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ABSTRACT

Visual deprivation does not silence the visual cortex, which is responsive to auditory,

tactile, and other nonvisual tasks in blind persons. However, the underlying functional

dynamics of the neural networks mediating such crossmodal responses remain unclear.

Here, using braille reading as a model framework to investigate these networks, we

presented sighted (N=13) and blind (N=12) readers with individual visual print and

tactile braille alphabetic letters, respectively, during MEG recording. Using time-resolved

multivariate pattern analysis and representational similarity analysis, we traced the

alphabetic letter processing cascade in both groups of participants. We found that letter

representations unfolded more slowly in blind than in sighted brains, with decoding peak

latencies ~200 ms later in braille readers. Focusing on the blind group, we found that the

format of neural letter representations transformed within the first 500 ms after stimulus

onset from a low-level structure consistent with peripheral nerve afferent coding to

high-level format reflecting pairwise letter embeddings in a text corpus. The

spatiotemporal dynamics of the transformation suggest that the processing cascade

proceeds from a starting point in somatosensory cortex to early visual cortex and then to

inferotemporal cortex. Together our results give insight into the neural mechanisms

underlying braille reading in blind persons and the dynamics of functional reorganization

in sensory deprivation.
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INTRODUCTION

In the absence of vision, cortical areas traditionally characterized as visual in sighted

people are recruited for a range of nonvisual tasks (Pascual-Leone et al., 2005; Merabet

and Pascual-Leone, 2010; Kupers and Ptito, 2014; Amedi et al., 2017; Bedny, 2017),

suggesting a functional reorganization in response to sensory deprivation. For decades,

such crossmodal plasticity in blindness has been investigated using the cornerstone model

of braille, a text system of raised dots designed to be read haptically with the fingerpad

(Millar, 1997; Englebretson et al., 2023). This work has revealed a cortical network of

braille-sensitive regions including the left-lateralized “Visual” Word Form Area (VWFA)

(Dehaene and Cohen, 2011) representing multimodal orthographic formats and visual

print (Reich et al., 2011; Striem-Amit et al., 2012; Kim et al., 2017; Rączy et al., 2019),

and even early visual cortex (EVC), the starting point of the standard cortical visual

processing hierarchy (Sadato et al., 1996; Reich et al., 2011). Notably, EVC activity is

not merely epiphenomenal, but functionally important to braille reading: disruption,

whether by stroke or magnetic stimulation, selectively impairs letter recognition while

sparing basic somatosensation (Cohen et al., 1997; Hamilton and Pascual-Leone, 1998;

Hamilton et al., 2000). However, the extent of functional reorganization in, and thus the

functional role of, regions like EVC in the brains of congenitally blind persons remains a

subject of ongoing debate (Amedi et al., 2017; Bedny, 2017; Makin and Krakauer, 2023;

Seydell-Greenwald et al., 2023), in part becausethe temporal and representational

dynamics of the braille processing network remain poorly understood.

A larger body of analogous work has revealed how, in the sighted brain, print letters as a

special class of visual object stimulus (Cichy et al., 2014; Bi et al., 2016) are represented

as patterns of retinal stimulation, sub-letter features, and distinct and abstract letter

identities in high-level ventral visual cortex (Grainger et al., 2008; Madec et al., 2012;

Thesen et al., 2012; Isik et al., 2014; Fischer-Baum et al., 2017). Similarly elucidating the

dynamics of the braille text perception network in blind readers would clarify both the

building blocks of the braille reading process as well as structure of the larger sensory
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processing hierarchy in a functionally reorganized brain. This requires describing not

only the anatomical loci of relevant brain activity (Reich et al. 2011; Liu, Rapp, and

Bedny 2023), but the temporal and representational dynamics of the process. In analogy

to print characters, our working hypothesis was that braille characters must likewise

develop in ordered fashion from dot patterns impinging on the fingerpad into meaningful

components of written language, mediated by a cortical network including EVC

(Hamilton and Pascual-Leone, 1998; Ioannides et al., 2013; Haupt et al., 2024).

