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Abstract: The operation of wearable robots, such as gait rehabilitation robots, requires real-time
classification of the standing or walking state of the wearer. This report explains a technique that
measures the ground reaction force (GRF) using an insole device equipped with force sensing
resistors, and detects whether the insole wearer is standing or walking based on the measured results.
The technique developed in the present study uses the waveform length that represents the sum
of the changes in the center of pressure within an arbitrary time window as the determining factor,
and applies this factor to a conventional threshold method and an artificial neural network (ANN)
model for classification of the standing and walking states. The results showed that applying
the newly developed technique could significantly reduce classification errors due to shuffling
movements of the patient, typically noticed in the conventional threshold method using GRF, i.e., real-
time classification of the standing and walking states is possible in the ANN model. The insole device
used in the present study can be applied not only to gait analysis systems used in wearable robot
operations, but also as a device for remotely monitoring the activities of daily living of the wearer.

Keywords: gait analysis; wearable devices; insole; force sensing resistors; ground reaction force;
center of pressure; waveform length; m-health; activities of daily living

1. Introduction

Walking is necessary for performing most of our daily activities. However, gait dis-
turbances may occur due to neurological disorders, such as spinal cord disorder, stroke,
and Parkinson’s disease, or accidents such as a fall. Gait disturbance can cause significant
discomfort in performing the activities of daily living (ADL); thus, gait rehabilitation is
absolutely necessary to improve the quality of life of patients suffering from gait distur-
bance [1,2]. Conventional gait rehabilitation methods are based on the concept of simple
and repetitive physical therapy assisted by rehabilitation therapists, and consequently,
the treatment outcome may vary depending on the skill and experience of the therapist.
Accordingly, studies have been conducted to operate gait rehabilitation robots using actua-
tors and determine the motion intention by receiving feedback from the bio-signals of the
patients to achieve more effective and quantifiable gait rehabilitation effect.

To ensure the effective operation of gait rehabilitation robots, it is essential to apply an
algorithm that can detect the gait phase of the wearer [3,4]. Various methods have been
developed for gait phase detection, including applying a heuristic threshold algorithm
using empirically set thresholds or machine learning for detecting the gait phase after
acquiring various bio-signals by using the ground reaction force (GRF), accelerometer
(Acc), and gyrosCOPe (Gyro) [5–8].

Algorithms that detect the gait phases using GRF often use the method of detecting
the gait phase transition when the GRF measured at the heel or metatarsal bone exceeds a
certain threshold. Mariani et al. [6] set the GRF threshold based on the body weight of the
insole wearer, whereas Catalfamo et al. [7] set the threshold using the ratio between the
maximum and minimum GRF values. Moreover, Yu et al. [8] classified the gait phase using
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the ratio between the GRF values measured at the left and right feet. In a previous study,
the authors of the present study had developed a technique for real-time classification
of gait into eight phases by using an insole device equipped with force sensing resistors
(FSRs), which were developed to measure the GRF and examine the changes in the center
of pressure (COP) [9].

The method using threshold values has also been applied to algorithms using the
inertial measurement unit (IMU) data. Kotiadis et al. [10] proposed an algorithm that uses
an Acc to classify the gait phase of patients with foot drop, whereas Mannini et al. [11]
processed the Acc data with the Hidden Markov Model to classify the gait into four phases.
Selles et al. [12] used the Acc placed on the calf to analyze the gait phase of transtibial
amputee patients, demonstrating that the Acc could be used to classify the phases of
abnormal gait. The use of the Acc or Gyro data, as described above, enables the observation
of the movement of the swing foot. However, according to a study by Willemsen et al. [13],
using an inertial sensor in gait analysis is known to show a delay of 20–40 ms, when
compared with the use of a GRF. Moreover, because an inertial sensor is operated based on
the continuous integration of data over time, a drift phenomenon occurs, caused by the
accumulation of measurement errors over time.

On the other hand, the method of measuring the timing of heel contact using GRF for
classification of the gait phase is considered the “gold standard” for gait phase analysis
techniques [14], while also offering various advantages, including: (1) less deviation in the
measurement signals according to sensor placement; (2) no data drift found when using the
inertial sensor; (3) insole devices used to measure the GRF can be worn continuously during
ADL; and (4) real-time applicability owing to short data computation time [6–8]. However,
because the GRF cannot be measured accurately in patients with foot drop owing to
shuffling, the accuracy of classifying the gait phases has been determined to be poorer than
that achieved when using an Acc [15,16]. To overcome such disadvantages, various studies
have attempted to enhance the accuracy of gait phase classification by simultaneously
using multiple sensors to minimize the effect of shuffling. However, such efforts enhanced
the complexity of the device or system, resulting in reduced usability [16–19].

