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Gβγ-mediated activation of protein kinase D
exhibits subunit specificity and requires
Gβγ-responsive phospholipase Cβ isoforms
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Abstract

Background: Protein kinase D (PKD) constitutes a novel family of serine/threonine protein kinases implicated in
fundamental biological activities including cell proliferation, survival, migration, and immune responses. Activation
of PKD in these cellular activities has been linked to many extracellular signals acting through antigen receptor
engagement, receptor tyrosine kinases, as well as G protein-coupled receptors. In the latter case, it is generally
believed that the Gα subunits of the Gq family are highly effective in mediating PKD activation, whereas little is
known with regard to the ability of Gβγ dimers and other Gα subunits to stimulate PKD. It has been suggested that
the interaction between Gβγ and the PH domain of PKD, or the Gβγ-induced PLCβ/PKC activity is critical for the
induction of PKD activation. However, the relative contribution of these two apparently independent events to
Gβγ-mediated PKD activation has yet to be addressed.

Results: In this report, we demonstrate that among various members in the four G protein families, only the Gα
subunits of the Gq family effectively activate all the three PKD isoforms (PKD1/2/3), while Gα subunits of other G
protein families (Gs, Gi, and G12) are ineffective. Though the Gα subunits of Gi family are unable to stimulate PKD,
receptors linked to Gi proteins are capable of triggering PKD activation in cell lines endogenously expressing
(HeLa cells and Jurkat T-cells) or exogenously transfected with (HEK293 cells) Gβγ-sensitive PLCβ2/3 isoforms. This
indicates that the Gi-mediated PKD activation is dependent on the released Gβγ dimers upon stimulation. Further
investigation on individual Gβγ combinations (i.e. Gβ1 with Gγ1–13) revealed that, even if they can stimulate the
PLCβ activity in a comparable manner, only those Gβ1γ dimers with γ2, γ3, γ4, γ5, γ7, and γ10 can serve as effective
activators of PKD. We also demonstrated that Gi-mediated PKD activation is essential for the SDF-1α-induced
chemotaxis on Jurkat T-cells.

Conclusions: Our current report illustrates that Gβγ dimers from the Gi proteins may activate PKD in a PLCβ2/3-
dependent manner, and the specific identities of Gγ components within Gβγ dimers may determine this
stimulatory action.
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Background
Protein kinase D (PKD) constitutes a novel family of
diacylglycerol (DAG)-responsive serine/threonine pro-
tein kinases with different structural, enzymological and
regulatory properties from the protein kinase C (PKC)
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family members [1-3]. To date, three members of the
PKD family have been identified: human PKD1 (its
mouse ortholog being PKCμ), and the more recently
identified PKD2 and PKD3 (also named PKCν), among
which PKD1 is the most extensively characterized iso-
form. Emerging studies have revealed that PKDs are
implicated in a complex array of fundamental biological
activities, including cell survival [4], migration [5], proli-
feration [6], and immune responses [7]. In addition,
growing evidence links PKDs to signal transduction
pathways in tumor development and cancer progression.
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In many cases, specific PKD isoforms are dysregulated
in cancer cells [8].
All PKDs share a common modular structure, with a

tandem repeat of zinc finger-like cysteine-rich motifs at
their NH2 termini that display high affinity for DAG or
phorbol ester, a pleckstrin homology domain (PH do-
main) for negative regulation of kinase activity [9], and
a C-terminal catalytic domain containing transphos-
phorylation and autophosphorylation sites. Activation of
PKD isoforms is generally attributed to phosphorylation
at a pair of highly conserved serine residues (for human:
Ser738 and Ser742 in PKD1; Ser706 and Ser710 in PKD2;
Ser731 and Ser735 in PKD3) in the activation loop of the
kinase domain by PKC. As PKC can be activated by
many extracellular signals, stimulation of PKD isoforms
has been demonstrated by antigen receptor engagement
[10], stimulation of receptor tyrosine kinases (RTKs)
such as platelet-derived growth factors (PDGF) receptors
[11] and vascular endothelial growth factor (VEGF) re-
ceptors [12], as well as activation of various G protein-
coupled receptors (GPCRs). Among the large GPCR
family, receptors with preferential coupling to Gq, in-
cluding those responsive to bombesin, vasopressin,
endothelin, bradykinin [13], cholecystokinin [14], tachy-
kinin [15] and angiotensin II have been demonstrated to
activate PKD in a variety of cell types. Other G protein
members like G12 and G13 have also been proposed to
activate PKD3 in a PKC- and Rac-dependent manner
[16]. In addition, it has been reported that Gq, Gi and
G12/13 may cooperate in LPA-induced PKD activation
[17], but the relative contribution of specific G protein
subunits (e.g. Gαi versus Gβγ) to PKD activation remains
undefined.
The functional specificity of G proteins was originally

accredited to the Gα subunits, with the Gβγ dimers be-
ing viewed as negative regulators of G protein signaling.
Yet, there is growing evidence that Gβγ dimers can also
act as active mediators in signal transduction, thus con-
ferring an additional level of signal specificity [18-20].
The Gβ identity in the Gβγ dimer imparts selectivity on
its interaction with effectors like phospholipase Cβ [21],
as well as in the regulation of neutrophil function [22].
Moreover, since the Gγ component is structurally and
expression-wise diverse, it imposes additional complexity
in signal transduction. For instance, only certain Gβγ
combinations (mainly those containing γ2, γ4, γ7 or γ9)
are linked to significant STAT3 activation [23]. Func-
tional selectivity of Gγ subunits has also been reported
[24-26]; deletion of the Gng3 gene leads to increased
susceptibility to seizures in mice with significant reduc-
tions in Gβ2 and Gαi3 subunit levels in certain brain re-
gions [25], whereas knock-out of the Gng7 gene is
associated with reductions in the Gαolf subunit content
and adenylyl cyclase activity of the murine striatum [24].
These observations demonstrate that members of the
Gγ subunit family are not functionally interchangeable.
It has been suggested that the interaction between