To test this hypothesis and reveal the underlying neural networks, we presented blind

participants with braille letters and sighted participants with visual print letters while

recording brain responses with MEG. We then used multivariate pattern classification

(Haynes and Rees, 2006; Carlson et al., 2013; Cichy et al., 2014) and model comparison

using representational similarity analysis (RSA) (Kriegeskorte et al., 2008; Kriegeskorte

and Kievit, 2013) to low- and high-level models of alphabetic letter representation to

characterize the processing hierarchy in both sighted and blind readers.

RESULTS

We presented congenitally or early-blind (N=12) and typically sighted (N=13)

participants with lowercase alphabetic letters while recording brain activity with

magnetoencephalography (MEG). We used analogous experimental designs and analyses

of each group: both subject groups were presented with a common set of 10 different

consonants, in tactile braille and in visual printed formats respectively (Fig. 1a; purple

eye and green hand icons indicate procedures and results for Sighted and Blind

participant groups, respectively, hereafter). Blind participants were all braille-proficient

since early childhood and had no history of vision better than nonspatial light perception,

and thus had no visual experience of the printed alphabet (see Table 1 for blind

participant details). They were presented with braille letters via a refreshable tactile

braille cell to the stationary fingerpad of their preferred index finger (10 left, 2 right).

Sighted subjects had normal or corrected-to-normal vision, no experience with reading
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braille visually, and were presented with lowercase print letters in standard font centrally

on a computer screen rear-projected into the MEG chamber.

On each trial, participants were presented with a letter for 500ms, followed by a 600 –

800 ms interstimulus interval (ISI). Trials were presented in random order, interspersed

with vigilance trials on which participants responded to a target character (either an ‘e’ or

an ‘o’ for blind, and ‘omega’ (Ω) for sighted) with a button press. Vigilance trials were

excluded from further analysis.

Both blind and sighted participants identified letters easily, as indicated by informal

pretesting and high performance on the vigilance task (mean hit rate 90%, d’ 3.63 for

blind; hit rate 96%, d’ 4.83 for sighted; see Fig. 1b). Notably, blind participants

performed highly despite receiving the stimulus on a static finger, rather than making

sweeping motions typical of naturalistic braille text reading. This allowed us to precisely

mark the experimenter-defined stimulus onset in both blind and sighted participants.

The temporal dynamics of braille and visual letter identity

To determine the temporal dynamics with which letter representations emerge in sighted

and blind brains, we subjected both data sets to an analogous analysis pipeline (Fig. 1c).

We first extracted trial epochs spanning -200 ms to +1000 ms relative to stimulus onset.

We then used time-resolved multivariate pattern analysis (MVPA) (Carlson et al., 2013;

Cichy et al., 2014; Guggenmos et al., 2018) to classify the 10 letter conditions pairwise

from MEG data for every millisecond in the epoch. We saved the classification results

(i.e. decoding accuracy) in a 10 x 10 decoding accuracy matrix (symmetric across the

diagonal, and the diagonal undefined) indexed in rows and columns by the conditions

classified.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2024. ; https://doi.org/10.1101/2024.10.30.620429doi: bioRxiv preprint 

https://paperpile.com/c/kStuGi/H06SG+UmEMp+oCnb
https://paperpile.com/c/kStuGi/H06SG+UmEMp+oCnb
https://doi.org/10.1101/2024.10.30.620429
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Experimental setup, analysis, and general MEG decoding results.
(a) Stimulus presentation and trial schematic. Single alphabetical letters were presented visually
at central fixation to sighted subjects, or to the stationary index fingerpad via braille display to
blind subjects. Procedures and results for the Sighted and Blind groups are color-coded and
denoted with purple eye and green hand icons, respectively. (b) Both groups readily perceived and
responded to occasional vigilance targets. Color-coded scatter plots indicate d’ for individuals;
boxplot shows median and interquartile range. (c) Time-resolved multivariate pattern analysis.
For each time point t and trial separately, we arranged MEG activity across the 306 sensors into
MEG pattern vectors. Single-trial pattern vectors were then whitened, and randomly assigned to
bins that were averaged to create M pseudo-trial vectors for increased signal-to-noise ratio. We
classified experimental conditions (i.e. the 10 letters) pairwise from the pseudotrials using a
linear support vector machine (SVM) classifier. The assignment of raw trials to pseudotrials and
classification procedure was repeated 100 times; the resulting mean decoding accuracy for each
stimulus pair populated a decoding matrix indexed in rows and conditions by the letters
classified, for each t. The decoding matrix — a representational dissimilarity matrix — formed the
basis of further analyses. For example, averaging across the matrix yielded a grand average time
course indicating the dynamics with which letter representations emerge. (d) Grand-average
classification time courses for letters for blind (green) and sighted (purple) participants.
Color-coded bars beneath plots indicate clusters of significant decoding; arrows indicate peaks,
with thin horizontal bars indicating 95% confidence intervals (CIs). Shaded region from 0–500 ms
indicates stimulus duration period. Significance was assessed via permutation-based cluster-size
inference (p<0.05 cluster-definition threshold, p<0.05 cluster threshold, one-sided, 500
permutations).

