other pathway alterations. This might be 
due to high intertumoral heterogeneity among SCLC patients and 
no suitable targeted drugs have been used. Therefore, alternative 
therapy regimens should be explored for SCLC patients harboring 
mutually exclusive genetic alterations.

3.7  |  Different genome instability and epigenomic 
features across the three SCLC subtypes

We estimated the FGA, AI, MATH, LOH regions, ploidy, and WGD 
in each patient to indicate the SCLC genome instability status and 
compared them among the three clusters. Results showed that these 
parameters were at the lowest levels in cluster 1 compared to other 
clusters, and particularly lower compared to cluster 3 (p < 0.05) 
(Figure 5A). This was consistent with the SNV ITH analysis results 
(Figure 2A), which showed that the SCLC genome was relatively sta-
ble in cluster 1 patients.

Furthermore, we investigated SNV and CNV alterations related 
to genome organization. Top recurrent genes included somatic muta-
tions of epigenetic regulators of the KMT2 (KMT2D (24.7%), KMT2C 
(11.2%), KMT2B (6.2%)), KMT5/6 (KMT5B, 10.1%), KDM (KDM3A/B 
(5.1%), KDM4C (5.1%), KDM6A (4.5%), KDM5D deletion (9.6%)), HAT 
(CREBBP (18.0%), EP400 (7.9%), EP300 (7.3%)) families, and PRMT1 
amplification (10.1%) (Table S7). These recurrent multiple epigenetic 
modifications on histone marks in the enhancers/promoters globally 
repress, or favor, transcript activation of numerous downstream on-
cogenes, tumor suppressor genes, and cell–cell/cell-matrix adhesion 

genes. Moreover, loss-of-function mutations of these genes within a 
family were mutually exclusive8,9 and also observed in almost 54.5% 
(n = 97/178) of SCLC patients in our current study (Figure 5B and 
Figure S6A, S6B). The mutation frequencies of most of these genes 
did not significantly differ between the three clusters (Table S7), in-
dicating their equivalent contributions to SCLC tumorigenesis and 
development. Therefore, it is important to identify the upstream 
factors that control these epigenetic regulation genes and down-
stream target genes, which can be potential therapeutic targets. 
For instance, the NOTCH family might be an upstream regulator for 
CREBBP/EP300 in SCLC.30

3.8  |  Immunotherapy features across the three 
SCLC subtypes

Immune checkpoint inhibitors have become important treatment 
options for SCLC. Expression of PD-L1, CD8+ TILs, TMB, and TNB 
expressions are commonly used as predictive markers of ICI.31,32 
Besides TMB (Figure  2A) and TNB (Figure  6A), higher PD-L1 ex-
pressions were mostly present in cluster 1 (p < 0.05 compared to 
clusters 2 and 3) (Figure 6B,C). CD8+ TILs are higher in cluster 1 
compared to other clusters (Figure 6D). Human leukocyte antigen, 
a new ICI prediction biomarker, has been reported at a high het-
erozygosity level (HLA-I loci) on patients with improved OS after 
ICI, compared to HLA loci homozygosity.33 Human leukocyte an-
tigen heterozygosity in cluster 3 patients was significantly lower 
(p < 0.05; Figure 6E), indicating that cluster 1 patients might benefit 
from immunotherapy.

Some specific gene mutations have been reported to affect 
ICI’s efficiency.34 We identified that FANCA, an immunotherapy-
positive gene, had a higher mutation frequency in cluster 1 (p < 0.05; 
Figure  6F). However, an immunotherapy-negative gene, CTNNB1, 
and an HPD gene, DNMT3A, were also identified in cluster 1 (p < 0.05, 
especially compared with cluster 3; Figure  6G,H). Therefore, it is 
necessary to identify whether the immunotherapy-negative and 
HPD gene mutations are present in SCLC patients treated with ICIs.

3.9  |  Therapeutic vulnerability/strategies 
across the three SCLC clusters

Alteration frequencies of highly recurrent genes and significant dif-
ferentially recurring genes among the three clusters, and their cor-
responding pathways, are indicated in Figure 7. Detailed information 
on therapeutic vulnerabilities targeting associated pathways are 
presented in Appendix S1.