Gβγ and the PH domain of PKD [27], or the Gβγ-
induced PLCβ/PKC activity is critical for the induction
of PKD activation [28].However, the relative contribu-
tion of these two apparently independent events to
Gβγ-mediated PKD activation has yet to be addressed.
Recently, Gβγ combinations containing Gγ2 (i.e. Gβ1γ2
and Gβ3γ2) have been shown to be effective activators
for PKD [29], but the relevant capabilities of other Gβγ
dimers remain unclear.
In this report, we demonstrated that all family mem-

bers of the Gq subfamily (Gq, G11, G14, and G16) can in-
duce PKD1, PKD2 and PKD3 activation. Gs cannot elicit
a PKD response, whereas Gi members may induce PKD
activation in a Gβγ-dependent manner. For the Gβγ-
induced PKD activation, even in the presence of PLCβ2
or PLCβ3, only certain Gβγ dimer combinations are cap-
able of activating the kinase effectively. Moreover, we
showed that this selective Gβγ dimer-mediated PKD ac-
tivation is accompanied by enhanced interaction be-
tween the two components when PLCβ2/3 is present.
Materials and methods
Materials
HEK293 and Jurkat T-cells were obtained from American
Type Culture Collection (Rockville, MD). Pertussis toxin
(PTX) was purchased from List Biological Laboratories
(Campbell, CA). Cell culture reagents including
Dulbecco’s phosphate-buffered saline (PBS), trypsin, fetal
bovine serum (FBS), penicillin-streptomycin mixture,
RPMI 1640 medium, minimum essential medium
(MEM), Dulbecco’s modified Eagle’s medium (DMEM)
and Lipofectamine PLUSTM were obtained from
Invitrogen (Carlsbad, CA). The cDNAs encoding PLCβ1,
PLCβ2 and PLCβ3 were obtained from Dr. Richard Ye
(University of Illinois at Chicago). Flag-tagged human
Gβ1 and Gβ2, HA-tagged human Gγ1, Gγ2, Gγ3, Gγ4,
Gγ5, Gγ7, Gγ8, Gγ9, Gγ10, Gγ11, Gγ12 and Gγ13 cDNA
constructs were obtained from UMR cDNA Resource
Center (Rolla, MO). Antiserum including anti-Flag and
anti-HA were purchased from Roche Molecular Bio-
chemicals (Indianapolis, IN). Cell culture reagents in-
cluding Lipofectamine PlusTM were obtained from
Invitrogen (Carlsbad, CA). Myo-[3H] inositol was pur-
chased from DuPont NEN (Boston, MA). M2 affinity
gels and protein A-agarose were obtained from Sigma
(St. Louis, MO). HA-PKD1 and FLAG-PKD2 con-
structs were gifts from Dr. J. Van Lint (Katholieke
Universiteit Leuven, Belgium), and Myc-PKD3 con-
structs were kindly provided by Dr. Q. J. Wang
(University of Pittsburgh, PA).
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Cell culture and transfection
HEK293 cells were cultured in MEM supplemented with
10% (v/v) FBS, 50 units/ml penicillin, and 50 μg/ml
streptomycin. Jurkat T-cells were cultured in RPMI1640
containing 10% (v/v) FBS. For PLC assays and co-
immunoprecipitation assays, HEK293 cells were seeded
at 60% confluency into 12-well plates or 6-well plates,
respectively. Transfection was performed on the follow-
ing day using Lipofectamine PLUSTM reagents. For the
establishment of stable cell lines (293/BK2R, 293/β2AR
and 293/fMLPR), exponentially growing HEK293 cells
were transfected with cDNA of BK2R, β2AR or fMLPR
in pcDNA3.1-zeo using Lipofectamine PLUSTM. The cells
were then selected with Zeocin (50 μg/mL). 293/fMLPR-
Gα16 cells were established by transient transfection of
293/fMLPR stable cell lines with Gα16 in pcDNA3.

In vitro PKD Assay
Twenty-four hours after transfection, HEK293 cells were
serum-starved overnight and then treated with 500 μl
(per well) of ice-cold detergent-containing lysis buffer
(50 mM Tris–HCl, pH 7.5, 100 mM NaCl, 5 mM EDTA,
40 mM Na4P2O7, 1% Triton X-100, 1 mM dithiothreitol,
200 μM Na3VO4, 100 μM phenylmethylsulfonyl fluoride,
2 μg/ml leupeptin, 4 μg/ml aprotinin, and 0.7 μg/ml
pepstatin). Lysates obtained were subjected to in vitro
PKD kinase assay. Fifty μl of each supernatant was used
for the detection of PKD isoform expression and stimu-
latory phosphorylation, and the remaining lysate (450 μl)
was incubated overnight at 4°C with specific affinity gels
to immune-precipitate the corresponding PKD isoform
(anti-HA for HA-PKD1; anti-FLAG for FLAG-PKD2;
and anti-Myc for Myc-PKD3). The resulting immuno-
precipitates were washed twice with lysis buffer and
twice with kinase assay buffer (30 mM Tris–HCl,
pH 7.4, 10 mM MgCl, and 1 mM DTT). Washed
immunoprecipitates were resuspended in 40 μl of
kinase assay buffer containing 2.5 mg/ml of Syntide-2
(PLARTLSVAGLPGKK), and the kinase reactions were
initiated by the addition of 10 μl of ATP buffer containing
1 μCi of [γ-32P]-ATP per sample. After 10-min incubation
at 30°C with occasional shaking, the reactions were termi-
nated by adding 100 μl of 75 mM H3PO4 and spotting
75 μl of the reaction mix onto P-81 phosphocellulose
paper. Free [γ-32P]-ATP was separated from the labelled
substrate by washing the P-81 paper four times (5 min
each) in 75 mM H3PO4. The papers were dried and the
radioactivity incorporated into Syntide-2 was determined
by scintillation counting.

Electroporation
The knock down of PKD1, PKD2 and PKD3 was
performed by introducing the corresponding PKD
isoform-specific siRNA from Invitrogen (Carlsbad, CA,
USA) using NucleofectorW Kit V from Lonza (Basel,
Switzerland). Briefly, 1×106 cells per sample were
resuspended in NucleofectorW Solution and supplement
provided at room temperature. siRNA against PKD1,
PKD2 or PKD3 (200 pmol each) was added to the sam-
ples and then electroporated using the NucleofectorW.
Electroporated cells were then incubated at room
temperature for 10 min before transferring them into
the 12-well plate with culture medium. The knock down
of PLCβ1, PLCβ2 and PLCβ3 was performed in similar
manner, with the corresponding isoform-specific siRNA
obtained from Santa Cruz Biotechnology (Santa Cruz,
CA, USA).
Western blotting analysis
Cells in 12-well plate were lysed in 300 μl of ice-cold
lysis buffer (50 mM Tris–HCl, pH 7.5, 100 mM NaCl,
5 mM EDTA, 40 mM NaP2O7, 1% Triton X-100, 1 mM
dithiothreitol, 200 μM Na3VO4, 100 μM phenyl-
methylsulfonyl fluoride, 2 μg/ml leupeptin, 4 μg/ml
aprotinin and 0.7 μg/ml pepstatin). Clarified lysates were
resolved on 1 μ2% SDS-polyacrylamide gels and then
transferred to nitrocellulose membranes (Westborough,
MA). Stimulatory phosphorylation of PKD1, PKD2,
ERK and CREB were detected by their corresponding
antisera and horseradish peroxidase-conjugated second-
ary antisera. The immunoblots were visualized by chemilu-
minescence with the ECL kit (Amersham Biosciences).
Antibodies sources are as follows: anti-phospho-PKD1-
Ser744/748, anti-phospho-PKD1-Ser916 (also recognize human
PKD1-Ser738/742 and Ser910, respectively), anti-phospho
-ERK-Thr202/Tyr204, anti-PKD1 were obtained from Cell Sig-
naling Technology (Beverly, MA). Anti-phospho-PKD2-
Ser876 and anti-PKD2 were purchased from R & D Systems
(Minneapolis, MN). Anti-PKD3 was obtained from Bethyl
Laboratories (Montgomery, TX).
Measurement of intracellular Ca2+ transient by FLIPRW