Averaging across decoding accuracy matrices at each point, we obtained grand-average

time courses indicating the dynamics with which letter representations emerge in blind

and sighted subjects (Fig. 1c, right panel). We assessed significance using non-parametric
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sign-permutation tests and controlled for multiple comparisons by cluster correction

(Maris and Oostenveld, 2007) (cluster definition threshold p < 0.05, cluster threshold p <

0.05). We report peak latencies as a measure of the time at which representations are best

discriminated indicating untangling (DiCarlo and Cox, 2007), as well as onset latencies

of the first significant cluster indicating the beginning of distinct letter processing (both

with bootstrapped 95% confidence intervals in brackets).

We found that letter stimuli were significantly discriminated in both blind braille readers

and sighted visual readers (Fig. 1d). As expected, in the sighted group, we observed the

standard curve shape for classifying single visual stimuli with an early onset at 32 ms

(22–75 ms), precipitating a sharp rise to a peak at 120 ms (113–127 ms), followed by a

gradual decline. In contrast, in the blind group we observed a different shape of the

classification time course: a less steep rise with a comparably early onset at 82 ms

(50–125 ms), led to a peak within a wide plateau at 329 ms (160–460 ms). The qualitative

differences and similarities were ascertained statistically (Supplementary Table S1), with

a significantly later peak by 209 ms (54–390 ms) in the blind compared to the sighted

subjects (p < 0.002, determined by bootstrapping) and no significant difference in onset

latency (p = 0.08).

Together, these results establish the feasibility of assessing braille letter representations

from MEG data, determine the time course with which braille letter representations

emerge in the blind brain, and provide a first comparative characterization of the neural

dynamics of braille letter representations in relation to visual letter representations in the

sighted brain.
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The representational format of neural responses to visual and braille letters

Figure 2: The evolving format of letter representations.
(a) Models used to test hypotheses about representational format. Low-level (visual, tactile)
models were tested specific to group/modality; high-level bigram model capturing text
embeddings was tested for both groups. (b) Schematic of model comparison between MEG data
and models. Comparisons are performed using partial rank-order (Spearman) correlation. (c,d)
Whole-brain model comparison time courses for sighted and blind participants. Significance
testing, significant time point clusters, peaks, and 95% CIs as in Fig. 1. Significance onset times
for each model shown at bottom of each plot.

The rationale in using RSA to relate the models to human brain activity (Fig. 2b) is to

abstract from incommensurate signal spaces, such as MEG sensors and computational

models, to a common space defined by pairwise dissimilarities between experimental
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conditions. The pairwise dissimilarities are aggregated in representational dissimilarity

matrices (RDMs) indexed in rows and columns by the conditions compared. Interpreting

decoding accuracy as a dissimilarity measure (i.e., higher accuracy indexes greater

representational differences (Kriegeskorte et al., 2008)), we used the decoding accuracy

matrices from the MVPA analysis as MEG RDMs. To compute the visual and tactile

model RDMs, we presented the experimental stimuli to the models, extracted the

resulting activation values into pattern vectors, and calculated pairwise dissimilarity

between pattern vectors using 1–Spearman correlation distance. The bigram model RDM

was populated by the inverted average co-occurrence frequency of each letter pair. We

then related the time-resolved MEG RDMs to the model RDMs by computing semipartial

Spearman correlations between them, resulting in two correlation time courses for each

participant group (Fig. 2b, right).

