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Abstract
Many studies evaluating methylmercury (MeHg) toxicity rely on whole blood total mercury (THg) measurements to esti-
mate MeHg exposure. However, whole blood THg includes other forms of mercury (Hg), such as inorganic Hg, which have 
different exposure sources and toxicological effects than MeHg. Therefore, estimating the whole blood MeHg/THg ratio is 
critical to predicting MeHg exposure and, subsequently, efforts to establish an exposure–response relationship for use in risk 
assessment. A large, representative dataset (National Health and Nutrition Examination Survey (NHANES) 2011–2016) 
was used to determine the whole blood MeHg/THg ratio among (a) self-reported fish and shellfish consumers, ≥ 15 years 
of age (the “full adult” population (N = 5268 training dataset; N = 2336 test dataset)) and (b) female fish and shellfish con-
sumers, 15–44 years of age (the “women of reproductive age” population (N = 1285 training dataset; N = 560 test dataset)). 
Unadjusted and adjusted linear and spline models with direct measurements for both THg and MeHg were evaluated. The 
mean whole blood MeHg/THg ratio was 0.75 (95% confidence interval (CI): 0.74, 0.75). This ratio was significantly higher 
among those with higher THg concentrations. All models exhibited excellent fit (adjusted R2 from 0.957 to 0.982). Perfor-
mance was slightly improved in spline versus linear models. For the full adult population and women of reproductive age, 
the unadjusted spline model predicted whole blood MeHg concentrations of 5.65 µg/L and 5.55 µg/L, respectively, when 
the THg concentration was 5.80 µg/L. These results suggest that whole blood THg is a good predictor of whole blood MeHg 
among fish and shellfish consumers.
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Introduction

Mercury (Hg) is a naturally occurring heavy metal of great 
concern to public health. Ample research has demonstrated 
that exposure to various forms of Hg is associated with 
impaired neurodevelopment [1–3], nervous system effects 
in adults [4–6], cardiovascular diseases [7, 8], and renal 
toxicity [9, 10]. Globally, the World Health Organization 
(WHO) has designated Hg as one of the ten most dangerous 
chemicals to public health [11].

The chemical form of Hg affects its environmental fate 
and transport, sources of exposure, and toxicity. Health 
concerns have been associated with exposure to elemental 
Hg (Hg vapor) [5, 12], inorganic Hg [10, 13], and methyl-
mercury (MeHg) [14, 15]. However, exposure to MeHg is a 
particular public health concern due to its well-documented 
neurotoxicity, particularly among children [14, 15]. Addi-
tionally, MeHg is the most common form of Hg to which 
humans are exposed [16], and a substantial proportion of the 
US population is likely exposed to MeHg at concentrations 
above recommended limits [17].

Consequently, regulatory agencies have developed guide-
lines specific to MeHg, including a reference dose by the US 
Environmental Protection Agency (US EPA) [18, 19]. The 
current reference dose, which is based on neurodevelopmen-
tal effects resulting from in utero exposure, is equivalent to 
a cord blood MeHg concentration of 5.80 µg/dL [19]. As 
it has been estimated that cord whole blood MeHg is 1.7 
times higher than maternal whole blood [20], this would 
be equivalent to a maternal whole1 blood MeHg concen-
tration of 3.40 µg/dL. However, the technology to meas-
ure MeHg and other specific forms of Hg directly has not 
been widely available and is expensive. Because MeHg was 
demonstrated to comprise approximately 90% of blood total 
mercury (THg) [16], the use of blood THg concentrations 
as a proxy for blood MeHg has been recommended [16, 21]. 
As a result, many research studies that evaluate the toxicity 
of MeHg have utilized measurements of blood THg, which 

includes MeHg as well as all forms of mercury, to estimate 
MeHg exposure.