Jurkat T-cells were serum-starved overnight in the ab-
sence or presence of PTX (10 ng/ml) and then washed
with Hank’s balanced salt solution (HBSS). Washed cells
(1×106 cells/ml) were preloaded with Fluo-4 (AM)
followed by incubation at 37°C for 1 h. These labeled
cells were then transferred to a black-walled and clear-
bottomed 96-well plate (1×105 cells/well) placed in the
Fluorometric Imaging Plate Reader (FLIPR), and 50 μl of
HBSS (with or without agonists) was added to each well.
The resulting fluorescent signals that reflect the intracel-
lular Ca2+ transients were monitored by an excitation
wavelength of 488 nm and detection with the emission
wavelength from 510 to 570 nm.
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Co-immunoprecipitation assay
Transfected cells were lysed in the lysis buffer as de-
scribed before. Cell lysates were centrifuged (12000 g,
4°C, 5 min) to remove cellular debris. Lysates were incu-
bated at 4°C overnight with M2 affinity gels (20 μl/ sam-
ple) for the binding with Flag-tagged Gβ subunits. The
resulting immunoprecipitates were collected by centrifu-
gation at 1,000 g, 4°C, for 3 min and then washed three
times with 500 μl lysis buffer. Bound proteins were
eluted by 50 μl of lysis buffer and 10 μl of 6× SDS-
containing sample buffer, and boiled μfor 5 min prior to
separation by 12% SDS-polyacrylamide gel electrophor-
esis (PAGE). Flag-tagged Gβ, HA-tagged Gγ subunits,
PLCβ2 and PKD1 in the immunoprecipitates were
detected by their corresponding antisera followed with
horseradish peroxidase-conjugated secondary antisera in
Western blotting analysis.

Chemotactic assay
The chemotactic ability of Jurkat T cells was evaluated
using transwell plates (Costar, Cambridge, MA) with
polycarbonate inserts with 5-μm pores (Costar 3421).
Lower chambers were loaded with 600 μl of migration
media alone or containing SDF-1α at the concentration
of 100 nM. Cells (0.1 ml) at 1 × 106/ml were added to
the top chamber of a 24-well transwell (6.5-μm diameter,
5-μm pore size) and incubated for 4 h at 37°C. The cells
which passed through the membranes and migrated to
the lower chambers were quantified under microscopy.

Statistics
The values shown in each figure represent mean ± SEM
from at least three individual experiments. Statistical
analyses were performed by ANOVA, followed by the
Bonferroni’s post test. Differences with a value of
P < 0.05 were considered statistically significant.

Results
Previous studies on Gα subunit-induced activation of
PKD isoforms were primarily performed on the PKD1
prototype with Gαq [30,31], leaving the activation profile
of the PKD family rather incomplete. Most of these
studies employed aluminum tetrafluoride (AlF4

−) to elicit
G protein-mediated activation of PKD. Although AlF4

−

can selectively stimulate heterotrimeric G proteins over
monomeric GTPases [32,33], AlF4

− activates multiple
heterotrimeric G proteins simultaneously and thus can-
not be used to identify the specific G proteins involved
in the activation of PKD. On the basis of these consider-
ations, we aimed to firstly define the role of different Gα
subunits in promoting the activation of all three PKD
isoforms. We performed screening on Gα subunit-
mediated PKD1 phosphorylation. HEK293 cells were
transfected with wild-type (WT) or constitutively active
(RC/QL) Gα subunits (Gαq, Gα11, Gα14, Gα16, Gα12,
Gα13, Gαi1, Gαi2, Gαi3, Gαz and Gαs) and then assayed
for PKD phosphorylation by phospho-PKD-specific anti-
bodies. HEK293 cells have previously been shown to
express all three PKD isoforms [34].
The phosphorylation of a pair of highly conserved

serine residues in the activation loop (Ser738 and Ser742

in PKD1; Ser706 and Ser710 in PKD2; Ser731 and Ser735 in
PKD3) plays a crucial role in human PKD activity [35].
Some early studies on PKD targeted the autophosphoryl-
ation sites (Ser916 in PKD1 and Ser876 in PKD2) as sur-
rogate markers of mouse PKD activity, though a recent
report has demonstrated that this site is not required for
activation [36]. Therefore, anti-phospho-PKD1 Ser744/748

and Ser916 antibodies (also recognize human PKD1 at
Ser738/742 and Ser910, respectively) were both adopted for
the evaluation of PKD1 activation. As shown in Figure 1,
expression of WT Gα subunits did not induce significant
PKD1 phosphorylation as compared to the vector con-
trol, although expression of Gα11 or Gα14 slightly en-
hanced the basal PKD phosphorylation. Conversely,
prominent phosphorylation of PKD1 was observed in
cells expressing one of the constitutively active mutants
from the Gαq subfamily (Gαq, Gα11, Gα14, or Gα16).
Western blot analysis verified that the expression levels
of PKD1 were similar and that both WT and constitu-
tively active Gα subunits were expressed at comparable
levels (Figure 1). In contrast, there was no detectable
phosphorylation of PKD1 by constitutively active mu-
tants from Gi, Gs, or G12 subfamilies (Figure 1). This is
consistent with earlier studies demonstrating that the
constitutively active mutants of Gα12 and Gα13 did not
induce PKD activation in COS-7 cells [30].
To examine whether Gα subunits from the Gq sub-