A study by Bar-Haim et al. [20] converted the COP information calculated from the
GRF data into entropy to assess the level of rehabilitation in patients. It was determined that
although the GRF was an appropriate factor for assessing the gait complexity (or dynamic
stability) in such a case, it was not an appropriate factor for gait phase classification.

The operation of wearable robots, such as gait rehabilitation robots, requires the real-
time classification of the standing or walking state of the wearer. To develop a technique
for classification of the standing and walking states, hereinafter called state classification,
the authors conducted the study with the following objectives: (1) develop the technique
for distinguishing between two different states, namely, the standing state where the person
is not moving, and the walking state where the person is moving; (2) use GRF data as
the data for state classification; and (3) develop a technique to significantly reduce the
measurement errors caused by shuffling. Accordingly, the most appropriate factors for
state classification were derived and selected from the GRF data in the study, and the
state classification accuracy was examined by applying a machine learning method and
threshold method that used the threshold values of these factors.

There is no precedent case of applying the neural network technique to a study
that distinguishes between standing and states. This study will remarkably improve the
accuracy of distinguishing standing and walking states by applying a neural network
technique.

2. Methods
2.1. Hardware Description

In the gait experiments, an insole-type GRF measurement device and a motion capture
system (Osprey, Motion Analysis Corporation, CA 95403, USA) were used simultaneously,
as shown in Figure 1. The participants wore tight-fitting experimental garment (top
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and bottom) to which motion capture reflective markers were attached. The reflective
markers were attached to positions defined by the Helen Hayes Model [21]. Subsequently,
the participants wore an insole device matching their foot size for the GRF measurement.
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Figure 1. Experimental setup.

The GRF measurement device was developed by the authors of the present study.
It consisted of an insole equipped with FSRs (FSR 402, Interlink Electronics, Inc. CA 93012,
USA), which was inserted into the shoe [9]. Details of the insole device are explained in
Appendix A. The GRF and motion capture data were collected using a data acquisition
system (NI 6259, National Instruments, TX 78759-3504, USA). Because the GRF measure-
ment device and motion capture system used in the study have different data sampling
rates (100 Hz and 30 Hz, respectively), data synchronization was needed. Accordingly,
the experiment operator pressed a synchronization signal generation button at the start
and end of each experiment to generate a constant voltage trigger signal of 5 V and 0 V,
respectively. The trigger signals were saved along with the GRF data and positional data
of the motion capture markers to establish the reference points for synchronization. Upon
completion of the experiment, the data at the starting and ending points of the experi-
ment, as set by the trigger signals, were interpolated to obtain uniform numbers of data
in the same time interval. The acquired GRF data were used for state classification, and
the motion capture marker position data were used as the reference data for the actual
state classification. Python was used for post-processing of the data acquired by the data
acquisition system (DAS).

2.2. Participants

The study population for the gait experiments included 32 participants: 28 healthy
adults and 4 patients with stroke-induced hemiplegia to evaluate the effect of shuffling
on the classification accuracy of standing and walking states (Table 1). The healthy adult
group comprised 19 males (age 25 ± 3 years, height 1.75 ± 5.82 m, weight 68 ± 7 kg) and 9
females (age 21 ± 1 years, height 1.61 ± 4.22 m, weight 51 ± 4 kg), who were capable of
normal ambulation and had no trauma or neurological disorder.



Sensors 2021, 21, 2145 4 of 19

Table 1. Participant information.

Condition Normal, Male Normal, Female Patient

Number of persons 19 9 4

Age (years) 25 (S.D. 3) 21 (S.D. 1) 56 (S.D. 10)

Height (m) 1.75 (S.D. 0.06) 1.61 (S.D. 0.04) 1.67 (S.D. 0.05)

Weight (kg) 68 (S.D. 7) 51 (S.D. 4) 68 (S.D. 6)

The hemiplegia group comprised 4 males belonging to the functional ambulation
category (FAC) level 5, who were capable of independent ambulation of 10 m without an
assistive device.

2.3. Test Method

The participants in the gait experiment remained in the standing position while facing
forward, and when prompted to start walking by the operator, they walked a distance of
5 m on a flat ground and stopped at the marked position. The participants were allowed to
arbitrarily select how long they would stay in the standing state and their walking speed.
Each participant repeated the gait experiment a total of 10 times.

The experimental protocol was approved by the Institutional Review Board (IRB) at
the Korea Institute of Science and Technology (KIST). All participants provided written
informed consent for the study prior to participation.