More recent studies have suggested that the percentage 
of blood THg comprising MeHg may be highly variable as 
well as lower than previously estimated [22], with some 
results only reaching 61–63% [23]. This has led to concern 
that measuring THg, instead of MeHg, may result in expo-
sure misclassification in which MeHg exposure is overes-
timated, leading to inexact estimations of its health effects 
[24, 25]. Thus, this poses a challenge for risk assessors, as 
it is unclear how to use the numerous studies that rely on 
measurements of blood THg in an exposure–response analy-
sis for MeHg. Therefore, a model was developed to deter-
mine the relationship between THg and MeHg in blood. This 
was accomplished using data from the National Health and 
Nutrition Examination Survey (NHANES), which includes 
a large nationally representative population and direct meas-
urements of both blood THg and MeHg. Although others 
have measured both THg and MeHg in blood, to the best 
of our knowledge, this manuscript presents the first model 
developed to predict blood MeHg based on blood THg 
measurements.

Methods

We used data from NHANES, a cross-sectional survey con-
ducted by the US Centers for Disease Control (CDC) of the 
non-institutionalized civilian US population in the 50 states 
and the District of Columbia. NHANES consists of a ques-
tionnaire and physical exam, during which blood samples 
are collected. At the time of analysis, directly measured THg 
and MeHg concentrations were available for NHANES data 
collected from 2011 to 2016. These were randomly divided 
into two datasets: one was used to create the prediction 
model, i.e., the “training” dataset, and the other was used to 
test the model, i.e., the “test” dataset. NHANES participants 
sign informed consent documentation prior to participation; 
NHANES operates under an approved protocol from the 
National Center for Health Statistics (NCHS) Ethics Review 
Board. More details about NHANES are available online at 
https:// www. cdc. gov/ nchs/ nhanes/ index. htm.

A study participant flowchart is presented in Supple-
mental Figure  S1. There were N = 29,902 participants 
in NHANES 2011–2016. N = 11,953 participants were 
excluded because they did not have THg and/or MeHg blood 
measurements. Of note is that, in 2011–2012, NHANES 
measured THg and MeHg for the entire population provid-
ing a blood sample, but starting in 2013, only a random 50% 
sample of the full population who provided blood had their 
samples analyzed for Hg. Participants with missing data on 
other model covariates (income, N = 1409; body mass index 
(BMI), N = 586; self-reported fish consumption, N = 178) 1 In the rest of the article, whole blood will be referred to as blood.
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were also excluded. As this analysis is heavily reliant on 
laboratory measurements of blood Hg, we excluded groups 
with a high rate of blood Hg concentrations below the detec-
tion limit: younger participants (< 15 years old; 33.5% of 
THg was < LOD) and non-fish or shellfish consumers (31.9% 
of THg was < LOD). N = 5323 participants were excluded 
because they were less than 15 years old, and N = 2,867 par-
ticipants were excluded because they did not report eating 
fish or shellfish within the past 30 days. This left a total of 
N = 7604 for analyses, referred to as the “full adult” popu-
lation. In addition, as much of the existing epidemiologic 
studies on Hg focuses on prenatal exposures, we were spe-
cifically interested in women of reproductive age. Thus, we 
also created models within the subset of female fish and 
shellfish consumers who were of reproductive age (15 to 
44 years, N = 1845), referred to as the “women of repro-
ductive age” population. Two-thirds of this population was 
randomly selected to be in the training dataset (N = 5268 full 
adult, N = 1285 women of reproductive age) and the remain-
der were included in the test dataset (N = 2336 full adult, 
N = 560 women of reproductive age).

Blood samples were collected by trained phlebotomists 
using metal-free containers. Samples were frozen (− 30° C) 
until shipment to the US CDC. They were transferred to the 
US CDC Division of Laboratory Sciences (Atlanta, Geor-
gia) within the National Center for Environmental Health for 
Hg determination. All quality assurance and quality control 
protocols for Hg assessment meet the 1988 Clinical Labo-
ratory Improvement Act mandates [26, 27]. Other than the 
change in the limit of detection for THg (described below), 
the laboratory procedures did not change over time.

Blood THg was determined using quadrupole inductively 
coupled plasma mass spectrometry (ICP-MS) (ELAN DRC 
II; PerkinElmer, Norwalk, CT, USA). This method detects 
the mass-to-charge ratio for each ion in the sample, which 
is used to determine the element and its concentration. The 
limit of detection (LOD) for blood THg was 0.16 µg/L in 
2011–2012 and 0.28 in 2013–2016. To ensure that this did 
not cause any bias in our analysis, a uniform LOD (0.28) was 
applied to all THg samples; this affected 163/5268 meas-
urements, or 3.1% of the full population training dataset. 
Values < LOD were replaced with LOD/√(2) for analyses. 
In the training dataset, there were 407/5268 (7.7%) val-
ues < LOD (full adult) and 121/1825 (9.4%) values < LOD 
(women of reproductive age). Corresponding values for the 
test dataset were 172/2336 (7.4%) (full adult) and 58/560 
(10.4%) (women of reproductive age).