family are all capable of inducing activation of all three
isoforms of PKD, HEK293/HA-PKD1, HEK293/FLAG-
PKD2 and HEK293/Myc-PKD3 stable cell lines were
established and then transiently transfected with WT or
the RC/QL mutants of Gα subunits (Gαq, Gα11, Gα14,
Gα16), followed by in vitro [32P]-kinase assays using
syntide-2 as an exogenous substrate for PKD. As shown
in Figure 2A, PKD isoforms isolated from all three stable
cell lines transfected with vector control or plasmids en-
coding the WT Gα subunits exhibited low catalytic ac-
tivity. In contrast, those immunoprecipitated from stable
cell lines overexpressing a constitutively active mutant
displayed marked increase in PKD kinase activity. Com-
parable expressions of Gα subunits and PKD isoforms in
the various transfectants were confirmed by Western
blot analyses (Figure 2B). We also examined the
phosphorylation of specific PKD isoforms in the
same samples. Since anti-phospho-PKD1738/742 exhibits
some cross-reactivity with PKD2 and PKD3, anti-
phospho-PKD1910 was also employed to detect PKD1
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phosphorylation. Likewise, anti-phospho-PKD2876 was
used for PKD2. As PKD3 lacks the phosphorylation site
equivalent to phospho-PKD1910, only the phosphoryl-
ation at PKD3731/735 was monitored. In agreement with
the results from the in vitro kinase assay, stimulatory
PKD phosphorylation for all three PKD isoforms was
enhanced in the presence of constitutively active Gα
mutants from the Gq subfamily (Figure 2B). Unlike
members of the Gq subfamily, constitutively active Gαi1
failed to stimulate the kinase activity of all three forms
of PKD (Figure 2A) or elevate their level of phosphory-
lation (Figure 2B). Similar results were obtained with
other members of the Gi (Gαi2, Gαi3, GαoA, Gαz, Gαt1,
and Gαt2), Gs (GαsL and Gαolf ) and G12 (G12 and G13)
families (Additional file 1: Figure S1 and Additional file 2:
Figure S2). Collectively, these results demonstrated that
PKD1, PKD2 and PKD3 can be specifically activated by
the constitutively active Gα subunits from the Gq family,
but not by those of Gi, Gs or G12 families.
The preceding experiments suggest that the Gα sub-

units from the Gq family contribute to elevated PKD
phosphorylation. To examine in more detail the stimula-
tion of PKD by G protein signaling, we tested different
Gq-, Gs- and Gi-coupled receptors for their ability to ac-
tivate PKD1 in HEK 293 cells. HEK293 cells were
transfected with the Gq-coupled bradykinin BK2 receptor
(Figure 3A), Gs-coupled β2-adrenergic receptor (Figure 3B)
or Gi-coupled fMLP receptor (Figure 3C), and the
transfectants subsequently examined for agonist-induced
PKD1 activation. Phosphorylation of CREB or ERK was
simultaneously monitored as positive controls of Gs- and
Gi-signaling, respectively. In line with the data in
Figures 1 and 2, only bradykinin (which stimulates the
Gq-coupled BK2 receptor) rapidly and potently stimu-
lated PKD1 phosphorylation (Figure 3A), while iso-
proterenol and fMLP failed to induce any detectable
PKD activation despite obvious phosphorylation of
CREB or ERK (Figure 3B and C). Since many Gi-coupled
receptors including the fMLP receptor are capable of
interacting with Gα16 [37], it is expected that co-
expression of Gα16 would turn on Gq-related signals,
thus allowing effective stimulation of PKD1 phosphoryl-
ation. As illustrated in Figure 3D, prominent fMLP-
induced PKD1 phosphorylations at both Ser738/742 and
Ser910 were observed in HEK293 cells co-expressing the
Gi-coupled fMLP receptor and Gα16 (Figure 3D); the
fMLP-induced response was readily detected by 2 min
and was maintained up to 30 min. These results further
confirmed the specificity of Gαq-mediated PKD activa-
tion and implied that many GPCRs are capable of
regulating the function of PKD through members of the
Gq subfamily. This may have particular relevance to
hematopoietic cells since the promiscuous Gα16 and
Gα14 are mainly expressed in immune cells and are cap-
able of recognizing a large number of GPCRs [38,39].
Next, we investigated whether PKD phosphorylation

can be induced upon activation of Gq-coupled receptors
that are endogenously expressed in HeLa cells. Serum
starved HeLa cells were treated with various agonists
targeting Gq-, Gi- and Gs-coupled receptors for various
durations, and PKD1 phosphorylation was determined
by Western blot analysis. As expected, bradykinin and
histamine acting on Gq-coupled receptors effectively in-
duced a marked increase in PKD phosphorylation at the
activation loop (Figure 4A). Agonists that act on Gs-
coupled β-adrenergic receptor (isoproterenol) and GLP
receptor (glucagon-like peptide) failed to activate PKD,
even when stimulatory phosphorylation of ERK was
clearly detected (Figure 4B). Unexpectedly, stimulation
of Gi-coupled α2-adrenergic receptor (by UK14304) and
CXCR4 receptor (by SDF-1α) led to observable PKD ac-
tivation. This is in contrast to the result presented in
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Figure 3C where stimulation of the Gi-coupled fMLP
receptor in HEK293 cells failed to promote PKD
activation.
The ability of Gi-coupled receptors to stimulate PKD

phosphorylation in HeLa cells was contrary to the results
obtained with either GαiQL (Figures 1 and 2) or the Gi-
coupled fMLP receptor in HEK293 cells (Figure 3C).
Given that Gαq-induced activation of PKD is known to
be mediated via PLCβ/PKC [30], and that Gαi appa-
rently could not activate PKD, we hypothesized that
PKD activation by the Gi-coupled receptors in HeLa
cells was mediated by the Gβγ subunits, presumably via
Gβγ-sensitive PLCβ2 or PLCβ3. Gβγ-induced activation of
PKD in HeLa cells have indeed been reported [27]. To test
this hypothesis, we first examined the endogenous expres-
sion of PLCβ2 and PLCβ3 in both HEK293 and HeLa cells.
Western blot analysis revealed that HEK293 cells
expressed barely detectable levels of PLCβ2 and PLCβ3,
whereas PLCβ3 (but not PLCβ2) was abundantly expressed
in HeLa cells (Figure 5A).
To determine the importance of Gβγ-sensitive PLCβ2/3

in Gβγ-mediated PKD activation, HEK293/Gγ2 stable cells
were transiently transfected with FLAG-Gβ1–2, in the ab-
sence or presence of PLCβ2/3. Because consistent ex-
pression of Gγ subunits (~6 kDa) is more difficult to
achieve in transient transfections, HEK293 cells stably
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treatment with 100 nM bradykinin (BK), 10 μM isoproterenol (ISO) or 300 nM N-formyl-methionyl-leucyl-phenylalanine (fMLP) for the indicated
durations. Cell lysates were resolved in SDS-PAGE, and the presence of ERK, PKD and CREB phosphorylation was detected by their respective anti-
phospho or anti-total antisera. Activation of PKD was observed only for BK2R and fMLPR/Gα16 stable cells. CREB activation served as a positive
control for β2AR stable cells.
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expressing Gγ2 were employed in these assays. As
expected, co-expression of various combinations of Gβγ
alone did not induce any stimulatory phosphorylation as
compared to the vector control in HEK293 cells
(Additional file 3: Figure S3A). Upon co-expression with
PLCβ3, however, both Gβ1γ2 and Gβ2γ2 markedly en-
hanced the level of PKD phosphorylation; the expres-
sion of PLCβ3 alone had no significant effect on PKD
phosphorylation (Figure 5B). Likewise, co-expression of
Gβ1γ2 or Gβ2γ2 with PLCβ2 induced significant PKD
phosphorylation (Figure 5C). These results not only
suggest the crucial role of PLCβ2/3 in Gβγ-mediated PKD
activation, but also help to explain the differences in Gi-
mediated PKD phosphorylation in HEK293 and HeLa
cells.
Since the Gγ subunit identity has been shown to affect