2.4. Selection and Evaluation of Factors
2.4.1. Candidate Factors to Overcome Errors Caused by Foot Drop

When shuffling occurs due to foot drop, the magnitude of the GRF measured by an
individual FSR is greatly affected, but the effect on the COP is relatively less because the
COP is calculated using the GRF data measured by multiple FSRs. Accordingly, the present
study aimed to use the COP for state classification. As shown in Figure 2, the GRF data
were used to calculate the positions of the COP as follows.

COPX = ∑ FSR · SPX/ ∑ FSR (1)

COPY = ∑ FSR · SPY/ ∑ FSR (2)

COPLX = ∑ FSRL · SPLX/ ∑ FSRL (3)

COPRX = ∑ FSRR · SPRX/ ∑ FSRR (4)

COPLY = ∑ FSRL · SPLY/ ∑ FSRL (5)

COPRY = ∑ FSRR · SPRY/ ∑ FSRR (6)

Here, COPX and COPY denote the positions of the combined COP in the x- and y-axis
directions, respectively; COPLX and COPRX denote the positions of the COP in the x-axis
direction, measured from the left and right foot, respectively; and COPLY and COPRY
represent the positions of the COP in the y-axis direction, measured from the left and right
foot, respectively. Regarding the sensor position (SP), the values defined by the authors in
the previous study were used as the positional coordinates of the FSR [9]. With respect to
the coordinate axes, the x- and y-axis were defined as the left/right and forward/backward
directions when the body was facing forward, respectively.
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As shown in Figure 2, as the participants began walking, the positions of the COPs of
the left and right feet, projected on the surface, shifted by repeatedly alternating between
the forward/backward directions. The angle (θ) was formed by the segment connecting
these two points and the frontal plane, and COPgradient was calculated using the equation
below. In this equation, L, which was defined as the distance between the left and right
feet, was assumed to be the same as the width of the hips (Figure 2), and its value was set
based on the height of the participant [22].

θ = COPgradient = arctan((COPRY − COPLY)/L) (−π

2
< COPgradient ≤

π

2
) (7)

The amount of change in COPgradient over time was derived by dividing COPgradient
by the sampling rate of the FSRs.

.
COP =

d
dt

COPgradient (8)

2.4.2. Selection of Factor Based on Approximate Entropy

Entropy is reported to be a measure of the complexity of the deterministic dynamics of
a time series [23]. In the field of gait analysis, the entropy of the COP value is used to test the
therapeutic effect of rehabilitation or as an index for distinguishing between healthy adults
and patients. Schmit et al. [24] compared the COP variations of patients with Parkinson’s
disease against those of healthy elderly persons and determined that the former have
relatively lower complexity in the COP variations. A study by Bar-Haim et al. [20] showed
that the entropy of COP increased when the gait function of the patients was improved.
Such results indicated that the pattern of change in the COP that appears during gait might
be different between healthy adults and patients. Hence, applying the COP data from
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patients to an algorithm for gait detection developed using the COP data of healthy adults
may not yield accurate detection results [15]. Therefore, unlike gait complexity assessment,
it is necessary to identify the factors that do not show a significant difference between
healthy adults and patients for state classification.

COPX, COPY, COPLX, COPRX, COPLY, COPRY, COPgradient, and
.

COP obtained from
the GRF data were used to calculate the entropy values for healthy adult and patient groups;
the results are shown in Figure 3. The approximate entropies (ApEn) of the variables listed
above were calculated using the following steps.
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1. m number of sample data X(i), as defined by the pattern length, were generated.

X(i) = [xi, xi+1, · · · , xi+m−1] (9)

2. The generated sample data were used to calculate their correlations by the follow-
ing equation.

Cm
i (r) =

number o f X(j) s.t. d[X(i), X(j)] ≤ r
N −m + 1

, d[X, X∗] = max
a
|u(a)− u∗(a)| (10)

3. After determining the log of the correlation value, the mean log value was used to
derive the cumulative entropy.

Φm(r) = (N −m + 1)−1
N−m+1

∑
i=1

log(Cm
i (r)) (11)

4. The cumulative entropy was used to calculate ApEn by the following equation.

ApEn = lim
N→∞

Φm(r)−Φm+1(r) (12)

In Figure 3, the factor that showed the smallest difference in entropy between the
two groups was

.
COP, which represents the amount of change in COPgradient. In other

words, the results indicated that
.

COP is the most appropriate factor for state classification.
The explanation of the application of the entropy for

.
COP is introduced in Appendix B.