MeHg concentration was determined using a triple spike 
isotope dilution (TSID) method; gas chromatography (GC) 
(Clarus 500; PerkinElmer, Norwalk, CT, USA) was used 
to separate Hg forms. This was followed by inductively 
coupled plasma dynamic reaction cell mass spectrometry 
(ICP-DRC-MS) (NexION 300D; PerkinElmer, Norwalk, 

CT, USA) for quantification. Hg forms in blood were meas-
ured using stannous chloride as a reductant. This method 
has a MeHg LOD of 0.12 µg/L; this did not change over 
the time period included in this analysis. Similar to THg, 
values < LOD were replaced with LOD/√(2). In the training 
dataset, there were 351/5268 (6.7%) values < LOD for MeHg 
(full adult) and 104/1285 (8.1%) values < LOD (women of 
reproductive age). Corresponding values for the test data-
set were 129/2336 (5.5%) (full adult) and 37/560 (6.6%) 
(women of reproductive age).

Demographic data (age, sex, fish and shellfish consump-
tion, race/ethnicity, income) were obtained via question-
naire. Categories used for race/ethnicity were non-Hispanic 
white, non-Hispanic black, Hispanic (indicated as “Mexi-
can–American” or “Other Hispanic”), Asian, and mixed 
race/other. Income was defined as annual household income. 
Weight and height were collected at the physical examina-
tion. BMI was calculated as weight (kg) / (height (m))2 and 
classified as normal or underweight (BMI < 25), overweight 
(BMI 25 to 29.9), and obese (BMI ≥ 30).

Stata 13.0 (College Station, TX, USA) was used for sta-
tistical analyses; a p value of 0.05 was considered to be sta-
tistically significant, using Pearson or Wald Chi-square tests 
as appropriate. The training dataset was used to create a 
model which would predict MeHg concentrations. NHANES 
is designed to obtain a representative sample of the USA; the 
use of appropriate survey weights and analytic methods is 
needed to obtain statistical results that reflect this representa-
tive sampling. However, as the goal for this analysis is not to 
describe the prevalence of MeHg within the US population 
and not all model development statistics are readily applied 
to survey data, survey weights and analytic methods were 
not used in this analysis. This could affect the variance of 
some variables; it also means that the population included 
in the analysis does not reflect a representative sample of 
the USA.

We explored the relationship between MeHg and THg 
blood concentrations. Both were approximately lognormally 
distributed; thus, central tendencies are reported using geo-
metric means and log scales are used in some figures. Sev-
eral unadjusted models with blood THg as the independent 
variable and blood MeHg as the dependent variable were 
created to explore model fit, including linear, linear with 
natural-log transformations for MeHg and/or THg, spline, 
and cubic spline models. We evaluated model fit using 
model R2, mean squared error (MSE), Akaike’s Informa-
tion Criterion (AIC), Bayesian Information Criterion (BIC), 
residuals, leverage, residual versus fitted (RVF) plots, and 
leverage versus squared residual (LVR2) plots. Model 
covariates were selected based on preliminary evaluation 
of their associations with blood MeHg and THg; addition-
ally, these are commonly used covariates which have been 
reported to be associated with MeHg and THg in other 
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studies. Specifically, associations of the MeHg/THg ratio 
have been reported with age [28, 29], sex [22], race/ethnicity 
[28], and fish and shellfish consumption [29]. Model covari-
ates included age (continuous), sex (binary), race/ethnicity 
(categorical), income (categorical), and BMI (categorical). 
Model fit statistics described above were used to evaluate 
model fit. These models were also used to predict blood 
MeHg concentrations using the test dataset.