signaling specificity [24-26], we determined whether
other Gβ1γ dimer combinations can effectively induce
PKD1 activity in the presence of PLCβ2/3. Hence,
HEK293 cells were transfected with pcDNA3 (vector
control) and one of the twelve combinations of Gβ1γx
dimer, with or without PLCβ2. As shown in Figure 5D
(lower panel), transfection of Gβγ dimers alone did not
significantly enhance the phosphorylation of PKD1 be-
yond the vector control. Among all of the Gβ1γx combi-
nations tested, Gβ1γ2, Gβ1γ3, Gβ1γ4, Gβ1γ5, Gβ1γ7 and
Gβ1γ10 consistently triggered strong and significant
PKD1 phosphorylation upon co-expression with PLCβ2,
however, there was no significant change in PKD1 phos-
phorylation in other Gβ1γx/PLCβ2-overexpressing cells
(Figure 5D, lower panel). Comparable expressions of all
Gβ1γx combinations and PLCβ2 were detected in the
transfectants (data not shown), resulting in elevated
levels of IP3 formation (Figure 5D, upper panel) as
reported previously [21]. We also tested whether se-
lected Gβ1γx/PLCβ2 combinations can induce in vitro
kinase activity of the different PKD isoforms (PKD1-3).
In agreement with the Gβ1γx/PLCβ2-induced PKD1
phosphorylation profile, Gβ1γ2/PLCβ2 and Gβ1γ7/PLCβ2
induced significant PKD kinase activity with all three
PKD isoforms, while Gβ1γ9/PLCβ2 failed to do so
(Additional file 3: Figure S3B). Similar Gβ1γx-mediated
PKD activation profile was obtained with PLCβ3 (data
not shown). As expected, Gβ1γx failed to induce PKD
phosphorylation with PLCβ1 which is insensitive to Gβγ
(Additional file 3: Figure S3C).
Having demonstrated that certain Gβ1γx/PLCβ2/3 com-

binations were more effective in triggering PKD activity
in HEK293 cells, we asked if similar Gβ1γx selectivity for
PKD phosphorylation could be observed in HeLa cells
that endogenously express high level of Gβγ-sensitive
PLCβ3 (Figure 5A). Due to the relatively low levels of
endogenously expressed PKD1 [34], HeLa cells
were transiently co-transfected with cDNAs encoding
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PKD1 and Gβ1γ2, Gβ1γ7 or Gβ1γ9, followed by serum
starvation and subsequent immuno-detection of stimula-
tory phosphorylated PKD. The results obtained with en-
dogenous PLCβ3-expressing HeLa cells (Figure 5E) were
essentially similar to those obtained from the PLCβ2/3-
transfected HEK293 cellular background (Figure 5D,
lower panel). This further indicates that the identity of
the Gγ subunit may confer specificity to Gβγ-mediated
PKD phosphorylation.
It has previously been suggested that Gβγ activates

PKD through direct interaction at its PH domain [27].
However, overexpression of Gβγ dimers failed to stimu-
late PKD phosphorylation in HEK293 cells (Figures
5B-D and Additional file 3: Figure S3A-B) unless Gβγ-
responsive PLCβ2/3 was co-expressed (Figures 5D and
Additional file 3: Figure S3B-C). Despite the fact that all
of the functional Gβ1γx dimers tested are capable of
stimulating PLCβ activity [21], only certain Gβ1γx dimers
(e.g. Gβ1γ2) effectively stimulated PKD phosphorylation
in the presence of PLCβ2/3 (Figure 5D, lower panel).
Hence, we hypothesized that the presence of PLCβ2/3
may allow specific Gβγ to associate with PKD. For this,
HEK293 cells were transiently transfected with pcDNA3
(vector control), Gβ1γx (Gβ1γ7, Gβ1γ9) with or without
PLCβ2. FLAG-tagged Gβ1 was immunoprecipitated from
the lysates of the transfectants, and the immune
complexes were subjected to SDS-PAGE, followed by
Western blotting for any PKD co-immunoprecipitated
with Gβ1. As shown in Figure 6, phosphorylated PKD1
was clearly detectable in the immunoprecipitates
prepared from transfectants expressing both Gβ1γ7
dimer and PLCβ2, but not when PLCβ2 was absent. Des-
pite comparable expressions of the various constructs
(Figure 6, right panel), hardly any PKD1 was pulled
down by the FLAG-tagged Gβ1 in cells expressing Gβ1γ9
with or without PLCβ2 (Figure 6, left panel). It should be
noted that both Gβ1γ7 and Gβ1γ9 were able to interact
with PLCβ2 in a comparable manner because the latter
was detected in the immunoprecipitates (Figure 6, left
panel). As the current data showed that Gβγ dimers
alone are ineffective in the co-immunoprecipitation with
PKD, hence, our findings not only demonstrate the
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crucial role of PLCβ2 for the effective binding between
Gβγ dimers and PKD, but also implicate that only spe-
cific Gβγ dimers are capable of interacting and activating
PKD in the presence of PLCβ2.
Having established that PKD1-3 activation is promoted

by ectopic expression of certain Gβγ complexes, we inves-
tigated whether Gβγ-mediated PKD activation was impli-
cated in Gi-linked biological function. Cell migration [34]
and invasion [40] represent some of the known cellular
functions of PKD. Since Jurkat T-cells express the Gi-
coupled receptor CXCR4 and it is responsive to stromal
cell-derived factor 1α (SDF-1α) for chemotaxis [41], it ap-
pears to be a good cellular system for this investigation.
First of all, we examined whether PLCβ2 and PLCβ3 are en-
dogenously expressed in Jurkat T cells. Indeed, Jurkat
T-cells endogenously express both PLCβ2 and PLCβ3
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isoforms, with the former being more abundant (Figure 7A).
Next, we used PTX (which ADP-ribosylates Gi proteins) to
confirm that SDF-1α-induced signaling and chemotaxis in
Jurkat T-cells are mediated via Gi proteins. Both SDF-1α-
induced intracellular Ca2+ mobilization (Figure 7B) and
chemotaxis (Figure 7C) in Jurkat T-cells were completely
abolished upon PTX pretreatment. These results imply that
CXCR4 utilizes Gi proteins to stimulate chemotaxis and
PLCβ-mediated Ca2+ mobilization in Jurkat T cells. The
latter response was presumably mediated by Gβγ dimers
released from activated Gi proteins [42,43].
To determine whether PKD contributed to SDF-1α-