Sensors 2021, 21, 2145 7 of 19

2.4.3. Waveform Length of
.

COP

COPgradient has a value of zero when the two feet alternate during gait or when
standing with both feet parallel to each other. Therefore, the standing and walking states
cannot be differentiated by calculating and comparing the

.
COP values.

To rectify this issue, the waveform length was derived by combining
.

COP within an
arbitrary time window and using it for state classification, as shown below [25].

COPW =
window size

∑
i=a

.
COP (13)

In other words, the gait data from the previous step are used when classifying the
current walking state using COPW .

2.5. Classification of Standing and Walking States
2.5.1. Threshold Method
Timing Analysis Module (TAM) Method, Using the GRF Threshold

The Timing Analysis Module (TAM) method [7,8] used in previous studies was used
to differentiate between the standing and walking states. This method determines the
contact between the foot and ground based on the magnitude of the GRF, and the threshold
is calculated using the following equation.

GRFTH = GRFmin + (GRFmax − GRFmin)×
10

100
(14)

Here, GRFmax and GRFmin represent the maximum and minimum values of the sum
of GRFs measured by multiple FSRs, respectively. Because the GRF data were applied
with the participants segregated into the healthy adult and patient groups, GRFmax and
GRFmin were different for each group. The TAM method classifies the state as the standing
state when the sum of the GRFs measured is greater than GRFTH from the above equation;
otherwise, the state is classified as the walking state.

Using COPw Threshold

After setting the COPW threshold (COPW.TH), the following criteria were applied to
define the standing and walking states as 0 and 1, respectively.

State =
{

0, i f COPw < COPW.TH
1, i f COPw ≥ COPW.TH

(15)

Figure 4 shows the probability of COPW , which was calculated using the GRF data
generated in the standing and walking states. In the histograms shown in Figure 4,
COPW.TH was determined as COPW with the highest probability in the area of overlap of
the standing and walking states. Therefore, the healthy adult and patient groups have
different threshold values, as shown in Figure 4a,b. The state determined using Equation
(15) was compared with the actual state determined by a motion capture system to assess
the accuracy of the state classification technique proposed in the present study.

2.5.1.3. Artificial Neural Network Model

For comparison with the aforementioned threshold method, a machine learning-
based state classification model was developed, as shown in Figure 5. In the ANN model,
GRF, COPX, COPY, COPLX, COPRX, COPLY, COPRY, COPgradient,

.
COP, and COPW were

used as the input data, while supervised learning was performed by applying the state
classification results from the motion capture system as the learning data. The learning
data were normalized by dividing by the maximum value that appeared for each type of
input data to reduce the influence due to the size of each data value. The ANN model was
developed as a single layer to allow the use of Garson’s algorithm for assessing the relative
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importance of the factors, and it consisted of 20 nodes. In the model for state classification
of the healthy adult group, 200 sets of experimental data randomly selected from a total
280 sets of gait experiment data were used for model learning, and the remaining 80 sets of
experimental data were used for state classification. In the model for state classification
of the patient group, 30 sets of experimental data randomly selected from 40 sets of gait
experiment data were used for model learning, and the remaining 10 sets of experimental
data were used for state classification.
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Moreover, Garson’s algorithm was applied to the factors used in the ANN model to
assess the relative importance of each factor [26,27]. The relative importance of each input
factor used in the model created after the completion of learning was calculated by the
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following equation. Relative importance represents a relative value and the sum of the
relative importance of all input factors used in a single system should be 100%.

Relative Importance (%) =
∑ |win ||wout |

|wout |

∑ ∑ |win ||wout |
|wout |

(16)

3. Results

According to a study by Pappas et al. [15], gait analysis algorithms for treatment or
rehabilitation, which show a classification accuracy of <90%, are difficult to use in actual
clinical practice. Accordingly, the present study set the goal of achieving a classification
accuracy of ≥90% for the state classification algorithm developed in the present study.

3.1. State Classification Accuracy When Using Threshold Methods

Figure 6 shows the results of the state classification accuracy obtained in the present
study. The mean state classification accuracies in the gait experiments on the healthy adult
group were 98.52% and 95.69% when using the TAM method and threshold method using
COPW , respectively, showing that both methods exceeded the target classification accuracy
of ≥90%. In the healthy adult group, the classification accuracies for the standing and
walking states were higher when the TAM method was used, when compared with the
threshold method using COPW . This could be attributed to the fact that the threshold
method using COPW is influenced by the previously collected data when calculating the
waveform length within an arbitrary time window. Therefore, such methods may not only
incorrectly classify the current walking state, but also show classification delay.
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The mean state classification accuracies in the gait experiments on the patient group
were 91.52% and 95.05% when using the TAM method and COPW , respectively, showing
that both methods exceeded the target classification accuracy of ≥90%. However, the clas-
sification accuracy for the walking state (P-walk. in Figure 6) obtained using the TAM
method was unsatisfactory at 87.22%. This may be attributed to the misinterpretation of
the walking state as standing state due to shuffling by the patients when the GRF was
measured in the swing foot.