Results

Unadjusted models were created for linear, linear with 
natural-log transformations for MeHg and/or THg, spline, 
and cubic spline models. The natural-log transformed mod-
els had the poorest fit and were therefore not considered 

in detailed analyses (data not shown). The spline models, 
including the cubic spline, were roughly similar, so the best 
fitting spline model, with a knot at 1 µg/L THg, was used in 
further analyses along with the linear model.

Demographic characteristics are shown in Table 1. Across 
both the training and test datasets, the mean age is 46.3 (95% 
confidence interval (CI): 45.9, 46.7) (full adult) and 29.3 
(95% CI: 28.9, 29.7) (women of reproductive age). A major-
ity of participants are non-Hispanic white, have household 
incomes greater than $45,000, and are classified as over-
weight or obese. Women of reproductive age in the train-
ing dataset had a statistically significant higher income than 
women in the test datasets; however, this did not appear to 
substantially influence results.

Average blood Hg concentrations and the MeHg/THg 
ratio are presented in Table 2. Across both the training and 

Table 1  Population 
characteristics among fish and 
shellfish consumers, NHANES 
2011–2016

Full: ≥ 15  years old; Reproductive: women 15 to 44  years old. NHANES, National Health and Nutrition 
Examination Survey; NH, non-Hispanic. Values are percent (95% confidence interval). Pearson’s chi-
square test is used to compare training versus test datasets; bold type indicates p < 0.05

Full adult population Women of reproductive age

Training dataset Test dataset p Training dataset Test dataset p

N 5268 2336 1285 560
Age

  15–29 1272 (24.2) 568 (24.3) 644 (50.1) 283 (50.5)
  30–44 1241 (23.6) 534 (22.9) 641 (49.9) 277 (49.5) 0.869
  45–59 1220 (23.2) 535 (22.9) – –
  60 + 1535 (29.1) 699 (29.9) 0.863 – –

Sex
  Female 2704 (51.3) 1177 (50.4) – –
  Male 2564 (48.7) 1159 (49.6) 0.448 – –

Race/ethnicity
  NH white 1965 (37.3) 922 (39.5) 377 (29.3) 176 (31.4)
  NH black 1300 (24.7) 537 (23.0) 337 (26.2) 132 (23.6)
  Hispanic 1176 (22.3) 538 (23.0) 341 (26.5) 152 (27.1)
  NH Asian 637 (12.1) 273 (11.7) 176 (13.7) 82 (14.6)
  Multiracial/other 190 (3.6) 66 (2.8) 0.115 54 (4.2) 18 (3.2) 0.570

Household income
   < $20,000 1060 (20.1) 518 (22.2) 229 (17.8) 132 (23.6)
  $20,000 to $44,999 1587 (30.1) 678 (29.0) 397 (30.9) 163 (29.1)
  $45,000 to $74,999 1029 (19.5) 441 (18.9) 268 (20.9) 105 (18.8)
   ≥ $75,000 1592 (30.2) 699 (29.9) 0.226 391 (30.4) 160 (28.6) 0.040

Body mass index
   < 25 kg/m2 1732 (32.9) 747 (32.0) 537 (41.8) 226 (40.4)
  25 to 29.9 kg/m2 1619 (30.7) 739 (31.6) 299 (23.3) 137 (24.5)
   ≥ 30 kg/m2 1917 (36.4) 850 (36.4) 0.661 449 (34.9) 197 (35.2) 0.804

No. of seafood meals/30 days
  1 to 2 meals 1736 (33.0) 760 (32.5) 472 (36.7) 198 (35.4)
  3 meals 605 (11.5) 309 (13.2) 161 (12.5) 80 (14.3)
  4 to 7 meals 1527 (29.0) 670 (28.7) 325 (25.3) 149 (26.6)
   ≥ 8 meals 1400 (26.6) 597 (25.6) 0.182 327 (25.5) 133 (23.8) 0.607
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test datasets, the geometric mean (95% CI) was 0.99 µg/L 
(0.97, 1.01) for THg and 0.74 µg/L (0.72, 0.76) for MeHg; 
mean (95% CI) MeHg/THg was 0.80 (0.79, 0.80). There 
were no statistically significant differences in these values 
in the training versus test datasets. The relationship between 
MeHg and THg was visually displayed using nonparametric 
lowess plots (Supplementary Information, Figure S2) and 
box plots of the MeHg/THg ratio by quartile of THg (Fig. 1). 
The MeHg/THg ratio was significantly higher among those 
with higher THg concentrations: the average MeHg/THg 
ratio was 0.65 for those in the lowest quintile of THg but 
was 0.94 for those in the highest quintile of THg (Fig. 1).