induced chemotaxis in Jurkat T cells, we asked if this
chemotactic response can be inhibited by the PKD
inhibitor, Gö6976. We were able to demonstrate that
SDF-1α-induced chemotaxis could be suppressed by
pretreatment with Gö6976 (Figure 7D). In agreement
with a previous report [41], the PI3K inhibitor
wortmannin (Figure 7D) also inhibited the SDF-1α-
stimulated chemotaxis. Next, we assessed if PKD can
be activated by the Gi-coupled CXCR4. Jurkat T-cells
were pretreated with or without PTX, followed by
SDF-1α stimulation. Since Jurkat T-cells predominantly
express PKD2 [44], only PKD2 phosphorylation was
determined. SDF-1α stimulated PKD2 phosphorylation
became evident within 10 min and peaked at 15 min after
agonist addition (Figure 7E). The response was effectively
abolished by PTX pretreatment of Jurkat T-cells. As a
control, phospho-ERK was similarly monitored; SDF-1α
also stimulated ERK phosphorylation in a PTX-sensitive
manner (Figure 7E).
To substantiate that SDF-1α-induced chemotaxis in

Jurkat T-cells is PKD2-dependent, we used specific vali-
dated siRNA oligonucleotides to knock down the ex-
pression of PKD2. As shown in Figure 7F, control and
scrambled siRNAs had no effect on PKD2 expression,
while silencing of PKD2 led to a remarkable reduction in
PKD2 expression; siRNAs targeting either PKD1 or
PKD3 did not affect the expression of PKD2. The
siRNA-mediated knockdown of PKD2 effectively inhi-
bited the SDF-1α-induced chemotaxis, whereas the con-
trols and siRNAs targeting PKD1 and PKD3 did not
significantly suppress chemotaxis (Figure 7F). Further-
more, silencing of PLCβ2/3 but not PLCβ1 resulted in the
suppression of SDF-1α-induced chemotaxis in Jurkat
T-cells, illustrating the importance of Gβγ-responsive
PLCβ isoforms in this activity (Figure 8A). As
SDF-1α also acts on Gi-coupled CXCR4 receptor in
HeLa cells for PKD activation (Figure 4C), we then
performed similar knockdown treatment to verify the pos-
sible PLCβ2/3-dependency. Our result demonstrated that
this Gi-induced signaling also required the Gβγ-responsive
PLCβ2/3 isoforms to stimulate the PKD activation
(Figure 8B).
Discussion
Extending from prior reports on the regulation of PKD1
by Gq [30,45], the present study demonstrates unequivo-
cally that each and every member of the Gq subfamily
(i.e., Gαq, Gα11, Gα14 and Gα16) are capable of inducing
the kinase activity of all PKD isoforms (Figure 2). The
ability to β stimulate PKD activity is apparently unique
to the Gαq members because other Gα subunits belong-
ing to the Gi, Gs, or G12 subfamilies all failed to induce
PKD phosphorylation or kinase activity (Figures 1, 2,
Additional file 1: Figure S1 and Additional file 2: Figure S2).
However, it should be noted that addition of AlF4

− to
cells co-expressing PKD and wild type Gα13 can lead to
PKD activation [46]. Such an observation is confounded
by the fact that AlF4

− may activate multiple G proteins
simultaneously. The lack of effect on PKD by the consti-
tutively active mutant of Gα13 has in fact been reported
[30]. Hence, it is reasonable to conclude that only mem-
bers of the Gq subfamily are efficiently linked to PKD
activation.
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Despite the preponderance of Gq in mediating GPCR-
induced activation of PKD, stimulation of Gi-coupled re-
ceptors in HeLa cells resulted in PKD phosphorylation
(Figure 4). This may be explained by the observation
that HeLa cells endogenously express Gβγ-responsive
PLCβ2/3 [28], thereby allowing Gβγ released from acti-
vated heterotrimeric Gi proteins to mediate PKD activa-
tion through the Gβγ/PLC/PKC axis. One would expect
that stimulation of Gi-coupled receptors will result in
PKD activation in cells endowed with PLCβ2/3. However,
if the endogenous PLCβ2/3 is responsive to Gβγ dimers
and all active G protein heterotrimers liberate free Gβγ
dimers, then it remains puzzling why stimulation of Gs-
coupled receptors cannot activate PKD via PLCβ2/3
(Figure 4B). A recent report has revealed that differential
dissociation may exist among different G proteins [47],
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though it has long been thought that active G protein
heterotrimers readily dissociate into Gα-GTP subunits
and Gβγ dimers [48]. Activated GoA heterotrimers can
seemingly dissociate more readily than activated Gs

heterotrimers, and this may account for Gα-specific acti-
vation of Gβγ-sensitive effectors [47]. Alternatively, the
lack of Gs-induced PKD activation may be attributed to
insufficient release of Gβγ dimers as most Gβγ-dependent
signaling appeared to require substantial amounts of free
Gβγ, which is most often achieved by stimulating the more
abundantly expressed Gi proteins [42,43].
Another interesting observation in the present study