Figure 7 shows the GRF data collected from gait experiments on the healthy adult
and patient groups. The graphs show the sum of the GRFs of both feet in the standing
state and the GRF of the swing foot in the walking state. In Figure 7a, which shows the
GRF data for the healthy adult group, the mode value of the GRFs for the standing and
walking states are separated from each other, whereas in Figure 7b, which shows the GRF
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data for the patient group, some of the GRF values measured at the swing foot overlaps
with the mode value region of the GRF in the standing state. This indicated that the GRF
was measured when shuffling occurred in the swing foot; consequently, an error occurred
where the standing state was detected despite the fact that the patient was actually walking,
which caused the state classification accuracy to decrease.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 19 
 

 

In Table 2, the percentile of the GRF mode values in the walking state, measured by 
the TAM method, were 96.00% and 89.50% for the healthy adult and patient groups, re-
spectively. Both groups also showed similar state classification accuracies of 98.56% and 
87.22%, respectively. Moreover, the percentile of the GRF mode values in the standing 
state, measured by the threshold method using 𝐶𝑂𝑃ௐ, were 90.00% and 94.50% for the 
healthy adult and patient groups, respectively; both groups also showed very similar state 
classification accuracies of 91.26% and 94.52%, respectively. Such results indicate that it is 
easier to classify between the standing and walking states when there is a greater separa-
tion between the datasets generated in those states. Therefore, it is inferred that using 𝐶𝑂𝑃ௐ as the factor for classifying the states in the patient group will be more effective 
than using GRF with the threshold method. 

Overall, relatively higher classification accuracies were achieved by the TAM method 
using GRF for the healthy adult group (98.52%) and the threshold method using 𝐶𝑂𝑃ௐ 
for the patient group (95.05%). Moreover, applying the threshold method using 𝐶𝑂𝑃ௐ 
showed very high mean state classification accuracies of 95.69% and 95.05% for the 
healthy adult and patient groups, respectively, which suggests its applicability to actual 
clinical experiments.  

Figures 8 and 9 show the GRF data measured in the gait experiments on the healthy 
adult and patient groups, respectively, and 𝐶𝑂𝑃ሶ  and 𝐶𝑂𝑃ௐ calculated from these data, 
along with the examples of state classification by the two methods—the TAM method and 
threshold method using 𝐶𝑂𝑃ௐ. Figures 8e and 9e show the actual state classification 

 
Figure 7. Histogram of ground reaction force (GRF) data: (a) healthy adults (b) patients. 

Table 2. Classification accuracies of the threshold methods: TAM—Timing Analysis Module, 𝐶𝑂𝑃ௐ—the waveform length of 𝐶𝑂𝑃ሶ . 

 TAM Method Method Using  𝑪𝑶𝑷𝒘 
 Healthy Adults Patients Healthy Adults Patients 
 Standing Walking Standing Walking Standing Walking Standing Walking 

Threshold 
value 𝐺𝑅𝐹்ு = 21 (N) 20 (N) 𝐶𝑂𝑃௪.୘ୌ = 276 (deg/s) 212 (deg/s) 

Mode value 70 (N) 3 (N) 80 (N) 1 (N) 38 (deg/s) 820 (deg/s) 39 (deg/s) 430 (deg/s) 
Percentile 3.73% 96.00% 9.00% 89.50% 90.00% 4.00% 94.50% 5.50% 

Classification 
accuracy 98.40% 98.56% 96.63% 87.22% 91.26% 97.40% 94.52% 95.50% 

Figure 7. Histogram of ground reaction force (GRF) data: (a) healthy adults (b) patients.

On the other hand, the classification accuracy of the threshold method using COPW
for the walking state of the patient group (P-walk. in Figure 6) was high, reaching up to
95.50%. It is believed that such results were due to significant reduction in errors caused by
shuffling by applying the COP-based factors, as intended by the authors.