Average blood Hg concentrations and the MeHg/THg 
ratio stratified by demographic characteristics are presented 
in Table 3. THg and MeHg blood concentrations were signif-
icantly higher among those of older age, men, non-Hispanic 
Asians, non-Hispanic blacks (full adult population only), 
participants with a higher household income, and partic-
ipants with a lower BMI. The MeHg/THg ratio was also 
higher among these groups.

Regression model results using the training dataset to 
predict blood MeHg are presented in Tables S1 and S2. In 
the unadjusted linear model among the full adult population, 
the β coefficient for THg was 1.01 (95% CI: 1.00, 1.01). In 
unadjusted spline models among the full adult population, 
the β coefficient for THg values ≤ 1 µg/L was 0.88 (95% CI: 
0.85, 0.91), and β for THg > 1 µg/L was 1.01 (95% CI: 1.01, 
1.02). β coefficients for THg were not substantially affected 
by the population or adjustment for additional covariates; all 
THg coefficients were statistically significant. In adjusted 
models, other coefficients which were statistically signifi-
cant included age (women of reproductive age only), sex 
(full adult only), Hispanic (vs. non-Hispanic white, women 
of reproductive age only), Asian (vs. non-Hispanic white, 
full adult only) and non-Hispanic black (vs. non-Hispanic 
white, full adult only), income (women of reproductive age 
only), and obese (vs. normal weight, full adult only). An 
increase in blood THg at low concentrations (≤ 1 µg/L) was 
associated with a significantly smaller increase in estimated 
blood MeHg (β: 0.88, 95% CI: 0.85, 0.91) compared to an 

increase in THg at higher concentrations (> 1 µg/L) (β: 1.01, 
95% CI: 1.01, 1.02).

Indicators of model fit for the training dataset are shown 
in Table 4 and Figures S3 to S6 (Supplementary Informa-
tion). These were very similar across the different models, 
and overall indicated a very good model fit. R2 values for 
models among the full adult population, rounded to three 
decimal places, were 0.982, and ranged from 0.957 to 0.959 
for the women of reproductive age population. Median 
model residuals ranged from 0.02 µg/L (interquartile range 
(IQR): − 0.07, 0.12) in the unadjusted spline model for 
the women of reproductive age population to 0.04 µg/L 
(IQR: − 0.09, 0.12) in the unadjusted linear model for the 
full adult population.

The linear THg and spline THg models were then used to 
predict MeHg using the test dataset; model fit statistics are 
presented in Table 5 and Figures S7 to S10 (Supplementary 
Information). Overall, these also suggested excellent model 
fit. Median model residuals ranged from 0.02 (interquartile 
range (IQR): − 0.09, 0.12) in the spline models among the 

Table 2  Whole blood mercury 
concentrations, fish and 
shellfish consumers, NHANES 
2011–2016

Full: ≥ 15  years old; Reproductive: women 15 to 44  years old. NHANES, National Health and Nutrition 
Examination Survey; THg, total mercury; MeHg, methylmercury. Values for THg and MeHg are geometric 
mean (95% confidence interval); values for MeHg/THg are mean (95% confidence interval). p values are a 
comparison of training versus test datasets using a Wald test

Full adult population Women of reproductive age

Training dataset Test dataset p Training dataset Test dataset p

N, all 5268 2336 1285 560
THg, µg/L 0.99 (0.97, 1.02) 0.99 (0.95, 1.03) 0.975 0.84 (0.80, 0.88) 0.83 (0.77, 0.90) 0.870
MeHg, µg/L 0.74 (0.71, 0.76) 0.74 (0.71, 0.78) 0.922 0.59 (0.56, 0.63) 0.61 (0.55, 0.67) 0.740
MeHg/THg 0.75 (0.74, 0.75) 0.75 (0.74, 0.76) 0.495 0.71 (0.69, 0.73) 0.73 (0.70, 0.75) 0.292