F I G U R E  3  Comparison of copy number variations among the three clusters of Chinese patients with small-cell lung cancer (SCLC) and their 
enriched biological functions. (A) Venn diagrams showing different amplification (Amp) and deletion (Del) focal copy number variation (CNV) 
genes among the three clusters (C1–C3) predicted by the Genome Identification of Significant Targets in Cancer method (false discovery rate 
q < 0.1). (B) Increasing focal gene numbers in SCLC patients from clusters 1 to 3. (C) Survival analysis for SCLC patients harboring MAZ gene 
amplification and overall survival (OS), compared with patients with WT. Log–rank test. MT, mutant. (D) Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways and Gene Ontology (GO) functions enriched by focal CNV genes that significantly affected OS.
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4  |  DISCUSSION

Currently, there are few available drugs molecularly targeting SCLC, 
in contrast to NSCLC, in which genotype-directed targeted thera-
pies have substantially improved treatments.26 Whole-genome 

sequencing among Western SCLC patients has revealed that SCLC 
is featured by a high number of genomic mutations and complex-
ity.8 Despite TP53 and RB1 concomitant losses observed in up to 
almost 100% of SCLC cases, tumor heterogeneity has thwarted 
SCLC treatments.8,35 Notably, SCLC personalized treatments have 

F I G U R E  4  Essential pathways enriched by somatic mutation and focal copy number variation (CNV) genes among the three clusters of 
Chinese patients with small-cell lung cancer. (A) Differential single nucleotide variation (SNV) and focal CNV genes enriched in 10 oncogenic 
signaling and eight DNA damage repair (DDR) pathways. (B) Comparison of SNV and focal CNV genes enriched in 10 oncogenic signaling and 
eight DDR pathways among the three clusters. (C) Pathway alterations that significantly impacted overall survival. Log–rank test.
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been highlighted in recent years.36 Both genetically defined models 
and patient specimens have delineated four SCLC subtypes, deter-
mined by ASCL1, NEUROD1, POU2F3, and YAP1 transcriptional reg-
ulators.5 A subgroup, SCLC-inflamed, was further reported by Gay 
and is marked by the expression of multiple immune cell infiltration 
markers.6 These important breakthroughs in SCLC molecular sub-
types indicated that it has entered the precision medicine era.37

However, the previously reported SCLC subtypes based on tran-
scription expression profiles of Caucasian populations is insufficient 
to comprehensively understand SCLC’s genome and molecular char-
acteristics and tailor personalized treatment to Chinese patients. 
Currently, there is a lack of a large population of Chinese SCLC ge-
nome research cohorts to understand its mutation characteristics. 
Therefore, for the first time, we successfully defined three SCLC 

F I G U R E  5  Comparison of genome instability among three clusters of Chinese patients with small-cell lung cancer. (A) Comparisons 
of fractions of genome altered (FGA), allelic imbalance (AI), mutant allele tumor heterogeneity (MATH), loss-of-heterozygosity regions 
among the whole genome (LOH), ploidy, and whole genome doubling (WGD) among the three clusters using the Wilcoxon rank–sum test 
(between two clusters) and the Kruskal–Wallis (trend) test. (B) Exclusive inactivation alterations trend among the genes related to genome 
organization. Inactivation alteration types and alteration frequencies are shown on the bottom and the right of the graph, respectively. HAT, 
histone acetyltransferase; KDM, lysine-specific histone demethylase; KMT, histone lysine methylation.
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subtypes from 178 specimens based on mutational signatures, com-
prising the largest Chinese SCLC cohort study to date. Moreover, we 
found distinct characteristics among the three SCLC subtypes, thereby 
laying the groundwork for improved SCLC management through per-
sonalized development.

Heterogeneity is prominent in SCLC and could represent a 
major evasion treatment mechanism, constituting a challenge in the 
personalized therapy era.35,38,39 Therefore, the implementation of 
subtype-guided therapeutic regimens is crucial. Although several 
molecular studies have been performed for SCLC,39–41 a consen-
sus on clinically relevant subtypes, that encompasses molecular 
heterogeneity and can be adopted in clinical practice, has not been 
reported. We divided SCLC into three subtypes according to mu-
tational signatures, and discovered that the molecular classification 
of SCLC was not only associated with intratumoral heterogeneity 

but also intimately linked with CNV and genomic stability. Also, 
we found a wide presence of mutually exclusive gene alterations 
in SCLC based on somatic mutations and CNVs, including 10 onco-
genic signaling pathways and eight DDR pathways. This might be 
explained by the following reason: the second hit within the same 
pathway would bring no additional survival advantages and could re-
sult in survival disadvantage and even synthetic lethality. We noted 
that SCLC patients harboring PI3K and TGF-β pathway SNVs had 
longer OS, indicating that these patients benefited from current che-
motherapies. However, patients harboring NRF2 pathway SNV, and 
P13K and CPF pathway CNVs did not benefit from chemotherapies. 
Except for these four pathways, no other pathway alterations had a 
relationship with OS. This phenomenon supported that high SCLC 
intertumoral heterogeneity could largely hinder targeted therapies’ 
efficacy. For example, cluster 3 patients are more heterogeneous 