In Table 2, the percentile of the GRF mode values in the walking state, measured
by the TAM method, were 96.00% and 89.50% for the healthy adult and patient groups,
respectively. Both groups also showed similar state classification accuracies of 98.56% and
87.22%, respectively. Moreover, the percentile of the GRF mode values in the standing
state, measured by the threshold method using COPW , were 90.00% and 94.50% for the
healthy adult and patient groups, respectively; both groups also showed very similar state
classification accuracies of 91.26% and 94.52%, respectively. Such results indicate that it is
easier to classify between the standing and walking states when there is a greater separation
between the datasets generated in those states. Therefore, it is inferred that using COPW as
the factor for classifying the states in the patient group will be more effective than using
GRF with the threshold method.

Table 2. Classification accuracies of the threshold methods: TAM—Timing Analysis Module, COPW —the waveform length
of

.
COP.

TAM Method Method Using COPw

Healthy Adults Patients Healthy Adults Patients

Standing Walking Standing Walking Standing Walking Standing Walking

Threshold value GRFTH = 21 (N) 20 (N) COPw.TH = 276
(deg/s) 212 (deg/s)

Mode value 70 (N) 3 (N) 80 (N) 1 (N) 38
(deg/s)

820
(deg/s)

39
(deg/s) 430 (deg/s)

Percentile 3.73% 96.00% 9.00% 89.50% 90.00% 4.00% 94.50% 5.50%

Classification accuracy 98.40% 98.56% 96.63% 87.22% 91.26% 97.40% 94.52% 95.50%
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Overall, relatively higher classification accuracies were achieved by the TAM method
using GRF for the healthy adult group (98.52%) and the threshold method using COPW
for the patient group (95.05%). Moreover, applying the threshold method using COPW
showed very high mean state classification accuracies of 95.69% and 95.05% for the healthy
adult and patient groups, respectively, which suggests its applicability to actual clinical
experiments.

Figures 8 and 9 show the GRF data measured in the gait experiments on the healthy
adult and patient groups, respectively, and

.
COP and COPW calculated from these data,

along with the examples of state classification by the two methods—the TAM method
and threshold method using COPW . Figures 8e and 9e show the actual state classification
results (actual states) of the motion capture system and those of the TAM method and
threshold method using COPW together for comparison. In Figure 8e, which shows the
gait experiment results for the healthy adult group, both the TAM method and threshold
method using COPW showed very similar results as the actual state classified by the motion
capture system. The TAM method accurately classified the start and end of walking, with
occasional error in misinterpreting the walking state as the standing state. The threshold
method using COPW showed superior state classification accuracy than the TAM method,
but it also showed delay in classifying the transition from the walking state to the standing
state. This classification delay was due to using the data from the previous gait step
when calculating COPW , as described earlier, and additional time was required to avoid
this influence.
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In Figure 9e, which shows the gait experiment results for the patient group, several
classification errors occurred when the TAM method was used for state classification. This
classification error was due to the patient group showing shuffling of the swing foot during
walking, which caused the walking state to be misinterpreted as the standing state. On the
other hand, the threshold method using COPW showed a sharp decrease in the frequency
of state classification errors and significant improvement in the classification accuracy, even
in the patient group.

3.2. State Classification Accuracy by Machine Learning

As shown in Figure 6, the ANN model demonstrated very high mean state classifica-
tion accuracies of 99.23% and 98.33% for the healthy adult and patient groups, respectively.
In comparison with the threshold method using COPW , the classification accuracy increased
by 3.54% and 3.28% for the healthy adult and patient groups, respectively, and there was
no noticeable classification delay.

Figure 10 shows the results of the relative importance of the input factors used in
the ANN model, calculated using Equation (16). As shown in Figure 10, the factor with
the highest relative importance in both the healthy adult and patient groups was COPW .
All other factors showed a relative importance within the range of 0.045–0.09 in both
groups, whereas COPW showed a relative importance of 0.11 and 0.30 in the healthy adult
and patient groups, respectively, which confirmed that it was the most important factor in
both groups. Especially in the state classification model for the patient group, the relative
importance of COPW was much greater than that of all other factors. Based on these
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results, it was determined that using COPW as the factor for machine learning-based state
classification was the right decision.
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4. Discussion

A recent study by Tang et al. [5] used three different threshold values for distinguishing
between the standing and walking states, and proposed a method of tuning the threshold
values at each step by using the maximum and minimum GRF values from the previous
step, which they referred to as the self-tuning triple threshold algorithm (STTTA). However,
STTTA had the inherent limitation of decreased state classification accuracy due to shuffling
of the swing foot in the patient group. Djamaa et al. [28] used the GRF to classify the walking
state as shuffle walk, toe walk, and normal walk, and demonstrated that such classification
could be useful in diagnosing the presence of a disorder. However, this method too could
not avoid the classification error caused by shuffling.