Fig. 1  Boxplots displaying the distribution of methylmercury/total 
mercury (y-axis) by quintile of total mercury (x-axis) among fish and 
shellfish consumers at least 15  years of age (full adult population) 
from the training dataset, N = 5268
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Table 3  Total and methylmercury concentrations by selected covariates, fish and shellfish consumers, NHANES 2011–2016

Full: ≥ 15 years old; Reproductive: women 15 to 44 years old. Data include both training and test datasets. Statistical tests were Wald tests to 
determine whether there was a significant difference in mercury concentration compared to the referent group. Bold type: Wald test p < 0.05. 
Italic type: p < 0.10. aReferent

Variable Full adult population (n = 7604) Women of reproductive age (n = 1845)

THg MeHg MeHg/THg THg MeHg MeHg/THg

Age
  15–29 a 0.76 (0.73, 0.79) 0.56 (0.53, 0.59) 0.79 (0.78, 0.81) 0.75 (0.71, 0.80) 0.54 (0.50, 0.58) 0.78 (0.76, 0.80)
  30–44 0.98 (0.94, 1.03) 0.73 (0.69, 0.77) 0.79 (0.78, 0.80) 0.93 (0.88, 0.99) 0.66 (0.61, 0.71) 0.76 (0.75, 0.78)
  45–59 1.21 (1.15, 1.26) 0.92 (0.86, 0.97) 0.81 (0.80, 0.82) – – –
  60 + 1.06 (1.02, 1.10) 0.79 (0.75, 0.83) 0.80 (0.79, 0.81) – – –

Sex
  Female a 0.96 (0.93, 0.99) 0.69 (0.67, 0.72) 0.78 (0.77, 0.79) – – –
  Male 1.02 (0.99, 1.06) 0.79 (0.76, 0.82) 0.82 (0.81, 0.82) – – –

Race/ethnicity
  NH white a 0.86 (0.83, 0.89) 0.61 (0.58, 0.64) 0.77 (0.76, 0.78) 0.73 (0.67, 0.78) 0.51 (0.46, 0.56) 0.76 (0.74, 0.78)
  NH black 0.92 (0.88, 0.95) 0.72 (0.69, 0.75) 0.82 (0.81, 0.83) 0.75 (0.69, 0.81) 0.54 (0.49, 0.59) 0.77 (0.75, 0.79)
  Hispanic 0.82 (0.79, 0.86) 0.57 (0.55, 0.60) 0.75 (0.74, 0.77) 0.69 (0.65, 0.74) 0.45 (0.42, 0.50) 0.72 (0.70, 0.74)
  NH Asian 2.61 (2.46, 2.78) 2.36 (2.20, 2.54) 0.93 (0.92, 0.94) 2.01 (1.79, 2.25) 1.73 (1.51, 1.99) 0.90 (0.87, 0.92)
  Multiracial/other 0.92 (0.81, 1.04) 0.68 (0.58, 0.79) 0.79 (0.76, 0.81) 0.80 (0.64, 1.02) 0.56 (0.41, 0.75) 0.75 (0.69, 0.80)

Household income
   < $20,000 a 0.81 (0.77, 0.84) 0.57 (0.54, 0.61) 0.77 (0.76, 0.79) 0.71 (0.65, 0.77) 0.48 (0.43, 0.54) 0.75 (0.72, 0.78)
  $20,000 to $44,999 0.83 (0.80, 0.86) 0.60 (0.57, 0.63) 0.77 (0.76, 0.78) 0.70 (0.65, 0.74) 0.47 (0.43, 0.52) 0.74 (0.72, 0.76)
  $45,000 to $74,999 1.00 (0.95, 1.05) 0.74 (0.69, 0.78) 0.79 (0.78, 0.80) 0.81 (0.74, 0.88) 0.57 (0.50, 0.64) 0.76 (0.74, 0.79)
   ≥ $75,000 1.34 (1.29, 1.40) 1.08 (1.03, 1.13) 0.84 (0.83, 0.85) 1.16 (1.06, 1.26) 0.90 (0.82, 1.00) 0.83 (0.81, 0.85)