pertains to the requirement of PLCβ2/3 for Gβγ-induced
PKD activation (Figure 5). At first sight, our finding
seems to suggest a concept different from the previous
belief that Gβγ dimers alone can activate PKD through
interaction with the PH domain [27]. However, since the
cellular model (i.e. HeLa cells) used in Jamora’s report
expresses significant amount of Gβγ-sensitive PLCβ2/3, it
is possible that the presence of PLCβ2/3 enables specific
Gβγ dimers to act on the PH domain of PKD. It has
been demonstrated that Gγ prenylation is one of the im-
portant factors for Gβγ interaction with PLC isoforms,
as the presence of farnesyl lipid motif in Gγ1, Gγ9 and
Gγ11 may lead to a weaker PLC activation as compared
to Gβγ dimers containing other Gγ components with
geranylgeranyl lipid motif [49]. Indeed, we have observed
that Gβ1γ1, Gβ1γ9 and Gβ1γ11 are associated with a
weaker PLC activation and all of them are incapable of
effectively stimulating PKD (Figure 5D and 5E). Hence,
the possible influence of Gγ prenylation status cannot be
neglected. However, Gβ1γ2 and Gβ1γ3 induce PLC activ-
ities of similar magnitude as those of Gβ1γ12 and Gβ1γ13,
but only the former two are capable of stimulating PKD.
As Gγ2, Gγ3, Gγ12, and Gγ13 are commonly incorporated
with the geranylgeranyl lipid motif, factors other than
Gγ prenylation and PLC activity may also be important
for governing the specificity of Gβγ-mediated PKD acti-
vation. It can be observed that only certain Gβ1γ dimers
(i.e., those containing γ2, γ3, γ4, γ5, γ7, and γ10) but not
others (i.e., those containing γ1, γ8, γ9, γ11, γ12, and γ13)
could effectively activate PKD in the presence of PLCβ2/3
(Figure 5D, lower panel). Yet, all combinations of Gβ1γx
dimers are capable of activating PLCβ2 [21]. The diffe-
rential ability of various Gβ1γ dimers to stimulate
PKD is thus unlikely to solely depend on their PLCβ
activity alone. It can also be observed that the expression
levels of Gβ1γ4, Gβ1γ7, Gβ1γ9, Gβ1γ11 and Gβ1γ12 appear
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to be increased upon PLCβ2 co-expression (Additional file
4: Figure S4). However, such increased Gβγ expression is
not necessarily related to the subsequent PKD activation,
as increased Gβ1γ9, Gβ1γ11 and Gβ1γ12 expressions do not
effectively stimulate PKD in the presence of PLCβ2,
whereas Gβ1γ2, Gβ1γ3, Gβ1γ5, and Gβ1γ10 trigger the kin-
ase activation without increased levels of subunit expres-
sions (Additional file 4: Figure S4). Hence, Gβγ-mediated
PKD activation seems to be a specific function in response
to unique Gβγ combinations.
In fact, the ability of specific Gβγ dimers to stimulate

PKD phosphorylation may depend on their ability to
form a complex with PKD, since only those Gβγ
dimers that can stimulate PKD (e.g., Gβ1γ7) could be
immunoprecipitated with PKD (Figure 6). The require-
ment of PLCβ2/3 in Gβγ-mediated PKD signaling might
be explained if PLCβ2/3 is an essential component of the
signaling complex that stabilizes the interaction between
Gβγ and PKD. The possible existence of a Gβγ/PLCβ2/3/
PKD signaling complex is supported by the fact that
Gβγ dimers serve as direct activators for PLCβ2/3 [50],
probably through the binding of Gβγ to the PH domain
of PLCβ2/3 [51], while Gβγ/PKD-mediated Golgi frag-
mentation can be inhibited by a sequester peptide with
identical sequence of the Gβγ-binding PH domain in
PKD [27]. Indeed, we have preliminary data suggesting
that PLCβ2 can be co-immunoprecipitated with all three
PKD isoforms, while PLCβ1 fails to do so (Additional file
5: Figure S5). Apparently the reported capabilities of
Gβγ to interact with PLCβ2/3 and PKD seem to support
the notion for the formation of a Gβγ/PLCβ2/3/PKD sig-
naling complex. However, it is unclear as to whether a
single Gβγ dimer binds to the PH domains of PLCβ2/3
and PKD sequentially or simultaneously. Similarly, we
cannot rule out the possibility that there may be differ-
ent pools of Gβγ dimers for Gβγ-PLCβ and Gβγ-PKD
interactions, respectively, and that they may subse-
quently cooperate with each other to stimulate PKD.
Further studies are required to examine the precise in-
teractions between Gβγ, PLCβ2/3 and PKD.
The assembly of a Gβγ/PLCβ2/3/PKD signaling com-

plex may require the participation of scaffolding pro-
teins. In this regard PKD isoforms have been shown to
interact with the PDZ domains of a scaffolding protein
family named NHERF [52]. Coincidently, PLCβ2/3 can
also interact with different NHERF members [53,54].
Hence, NHERF, as well as other similar scaffold proteins,
may act as a nexus for Gβγ/PLCβ/PKD signaling
(Figure 9), in which intracellular scaffold may facilitate
or determine the formation of functional complexes
among the signaling players. Scaffolding proteins (e.g.
NHERFs and others) may form functional complexes
with specific PLCβ isoforms and PKDs, and perhaps only
those complexes containing PLCβ2/3 will enable Gβγ
dimers to be recruited for interaction with PKDs. Such
activation mechanism is not feasible for PLCβ1 which is
Gβγ-insensitive. The Gβγ/PLCβ2/3-induced DAG pro-
duction leads to confirmation changes of PKDs as well
as PKC-mediated phosphorylation on the kinases. As
demonstrated in the current report, enhanced Gβγ-
induced PLCβ2/3 stimulation alone does not guarantee a
successful PKD activation, it is possible that only specific
Gβγ dimers (e.g. Gβ1γ2) are compatible with the PH do-
main of PKDs for productive conformation changes,
which result in functional activation of PKDs. In fact,
our unpublished data showed that PKD activation trig-
gered by Gi-coupled receptors is sensitive to inhibitors
for PLCβ (e.g. U73122) as well as to Gβγ subunit scav-
engers (e.g. transducin). Since only specific Gβγ dimers
are capable of stimulating PKD in the presence of
PLCβ2/3, our results actually suggest a dual requirement
of functional PLCβ activity and compatible Gβγ dimers
for Gi-mediated PKD activation. It remains unclear if all
the members in the Gq family (i.e. Gαq, Gα11, Gα14, and
Gα16) also activate PKD in a similar manner. However, it
should be noted that another scaffold protein named
PAR3 have been suggested as a Gq-specific signaling
component with selective recruitment of PLCβ1, while
PLCβ2/3 isoforms may have high preferences towards
NHERF members in Gi-mediated signaling [53,54]. The
involvement of different scaffold proteins may also ex-
plain the differential observation that, Gα subunits of
the Gq family (much stronger activators for PLCβ
isoforms as compared to Gβγ dimers) are capable of
stimulating PKD in a Gβγ-independent manner.
PKD mediates a diverse array of normal biological