On the other hand, the application of COPW , which was introduced as a new fac-
tor in the present study, to the threshold method yielded high mean state classification
accuracies of 95.69% and 95.05% in the experiments on the healthy adult and patient
groups, respectively, which indicated significant reduction in classification errors caused
by shuffling.

Figure 11 shows the state classification by applying the experimental data shown in
Figures 8 and 9 to the ANN model. The results showed almost no state classification error.
Moreover, the ANN model using COPW as the factor showed no classification delay, unlike
the threshold method using COPW .

Table 3 shows the delay in the state classification time in all gait experiments. The start
and end time points of walking represented the time points when the motion capture
marker placed on the solar plexus moved in the direction of walking, and the time delay
was defined as the difference in time between these time points, observed by the motion
capture system, and the time points for completion of state classification by the algorithm
developed in the present study.
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Table 3. Variation of time delay in the gait experiments.

Healthy Adults Patients

Walking Speed (m/s) 0.83 ± 0.08 0.29 ± 0.06

Method
Threshold method

ANN
Threshold method

ANN
GRF COPW GRF COPW

Time delay
(ms)

at start of
walking −11.8 ± 7.8 −24.8 ± 21.7 3.2 ± 10.1 52.1 ± 26.1 −155.5 ± 97.2 −9.0 ± 13.9

at stop of
walking −2.6 ± 12.4 193.3 ± 52.3 2.9 ± 9.3 −283.4 ± 104.7 139.3 ± 74.2 −3.9 ± 3.8

The most prominent gait characteristics of the patient group were (1) the time that
the foot stayed in contact with the ground was relatively longer than that in the healthy
adult group, owing to shuffling of the affected foot; (2) when the affected foot was lifted,
a significant weight shift occurred to the unaffected foot. Therefore, when the GRF is
used for state classification in the patient group, the foot touches down on the ground
after a time delay owing to shuffling of the affected foot. Consequently, there is a delay
in detecting the start of walking; the mean classification delay was found to be 52.1 ms.
At the end of walking, the swing foot touches down on the ground earlier due to shuffling,
when compared with the healthy adult group. Consequently, the classification process
prematurely assumes that the participant is in the standing state; the mean classification
delay was found to be −283.4 ms. The state classification delays in the healthy adult
group when classified by the GRF were −11.8 ms and −2.6 ms at the start and end of
walking, respectively. Because these classification delays were negligible, the results could
be considered as real-time classification.

The threshold method using COPW showed the mean state classification delay at end
of walking as 193.3 ms and 139.3 ms in the healthy adult and patient groups, respectively.
There were two causes for this classification delay. The first cause was the fact that the
waveform length was derived by a method that uses the sum of data within an arbitrary
time window. Therefore, it was influenced by the data from the previous time window.
In such cases, the calculation included the data from the previous walking state, even
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though the participant had already stopped, and, thus, the results may have continued
to show the participant in the walking state. The second cause is that even when the
participant stops walking, changes in the COP may continue to occur owing to the shaking
of the body until the participant comes to a complete stop. Such changes may be reflected
in COPW and the results may continue to show the participant in the walking state.

The mean time delay at the start of walking was −24.8 ms and −155.5 ms in the
healthy adult and patient groups, respectively, meaning that state classification occurred
before the start of walking in both groups. In the patient group, when the affected foot
was lifted, excessive weight shift occurred to the unaffected foot. This caused a sudden
increase in the amount of change in the COP before the knee movement, which could
have been classified as the walking state. In the healthy adult group, anticipatory postural
adjustments (APAs) appear, which are slight movements to maintain the balance before the
body moves [29]. In other words, when the participants in the healthy adult group began
walking from the standing position, the COP that was positioned between the two feet
entered an imbalance phase of moving toward the heel of the swing foot before walking
began. In the healthy adult group, such changes in the COP influenced COPW , whereby
the start of walking was classified prematurely.

When the ANN model was used, the time delay in state classification showed an
absolute value of <10 ms regardless of the group and type of walking state. Therefore,
classification using the ANN model can be considered as real-time state classification.
In Figure 6, the results of state classification using the ANN model showed very high mean
classification accuracies of 99.23% and 98.33% in the healthy adult and patient groups,
respectively. Therefore, the ANN model developed in the present study can be viewed
as a technique capable of real-time state classification with very high state classification
accuracy, suggesting its suitability for application in clinical practice.

The lower classification accuracy of the threshold method using COPW for the standing
state in the healthy adult group when compared with the other cases, as shown in Figure 6,
can be explained based on the occurrence of APAs. In other words, the COP changed as
the body wavered in the standing state, which would show a very similar pattern as the
change in COP due to APAs before the start of walking. Therefore, wavering of the body in
the standing state may have been erroneously classified as the walking state.