As expected, in the sighted group (Fig. 2c), visual letter representations exhibited a strong

and early correspondence with the visual low-level model (Cichy et al., 2016a),

beginning at 63 ms (38–132 ms) and peaking at 102 ms (75–155 ms) relative to stimulus

onset. However, we did not find significant evidence for correspondence to the high-level

bigram model. This pattern of results confirms the contribution of low-level feature

representations to individual visual letter processing, while remaining silent about the

format of high-level visual letter representations. In contrast, in the blind group (Fig. 2d),

both the low-level tactile model and the high-level bigram model corresponded

significantly with braille-elicited brain responses. Importantly, the bigram model

correlation emerged significantly later than the tactile model correlation for both onset

(414 ms; p=0.03) and peak latencies (465; p=0.0046); see Supplementary Table 2 for

details. These results characterize the evolving format of letter neural representations in

blind brains, revealing a transformation from a low-level tactile to a high-level linguistic

format.
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The spatial distribution of letter representations

We next aimed to refine the account of letter representations in sighted and blind brains

by assessing their spatial distribution. For this, we decoded source-localized MEG

activity in three key regions of interest (ROIs) relevant to visual and braille letter

perception (Fig. 3a): 1) Sensorimotor Cortex (SM), the cortical point of entry for tactile

stimulation (Hamilton and Pascual-Leone, 1998; de Haan and Dijkerman, 2020); 2) Early

Visual Cortex (EVC), the cortical point of entry for visual stimulation (Hubel and Wiesel,

1962; Felleman and Van Essen, 1991); and 3) left-lateralized Fusiform/Inferotemporal

Cortex (IT), a high-level part of the ventral visual stream comprising the VWFA and

other letter-sensitive regions (Grainger et al., 2008; Dehaene and Cohen, 2011; Reich et

al., 2011; Striem-Amit et al., 2012; Lochy et al., 2018). We conducted the time-resolved

MVPA analogous to the whole-brain analysis outlined above, but separately for each

ROI.

ROI-wise decoding results are shown in Fig. 3b. As expected, in the sighted group we

observed strong decoding in EVC and IT, the entrance and late processing stage of visual

processing in the brain. We also observe weaker but significant decoding in SM with a

similar curve shape as for EVC and IT, likely a result of signal leakage. Comparing

decoding onset and peak latencies across ROIs for the sighted group, we found only one

significant difference, an earlier onset in EVC than in SM (-37 ms (-3 – 72 ms), p = 0.04;

all other p > 0.2).
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Figure 3: Spatiotemporal distribution of letter representations and formats in key ROIs.
(a) Key anatomical regions of interest (ROIs) for MEG source localization. Sensorimotor (SM, top)
comprises pre- and postcentral gyri on the right (sighted) or stimulation-contralateral (blind)
hemisphere. Early visual cortex (EVC, middle) comprises pericalcarine, lateral occipital, cuneus,
and lingual gyrus ROIs. Inferotemporal (IT, bottom) comprises left-lateralized inferotemporal and
fusiform anatomical ROIs. (b) ROI-specific MEG decoding of letters color-coded by group, in rows
as specified in (a). Triangles and thin horizontal bars indicate peaks with 95% CIs; thick bars
below curves indicate significant clusters as in previous figures. (c,d) ROI-specific MEG-model
correlation time courses for group-specific low-level (visual, c; tactile, d) and common high-level
(bigrams) representational models. Peaks, significant clusters, significance onsets, and CIs
color-coded by model. Significance was assessed as in whole-brain analyses, via
permutation-based cluster-size inference (p < 0.05 cluster-definition threshold, p < 0.05 cluster
threshold, one-sided, 500 permutations).

In contrast, in the blind group, we observed strong and comparable braille decoding

effects in SM, EVC and IT, suggesting that all three regions are involved in processing

tactile letter representations. We qualitatively observed a systematic increase in onset

latency, with shortest latency in SM 63 (28 ms–114 ms), followed by EVC 94 ms

(67–149 ms) and finally IT 143 ms (80–399 ms), suggesting a processing cascade.

Pairwise comparison of onset latencies across ROIs partially supported this observation,
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with significant SM–EVC and SM–IT effects (ps<0.05), but not between EVC and IT

(p=0.12). Peak latencies did not differ significantly (all p>0.1).