functions and pathological activities, including cell pro-
liferation and differentiation, cell motility, regulation of
cell vesicle trafficking, secretion, and polarity, inflamma-
tory responses, cardiac hypertrophy and cancer [55].
Therein, the transport of protein from the Golgi to
plasma membrane is regulated via Gβγ signaling
[27,28,56]. From our results, it is postulated that stimu-
lation of Gi-coupled receptor leads to the liberation of
free Gβγ dimers, which then interact with PLCβ2/3 and
activate PKD. This may help to elucidate part of the
mechanism regarding secretory activities regulated by
receptor-induced Gβγ translocation between the Golgi
and plasma membrane [57], and the characteristic of
Golgi as one of the major cellular locations for activated
PKD [58]. Indeed, Gβγ dimers are known to mediate
many cellular responses and signaling pathways involved
in multiple aspects of cellular function. Previous studies
have reported that SDF-1α-induced activation of CXCR4
receptor induces chemotaxis in Jurkat T cells [41]. Here,
our results showed that this Gi-coupled chemotactic re-
sponse may be mediated by the Gβγ/PLCβ/PKD axis
(Figure 7). However, further investigations are needed to
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determine whether these components act in concert.
The activation of STAT3, which is an important tran-
scription factor, is also regulated by Gβγ-mediated sig-
naling [23]. Similar to PKD, only distinct combinations
of Gβγ can effectively activate STAT3. Nevertheless, the
panel of STAT3-activating Gβγ dimers is not identical to
the PKD-stimulatory Gβγ complexes; only Gβ1γ4 and
Gβ1γβ7 are effective activators for both pathways. Taken
together, our results suggested that PKD may be impli-
cated in diverse cellular activities, including those
mediated by Gβγ.
Functional redundancy is a common feature among

isoforms of biological molecules. However, it is not al-
ways the case. Though the three PKD isoforms are highly
conserved and our results showed that all three PKD
isoforms (PKD1, PKD2 and PKD3) are activated equally
well by Gα subunits from the Gq family, as well as by spe-
cific Gβ1γx with PLCβ2/3, they may have unique functions.
For example, PKD1 plays a non-redundant role in patho-
logical cardiac remodeling, and the homozygous germline
deletion of PKD1 causes embryonic lethality [59]. As for
PKD2, it has a unique role in endothelial cells [6], lymph-
oid cells [7], and monocytes [34]. Recent studies have re-
vealed the essential role of PKD3 in the progression of
prostate cancer [60] and insulin-independent basal glucose
uptake in L6 skeletal muscle cells [61]. Further studies are
necessary to elucidate the mechanisms behind GPCR-
mediated activation of the three PKD isoforms.
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Conclusion
Collectively, among various members of G proteins, only
the Gα subunits of the Gq family effectively activate all
three PKD isoforms (PKD1/2/3), while Gα subunits of
other G protein families (Gs, Gi, and G12) are inefficient
in these kinase activations. However, receptors linked to
Gi proteins are capable of triggering PKD activation in
cell lines endogenously expressing (HeLa cells and Jurkat
T-cells) or exogenously transfected with (HEK293 cells)
Gβγ-sensitive PLCβ2/3 isoforms, indicating the involve-
ment of Gβγ dimers for the Gi-mediated PKD activation.
Although the presence of PLCβ2/3 is highly important,
only those Gβ1γ dimers with γ2, γ3, γ4, γ5, γ7, and γ10
are effective activators of PKD, and the specific inter-
action between Gβγ, PKD and PLCβ2/3 may play a piv-
otal role in this Gβγ-mediated PKD signaling pathway.
Furthermore, the biological significance of Gi-mediated
PKD activation is illustrated by SDF-1α-induced chemo-
taxis on Jurkat T-cells, in which the chemotaxic activity
is abolished by pretreatment with PTX and knockdown
of PKD. Taken together, our current report illustrates
that Gβγ dimers from Gi proteins may activate PKD in a
PLCβ2/3-dependent manner, and the identity of Gγ of
the Gβγ dimer being a determinant.
Additional files

Additional file 1: Figure S1. Constitutively active Gα subunits from the
Gi subfamily failed to induce PKD activation. (A) HEK293 cells were
transiently transfected with pcDNA3 or WT/QL forms of Gα subunits from
the Gi subfamily. Cell lysates were subjected to SDS-PAGE. Gα subunits,
phospho-PKD1738/742, phospho-PKD1910, total PKD1, tag of PKD1 (HA)
were analyzed by Western blotting using respective specific antibody. (B)
HA-PKD1, FLAG-PKD2 and Myc-PKD3 were immunoprecipitated from cell
lysates described in (A), and subjected to in vitro PKD kinase assays in
terms of syntide-2 phosphorylation. Results are the average of at least
three independent experiments, and represented as fold increase over
pcDNA3 control (±S.E.M.).

Additional file 2: Figure S2. Constitutively active Gα subunits from the
Gs and G12 subfamilies failed to induce PKD activation. (A) HEK293 cells
were transiently transfected with pcDNA3 or WT/QL forms of Gα subunits
from the Gs and G12 subfamilies. Cell lysates were subjected to SDS-PAGE.
Gα subunits, phospho-PKD1738/742, phospho-PKD1910, total PKD1, tag of
PKD1 (HA) were analyzed by Western blotting using respective specific
antibody. (B) HA-PKD1, FLAG-PKD2 and Myc-PKD3 were
immunoprecipitated from cell lysates described in (A), and subjected to
in vitro PKD kinase assays. Results are the average of at least three
independent experiments, and represented as fold increase over pcDNA3
control (±S.E.M.).

Additional file 3: Figure S3. PLCβ2 and specific Gγ subunits are
required in Gβγ-induced PKD activation in HEK293 cells. (A) HEK293 cells
stably transfected with pcDNA3 or HA-Gγ2 were transfected with
pcDNA3, FLAG-Gβ1 or FLAG-Gβ2. Cell lysates were subjected to SDS-
PAGE. FLAG-Gβ, HA-Gγ, phospho-PKD1738/742, phospho-PKD1910 and total
PKD1 were analyzed by Western blotting using respective specific antibody.
(B) HEK293 cells were transiently transfected with vector control, PLCβ2,
various Gβγ dimers and tagged PKD isoforms (HA-PKD1, FLAG-PKD2 and
Myc-PKD3). The cultures were then lysed, and the tagged PKD isoforms
were immunoprecipitated for in vitro PKD kinase assay. (C) HEK293 cells
transiently transfected with pcDNA3, Gβ, Gγx, Gβγ combinations with or
without PLCβ1 or PLCβ2 were lysed, and analyzed by Western blotting for
PKD1 phosphorylation.

Additional file 4: Figure S4. The expression profiles of Gβγ dimers and
the corresponding PKD activation in the presence of PLCβ2. HEK293 cells
were transfected with pcDNA3, PLCβ2, various combinations of Gβγ with
or without PLCβ2. Transfectants were lysed, and the lysates were
subjected to Western blotting using antibodies against phosphorylated
PKD1, PKD, PLCβ2, Flag-tagged Gβ1 and HA-tagged Gγ subunits.

Additional file 5: Figure S5. PLCβ2, but not PLCβ1, can be co-
immunoprecipitated with various PKD isoforms. HEK293 cells were
transiently transfected with pcDNA3, PLCβ1/2 with tagged PKD1/2/3 as
indicated. HA-PKD1, FLAG-PKD2 and Myc-PKD3 were immunoprecipitated
from cell lysates with their respective affinity gels and further analyzed by
Western blotting for the possible interaction with PLCβ1/2.
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