BMI
  Under/normal weight a 1.12 (1.07, 1.16) 0.86 (0.82, 0.91) 0.82 (0.81, 0.83) 0.97 (0.90, 1.04) 0.72 (0.65, 0.78) 0.80 (0.78, 0.81)
  Overweight 1.03 (0.99, 1.07) 0.77 (0.73, 0.81) 0.80 (0.79, 0.81) 0.84 (0.77, 0.91) 0.61 (0.55, 0.67) 0.78 (0.76, 0.80)
  Obese 0.86 (0.84, 0.89) 0.62 (0.59, 0.64) 0.77 (0.76, 0.78) 0.70 (0.66, 0.75) 0.48 (0.44, 0.52) 0.74 (0.72, 0.76)

Table 4  Model performance indicators, fish and shellfish consumers, training dataset

MeHg, methylmercury; MSE, mean squared error; AIC, Akaike’s information criterion; BIC, Bayesian Information Criterion
a Median (interquartile range) in μg/L
b Full: ≥ 15 years old, N = 5268. Median (interquartile range) for measured MeHg is 0.71 (0.32, 1.68)
c Reproductive: women 15 to 44 years old, N = 1285. Median (interquartile range) for measured MeHg is 0.55 (0.27, 1.32)

Model Adj. R2 Root MSE AIC BIC Predicted MeHg a Residual a Leverage × 1000 a

Full adult  populationb

Linear
  Unadjusted 0.982 0.318 2883 2896 0.74 (0.34, 1.70) 0.04 (− 0.09, 0.12) 0.23 (0.20, 0.25)
  Adjusted 0.982 0.316 2837 2922 0.74 (0.33, 1.70) 0.03 (− 0.08, 0.12) 2.15 (1.90 2.47)

Spline
  Unadjusted 0.982 0.316 2826 2845 0.71 (0.36, 1.67) 0.02 (− 0.09, 0.12) 0.38 (0.33, 0.48)
  Adjusted 0.982 0.314 2768 2860 0.71 (0.35, 1.67) 0.02 (− 0.09, 0.11) 2.33 (2.06, 2.70)

Women of reproductive  agec

Linear
  Unadjusted 0.957 0.347 928 938 0.60 (0.29, 1.34) 0.03 (− 0.07, 0.11) 0.97 (0.85, 1.09)
  Adjusted 0.959 0.342 904 965 0.60 (0.27, 1.32) 0.03 (− 0.08, 0.12) 8.15 (7.16, 9.54)

Spline
  Unadjusted 0.958 0.346 922 938 0.59 (0.31, 1.31) 0.02 (− 0.07, 0.12) 1.72 (1.27, 2.16)
  Adjusted 0.959 0.341 897 964 0.59 (0.29, 1.30) 0.02 (− 0.08, 0.12) 8.98 (7.87, 10.36)
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full adult population to 0.03 (IQR: − 0.09, 0.12) in the linear 
model among the full adult population.

Estimated MeHg for selected values for THg using this 
unadjusted spline model are presented in Table S3 (Sup-
plementary Information). For a THg blood concentration of 
3.40 µg/L, the predicted blood MeHg concentration would 
be 3.22 µg/L among the full adult population and 3.18 µg/L 
among women of reproductive age. Corresponding values 
for a blood THg concentration of 5.80 µg/L are blood MeHg 
concentrations of 5.65 µg/L and 5.55 µg/L, respectively, for 
the full adult population and the women of reproductive age 
population.

Discussion

This analysis used a representative sample of the adult popu-
lation of fish and shellfish consumers and a subset of women 
of reproductive ages from the USA to develop and test a 
model which would predict blood MeHg concentrations 
using blood THg concentrations. After testing several mod-
els, we selected the unadjusted spline model for prediction 
of MeHg: its performance is excellent, and due to its relative 
simplicity, it can be applied even when a limited amount of 
data from the original study is available.