The method using COPW and the TAM method both require boolean-type logical
comparison calculations, whereas the ANN model goes through the matrix calculation,
so the amount of calculation is relatively increased compared to the above-mentioned two
methods. However, the amount of matrix computation performed by the ANN model used
in this study can be implemented in real-time.

5. Conclusions

The present study proposed a method for using the GRF data for state classification,
while also reducing the errors caused by shuffling. An appropriate input factor was selected
for state classification, and this factor was applied to the threshold method and machine
learning-based method to examine the state classification accuracy.

Consequently, COPw, the waveform length derived from the sum of all
.

COP within
an arbitrary time window, was selected as the state classification factor. The threshold
method using COPw showed the mean classification accuracy of≥95% in state classification
experiments on the healthy adult and patient groups. This method was found to show
significant improvement in the state classification error caused by shuffling, especially in
the experiments on the patient group. However, because the data from the previous step
were used in the computation to obtain COPw, a classification delay was also detected.
Moreover, changes in the COP that appear in the normal standing state may influence
COPw, which can lead to classification error.

However, the ANN model that used COPw as the factor showed excellent state classifi-
cation accuracy of ≥98% in both the healthy adult and patient groups, while also showing
no classification delay, which was observed in the threshold method using COPw.
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In conclusion, it was determined that the selection of COPw as the factor for state
classification was an appropriate choice. Moreover, the ANN model using COPw cannot
only fundamentally resolve the problem of state classification error caused by shuffling,
but is also capable of real-time state classification. Furthermore, the GRF measurement
device used in the present study was fabricated as an insole type that can be inserted into a
shoe. Thus, it can be worn conveniently and operated for a long time, which enhances its
applicability to actual clinical trials.

In future studies, the authors aim to develop a classification method with reduced state
classification errors caused by differences in the gait characteristics between healthy adults
and patients; change in direction of walking or turning during walking, and differences in
the walking speed will be examined, so that the proposed method can be adopted in actual
clinical experiments.
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Appendix A

As illustrated in Figure A1a, the GRF measuring insole device developed in the present
study comprised a total of 10 FSRs (FSR-402, Interlink Electronics, USA), of which five were
attached to the bottom of the insole for each foot. The locations of the FSR attachment were
as illustrated in Figure A1c, and as presented in Table A1. The locations were standardized
to use the height of each participant [22]. The distance between the center points of both
heels, depicted in Figure A1c, was assumed to be equivalent to the shoulder width.

The schematic of the gait analysis system is illustrated in Figure A1b. First, the GRF
data collected from the left insole were transmitted to the right insole via a Bluetooth
device; these data were subsequently combined with right foot GRF data and transmitted
to a PC wirelessly by Bluetooth for use in the analysis.
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Table A1. Location of FSRs for insole device.

No. Position x y

1 Toe, Left −0.191H × 0.5 + 0.25w l × 0.85

2 1st Metatarsal, Left −0.191H × 0.5 + 0.25w l × 0.73

3 5th Metatarsal, Left −0.191H × 0.5− 0.25w l × 0.64

4 Cuboid, Left −0.191H × 0.5− 0.25w l × 0.50

5 Heel, Left −0.191H × 0.5 l × 0.15

6 Toe, Right 0.191H × 0.5− 0.25w l × 0.85

7 1st Metatarsal, Right 0.191H × 0.5− 0.25w l × 0.73

8 5th Metatarsal, Right 0.191H × 0.5 + 0.25w l × 0.64

9 Cuboid, Right 0.191H × 0.5 + 0.25w l × 0.50

10 Heel, Right 0.191H × 0.5 l × 0.15

∗H = Height, l = 0.152×H, w = 0.055×H

Appendix B

In this study, the phase randomized Fourier surrogate method was used to determine
whether

.
COP was deterministic. In this method, the

.
COP data is Fourier transformed,

multiplied by a randomly assigned phase term, and then inverse Fourier transformed to
obtain surrogate data [30,31]. ApEn was calculated for each of the original

.
COP data and

surrogate data, and if there was a difference between these two ApEn values, the original
.

COP data was interpreted as a deterministic signal rather than a linear noise. The ApEn
values calculated from the

.
COP data of the healthy adult and patient groups obtained in

this study are shown in Figure A2. It can be seen that both groups have different ApEn
values obtained from original

.
COP data and surrogate data, and these results indicate that

the
.

COP data obtained in this study is a deterministic signal.
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