These results clarify the distribution of letter representations in sighted and blind

participants, tentatively suggesting a processing cascade for tactile letter representations

in the blind from SM over EVC to IT.

The format of letter representations in SM, EVC and IT

Based on the spatially-resolved MVPA analysis, we next repeated the above analysis

linking computational models to neural responses, but separately for each ROI rather than

across the whole-brain MEG data as above. In the sighted group (Fig. 3c), for the

low-level visual model we observed the expected pattern of results (Grainger et al., 2008;

DiCarlo et al., 2012; Cichy et al., 2014): the model predicted activity in EVC and IT as

bookends of the feedforward ventral visual stream, but not in sensorimotor cortex (see

Supplementary Tables S4 and S5). The high-level bigram model did not predict activity

in any ROI. This shows that low-level representations of letters localize to EVC and IT

within the regions we examined.

In the blind group (Fig. 3d), both the low-level tactile and the high-level bigram models

correlated significantly with MEG decoding patterns in all three ROIs (details see Table

S4). Consistent with the outcome of the MVPA analysis, this establishes that all ROIs

process braille letters in both low tactile- and high linguistic-level in the blind brain.

Beyond this we detected two further patterns in the results. First, we qualitatively

observed that the onset latencies of the correlation time course for the tactile model were

earlier than for the bigram model in all three ROIs, consistent with the results pattern

observed for the sensor-level analysis above. This observation was statistically

ascertained for onset latencies in SM (latency difference 185 ms, p=0.0214), marginally

significant in EVC (370 ms, p=0.078), but not supported in IT (p=0.14). This strengthens
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the view that tactile letter representations transform from a low-level tactile to a

high-level linguistic format across time. Second, onset latencies for both models

qualitatively followed the same order as for the analysis decoding Braille letters from

ROIs: onset latencies were shortest in SM, followed by EVC and then finally IT

(respectively: 148, 189, 354 ms for tactile; 333, 559, 630 ms for bigrams). However, this

observation was supported statistically only for the delay between SM and IT (206 ms,

p<0.002; see Supplementary Table S5 for details).

Together, our results show that SM, EVC and IT all contribute to processing braille letter

representations in the blind brain, and suggests that a spatial hierarchy starting with SM

and ending in IT mediates the transformation of earlier low-level tactile into later

high-level linguistic representations.

The inter-region dynamics of letter representations

The above analyses capture representational dynamics for each region separately.

However, in a functional network, regions interact and stimulus information is

communicated across regions over time, during which we would expect representational

formats to be shared between the neural dynamics of the communicating ROIs. Thus, in a

final step we interrogated the evolution of letter representations by assessing shared

representations across the 3 ROI pairs (i.e. SM and EVC, EVC and IT, and SM and IT)

for each group. For this we used a model-based commonality analysis based on variance

partitioning (Seibold and McPhee, 1979; Hebart et al., 2018). In brief (Fig. 4a,b), we

determined the shared variance between MEG RDMs in a given region pair (e.g. EVC

and IT) and either the low- or the high-level model, while discarding the effect of the

other model. The analysis yields a commonality coefficient R2 indicating each model’s

unique contribution to the shared variance at all time-point combinations between ROIs,

producing a 2D matrix of R2 values for each model and ROI pair, with respective ROI

time points indexing the row and column axes (Fig. 4b). We statistically assessed the R2

for each model against the other, i.e. the difference score between low- and high-level
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models and vice versa. The relative onsets (edges) and centroids of the resultant

two-dimensional patches of unique model contributions were compared within this space

(Fig. 4c; see Methods for details).

(Figure 4 caption on following page)
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Figure 4. Interregional dynamics of shared letter representations.
(a) Schematic of commonality analysis identifying shared variance between pairs of ROI-specific
MEG data and models. (b) Computing the commonality R2 for both models across all pairs of
time points between MEG ROIs yields a temporal generalization map of uniquely shared variance
for each model, expressed as an R2 difference score for low (left) or high-level (right)
representations. (c) The geometry of the resulting “patches” of significance indicates inter-model
differences in temporal dynamics (left) or inter-ROI temporal differences (right) suggestive of
information flow. (d,e) Commonality results for sighted and blind groups, respectively, with low-
and high-level representations plotted separately for clarity. White dotted lines indicate stimulus
onset. White contours outline significant clusters, assessed by 2-d permutation-based
cluster-size inference with parameters as in other analyses (p < 0.05 cluster-definition threshold, p
< 0.05 cluster threshold, one-sided, 500 permutations).