Although we are not aware of other models that estimate 
blood MeHg based on blood THg, several investigators have 
reported on a key parameter influencing this model: the 
MeHg/THg ratio. This analysis of the training dataset found 
that the average blood MeHg/THg ratio was 0.75 (Table 2). 
This is similar to reported values: 0.69 to 0.85 from other 
analyses of NHANES data [28, 30]; 0.63 from pregnant 
women in North Carolina [23]; 0.52 to 0.88 from popula-
tions in Europe [24, 31–34]; 0.86 from pregnant women 

in Suriname [35]; 0.72 to 0.93 from populations in Asia 
[22, 29, 36]; and 0.91 among newcomers to Canada [37]. 
Although the exact reason for the variation across popula-
tions is not known, it is possible this is related to differences 
in demographics or diet. Across both datasets, significant 
associations were observed between the MeHg/THg ratio 
and sex, race/ethnicity, income, BMI, and fish and shellfish 
consumption (Table 3).

In this analysis, the MeHg/THg ratio was higher among 
those with higher THg concentrations. This positive corre-
lation of the MeHg/THg ratio with THg concentration has 
also been observed in several prior studies [23, 24, 29, 38]. 
Interestingly, two studies have also reported negative cor-
relations [22, 23]. However, these might be explained by 
differences in study design (measurement in late pregnancy) 
[23] or population (substantially higher THg concentrations) 
[22]. Among those with lower THg exposure, there may be a 
higher proportion of elemental or inorganic Hg from sources 
such as dental amalgams or some foods [24, 39].

This analysis has a few limitations. First, the detec-
tion limit for THg in several NHANES cycles was high 
(0.28 µg/L). Due to this, some groups with lower THg 
exposure (children and those who do not consume fish or 
shellfish) were not included in this analysis. Additionally, 
estimates for blood MeHg for those with lower THg con-
centrations within our model may not be as precise as the 
estimates for those with higher THg exposure. Second, as 
we did not use survey weights in our analysis, our results 
cannot be assumed to reflect a representative sample of the 
US population. However, as the dataset was large, we feel 
that results are still robust.

There are also several strengths of this analysis. These 
results are likely to be of great use to risk assessors who 
need to synthesize data from studies on health risks related 

Table 5  Model performance 
indicators, fish and shellfish 
consumers, test dataset

Full: ≥ 15 years old; Reproductive: women 15 to 44 years old. aMedian (interquartile range) in µg/L

Population and model Measured  MeHga Predicted  MeHga Residuala Leverage ×  1000a

Full adult population (n = 2336)
Linear

  Unadjusted 0.70 (0.33, 1.61) 0.72 (0.34, 1.63) 0.03 (− 0.09, 0.12) 0.23 (0.20, 0.25)
  Adjusted 0.70 (0.33, 1.61) 0.72 (0.33, 1.64) 0.03 (− 0.09, 0.12) 2.13 (1.90, 2.45)

Spline
  Unadjusted 0.70 (0.33, 1.61) 0.69 (0.36, 1.60) 0.02 (− 0.09, 0.12) 0.39 (0.33, 0.47)
  Adjusted 0.70 (0.33, 1.61) 0.70 (0.36, 1.61) 0.02 (− 0.09, 0.12) 2.33 (2.05, 2.69)

Women of reproductive age (N = 560)
Linear

  Unadjusted 0.58 (0.27, 1.29) 0.56 (0.27, 1.31) 0.03 (− 0.07, 0.11) 0.96 (0.85, 1.09)
  Adjusted 0.58 (0.27, 1.29) 0.59 (0.26, 1.29) 0.02 (− 0.07, 0.13) 8.15 (7.16, 9.51)

Spline
  Unadjusted 0.58 (0.27, 1.29) 0.55 (0.29, 1.28) 0.03 (− 0.07, 0.12) 1.69 (1.27, 2.15)
  Adjusted 0.58 (0.27, 1.29) 0.57 (0.29, 1.26) 0.02 (− 0.07, 0.12) 8.87 (7.84, 10.34)
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to blood THg instead of blood MeHg. They are also consist-
ent with the prior literature which compared blood THg to 
blood MeHg concentrations. Additionally, we present results 
specific to women of reproductive age, the demographic 
group commonly included in studies of the health effects of 
MeHg exposure.

Conclusions

This manuscript describes the development of the first 
model, of which we are aware, that predicts whole blood 
MeHg based on whole blood THg. For studies evaluating 
MeHg toxicity that rely only on blood THg, this model can 
be used to convert blood THg concentrations to blood MeHg 
concentrations, and, therefore, to provide accurate estimates 
of exposure to MeHg.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12011- 021- 02968-9.
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