F I G U R E  6  Comparison of immunotherapy-related biomarkers among three clusters of Chinese patients with small-cell lung cancer. (A–E) 
Comparisons of (A) tumor neoantigen burden (TNB), (B) tumor proportion score (TPS) and (C) combined positive score (CPS) of programmed 
cell death-ligand 1 (PD-L1) expression, (D) CD8 expression, and (E) human leukocyte antigen (HLA) heterogeneity among the three clusters. 
(F–H) (F) FANCA, (G) CTNNB1, and (H) DNMT3A gene mutation frequencies. NS., not significant; *: p < 0.05; **: p < 0.01; ***: p < 0.001.
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with high CNV numbers, elevated genomic stability, and shorter OS, 
suggesting that they might comprise recalcitrant SCLCs. Therefore, 
individually functional biomarker-directed drug development and 
targeted therapies should be undertaken in future clinical trials. 
Notably, although demonstrating distinct genetic mutations and 
pathways, the three clusters shared some key common genomic 
features. This suggests that the SCLC subpopulation heterogeneity 

might be driven by similar tumorigenesis forces during tumor evolu-
tion, such as TP53 and RB1 inactivation, whose function restorations 
are crucial for SCLC treatment.

Our study also identified other driver genes not commonly re-
ported, such as JUP, C8orf44, GRSF1, and PUM2. Some of them evenly 
recurred among the three clusters in our cohort, reflecting their 
equivalent contribution to SCLC tumorigenesis and development. This 
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difference could suggest a heterogeneous SCLC genomic landscape 
among different races/ethnicities. This race/ethnicity difference is 
also found at CNV level, in which some new high-frequency ampli-
fication and deletion genes were detected. For instance, for the first 
time, we identified highly recurrent MAZ amplification and TBC1D3 
deletion, underlying their indispensable roles in SCLC development 
and progression among Chinese patients. Thus, molecular treatments 
targeting these molecular alterations should be developed.

Immunotherapy combined with chemotherapy has become the 
new standard for extensive-stage SCLC care.42,43 There has been at-
tention on predictive biomarkers that could guide ICI’s use in SCLC 
patients. Unfortunately, no consistent predictive biomarkers have 
been successfully screened to date, even for conventional mark-
ers including PD-L1, TMB/TNB, and CD8+ TILs. Given the benefits 
provided by anti-PD-1 or anti-PD-L1 Abs, the evaluation of poten-
tial biomarkers adopting multifaceted scores, such as a data com-
bination on TILs, PD-L1, and TMB plus other factors, integrated 
across multiple tumor histologies, might guide future treatments.2,44 
Interestingly, in our study, cluster 1 had higher smoking-related S4 
mutations, higher TMB/TNB, higher PDL-1 and CD8 expressions, 
and lower intratumor heterogeneity, FGA, and genome instability, 
suggesting cluster 1 patients might be the most appropriate sub-
population for immunotherapy. However, several immune-related 
negative genes were also enriched in cluster 1, which warrants the 
prediction of immunotherapy benefits by immune-related markers 
and genetic background incorporation. Moreover, prospective clini-
cal trials should be carried out in the future to verify our inferences.

Overall, we undertook an unprecedentedly large study using 
WES to identify three different SCLC subtypes, which could trigger 
the development of rational treatments for SCLC patients. One lim-
itation is the lack of in vitro and in vivo data supporting the rationale 
of the classification in the current study, which could possibly be 
carried out in our future studies. Additionally, we intend to clarify 
the differences in the immune microenvironment among the three 
SCLC subtypes, analyze the correlation between the previously pub-
lished four genotypes based on the transcriptome and our subtypes, 
and undertake prospective umbrella clinical studies considering 
the subtypes described in our current study or target stratification. 
Meanwhile, the high TMB and gene alterations identified were not 
saturated in the SCH cohort (Figure S7). This suggested that further 
genomic sequencing on larger SCLC populations is required to di-
rect an in-depth understanding of SCLC genomic features and reveal 
other therapeutic vulnerabilities for drug exploration.
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