In the sighted group, we found significant effects for the low-level visual model only for

EVC and IT (Fig. 4d, left column) between ~100–400 ms. In contrast, we found

significant effects for the high-level bigram model for all region pairs emerging (Fig. 4d,

right column) between ~500–900 ms. For the EVC-IT pair, where both models fit the

neural data, shared low-level visual model contributions reliably preceded high-level

bigram fits in both EVC (onset asynchrony 453 ms, p = 0.002; centroid asynchrony 711

ms, p < 0.002) and IT (onset asynchrony 464 ms, p = 0.044; centroid asynchrony 667 ms,

p < 0.002). This suggests that EVC, IT and VWFA partake in representing low-level

visual representations, whereas only EVC and IT partake in representing both low-level

visual letter representations before high-level bigram representations emerge.

For the blind group (Fig. 4e), we find significant effects for all region pairs, for both the

low-level tactile as well as the high-level bigram model. Qualitative inspection suggested

that effects for the low-level tactile model emerged prior to the high-level bigram model,

but this was not substantiated by statistical analysis (all p > 0.14). Together, the result

indicates that EVC, IT and VWFA share low- and high-level braille letter representations.

DISCUSSION

Summary

In the present study, we observed the time course of MEG responses to alphabetic braille

characters presented to the fingerpads of early-blind participants, and visual printed

letters presented foveally to sighted participants. This allowed us to establish the specifics
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of braille letter representations in blind readers, compared to the visual processing route

in sighted subjects. Our main findings are twofold. First, we establish the differential

temporal dynamics with which alphabetic letter representations emerge in blind and

sighted brains. Second, we detail how letter representations are transformed from a

low-level sensory to high-level linguistic format across processing time and cortical

regions.

The temporal dynamics of braille letter representations in blind brains

Previous work characterizing the temporal dynamics of neural response patterns has

helped to reveal the functional architecture of visual (DiCarlo and Cox, 2007; Cichy et

al., 2014; Yamins and DiCarlo, 2016; Cichy and Kaiser, 2019; Graumann et al., 2022)

and auditory (Brodbeck et al., 2018; Ogg et al., 2020; Lowe et al., 2021) processing

cascades. Here we thus assessed the temporal dynamics of neural responses to alphabetic

responses in braille and print format in blind and sighted brains respectively. Our results

revealed different dynamics of letter perception in blind compared to sighted readers,

with slower dynamics in the blind group. This difference in processing speed might

contribute to the generally slower reading speed for braille compared to print character

text (Wetzel and Knowlton, 2000). More generally, our results demonstrate the feasibility

of decoding rich single-letter braille representations from MEG, despite suboptimal

reading conditions compared to more ecological behavior. A supplementary temporal

generalization analysis (King and Dehaene, 2014) further refines this view, showing that

both persistent and transient neural representations underlie the observed time courses in

both groups and exhibit different dynamics across ROIs (Supplementary Figs. S1, S2).

Together these findings invite future research to harvest the power and sensitivity of

multivariate methods for research on brain plasticity using braille reading as a model

system.
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The format of braille letter representations in blind brains

We found that the brains of blind participants transform representations of braille letters

from tactile to linguistic format reflecting the statistics of their pairwise embedding in

written text, although each letter was only ever presented as an individual stimulus. This

pattern is reminiscent of the gradual abstraction of relevant features from sensory input

representations in, e.g., vision (Carlson et al., 2013; Cichy et al., 2014, 2016b) and

audition (de Heer et al., 2017; Ogg et al., 2020; Lowe et al., 2021; Giordano et al., 2023).

Our results are consistent with previous RSA-based modeling of visual word reading in

fMRI (Fischer-Baum et al., 2017), which suggests dissociable visual, orthographic, and

semantic processing in ventral occipitotemporal and angular gyrus ROIs. While

abstract/semantic representations of single letters are less straightforward than those of

whole words (Popham et al., 2021), phrases (Fyshe et al., 2016; Fyshe, 2020), or

continuous language (Caucheteux et al., 2023), sublexical processing is tied to visual

reading performance in development (Ritchey and Speece, 2006; Acha et al., 2024) as

well as adult braille reading (Wilson et al., 2024). Extending earlier work by resolving

text-elicited brain responses at the single-letter and millisecond level, we reveal a

dynamic and brain-wide network rapidly transforming letter representations through

persistent, overlapping representational stages.

Counterintuitively, we found that the bigram model contributes to visual print

representations in sighted participants, but only in the commonality analysis. Given that

the co-occurrence statistics of this model were derived from a visual print corpus, what

would explain the relative scarcity of a bigram-related signature in sighted versus blind

letter responses? The commonality analysis focuses on signals shared across ROI pairs

and the model, effectively eliminating non-shared variance. This suggests that aspects of

representations reflecting bigram contributions are shared between ROIs, whereas other

aspects of the representations are not. These non-shared aspects are arguably strong

contributors to representations: for example, coding for low-level visual features in EVC

would have been driven by 500 ms of continuous input from a high-contrast uncrowded
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letter image of typical size for visual neuroscientific studies, but an order of magnitude

larger than the 0.2° (or less) subtended by standard printed text (Beier and Oderkerk,

2019). By contrast, braille-reading participants were presented with letters at the same

scale they would be typically read. While this design maximized the visual neural signal

available for decoding, the proportional imbalance might have caused the visual input to

overwhelm higher-level, more abstract signals for individual ROI or whole-brain

analyses.

Our approach presents fertile ground for further elucidating the cortical representations

activated during braille reading. This could incorporate more and different models,

including those derived from behavioral judgments (Haupt et al., 2024) and richer

representations elicited by using full words or sentences as stimuli. In addition, while

braille students typically learn alphabetic letters first, modern braille text is often

rendered in contracted form (D’Andrea et al., 2014); braille-specific models of high-level

text representations should account for this when using enriched stimuli. The RSA-based

modeling approach could also illuminate evolving representations in braille learners as

they improve their proficiency, e.g. by tracking changes in the compositionality of letter

combinations (Agrawal et al., 2019, 2020).

A processing cascade for tactile letter representations in the blind from SM over EVC

to IT?

Crossmodal plasticity in early- and congenitally blind braille readers has been a source of

debate for decades (Sadato et al., 1996; Büchel, 2003; Amedi et al., 2017; Bedny, 2017;

Makin and Krakauer, 2023). Our results inform this debate by suggesting a processing

cascade in which tactile braille afferents enter SM and are communicated

cortico-cortically to EVC before continuing to IT. This suggests that EVC plays a

mediating role between SM and IT, rather than being an epiphenomenal activation.

Furthermore, a somatosensory-EVC pathway has been implicated in detecting and

identifying tactile/braille stimuli (Hamilton and Pascual-Leone, 1998; Pascual-Leone et
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al., 1999; Ioannides et al., 2013), but has not been shown directly. Here we provide

empirical evidence consistent with this prediction.

While further work is needed to detail the spatiotemporal dynamics of braille reading, our

work makes clear predictions about the nature and spatiotemporal profile of braille letter

processing that could be experimentally probed with active methods such as TMS (Cohen

et al., 1997; Hamilton and Pascual-Leone, 1998). The spatial characterization of these

functional networks may also be pursued with fMRI, and link spatially and temporally

resolved representations in M/EEG for a spatiotemporally integrated view (Haupt et al.,

2024).

Limitations

Our experimental framework for assessing braille letter perception must be viewed in

light of several key limitations in ecological and external validity to real-world context.

First, the braille reading conditions encountered by our blind participants were atypical.

To precisely control stimulus presentation timing, minimize muscle artifacts, and

maximize the signal-to-noise ratio of the MEG recordings via repeated presentations, we

presented an alphabetic subset of single letters to our braille readers’ static fingers via

refreshable braille display, asking them to omit the active sweeping movements typically

observed in braille readers. Still, they identified letters with relative ease (Fig. 1b),

suggesting that our results could generalize to braille processing in real-world situations.

Second, our setup does not assess higher-level lexical content characteristic of real-world

braille text reading as captured in words, sentences and stories. However, the model

analyses revealed neural sensitivity to both the letters’ low-level features and their

embedding statistics in written text, a convincing signature of literacy even at the

single-letter level. Finally, naturalistic reading in proficient braille readers often involves

two hands (Martiniello and Wittich, 2022), a cross-hands integration step explored in

similar recent single-letter work (Haupt et al., 2024) but not addressed here. Solving the
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technical challenges of brain measurements in active reading would address all these

limitations to reveal the sensorimotor dynamics of continuous text processing.

Conclusions

In sum, the present study reveals the spatiotemporal and representational dynamics of

alphabetic letter processing in blind readers: it involves a transformation from low- to

high-level representations that is realized in a cortical network suggestive of a cascade

from sensorimotor cortex, over EVC to IT.
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METHODS

Twelve congenitally or early-blind (7 females; mean age 28.8 y, 5.7 SD) volunteers

participated in the study (see Table 1 for details). The maximum age of blindness onset

was 3 years. Participants were self-reported fluent daily braille readers and native English

speakers. They were either totally blind or had nonspatial light perception; none had had

any experience with printed letter reading or visual form generally.. Additionally, 13

sighted volunteers (8 females; mean age 27.1 y, 4.9 SD) with normal or corrected vision

were recruited as the visual control group. All participants were compensated for their
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participation and gave written informed consent in accordance with the guidelines of

MIT’s Committee on the Use of Humans as Experimental Subjects.

ID M/F
Age at test
(years)

Blindness
level

Blindness onset
age (years)

1 F 34 Total 0

2 F 24 LP 0

3 M 28 Total 0

4 F 29 Total 0

5 M 27 LP 0

6 F 26 LP 0

7 F 29 Total 0

8 F 32 Total 3

9 M 39 LP 0

10 M 24 LP 0

11 F 35 LP 3

12 M 18 LP <1

Table 1. Blind participant demographics and characteristics.
Total = total blindness, no light perception in either eye. LP = light perception, no spatial
perception.

Stimuli, task and procedure

Braille stimuli for blind readers comprised 12 single lowercase alphabetic letters (b, c, d,

e, l, m, n, o, v, x, y, z), presented via a custom-built single-cell refreshable braille display

(model P16; Metec AG, Stuttgart, Germany). The subset was chosen to cover a wide

range of letter positions in the alphabet while maximizing stimulus repetitions, and thus

signal, within experimental time constraints. During testing, participants rested their

index finger on the braille display cell, which presented the stimulus directly to their

stationary fingerpads. To reliably peg stimulus onset times to the display’s piezoelectric

rods, we affixed a small accelerometer to each participant’s fingernail, registering each

impact as a z-axis “spike” synchronized to the MEG recording. Visual stimuli for the

sighted group comprised the full alphabet of 26 lowercase alphabetic print letters,
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rendered in Myriad Pro Bold font using Adobe Illustrator (Adobe, Inc., San Jose, CA)

and presented foveally to subtend ~2° on a rear-projection screen. From this set, the

subset of 10 letters corresponding to the braille stimuli was extracted for equivalent

analysis to the braille conditions. For both groups, letters were presented in

pseudorandom order using custom code and the Psychophysics Toolbox (Brainard, 1997)

for Matlab (The MathWorks, Natick, MA). Stimulus duration was 500 ms, with SOA

jittered between 1100 and 1300 ms. The experimental sessions comprised approximately

10 runs, resulting in an average of ~100 presentations per letter condition. Participants

performed a vigilance letter-detection task by responding via button press to targets

(either an ‘e’ or an ‘o’ for blind, and ‘omega’ (Ω) for sighted) which appeared every 3 to

5 trials. All target trials were excluded from further analyses reported here.

MEG data acquisition

We scanned participants in an Elekta Neuromag TRIUX MEG scanner (Elekta,

Stockholm, Sweden), with continuous whole-brain data acquisition at 1 kHz from 306

sensors (204 planar gradiometers; 102 magnetometers), filtered online between 0.3 and

330 Hz. Head motion was tracked at 330 Hz using five head-position indicator coils

affixed to each subject’s scalp, whose location was digitized prior to scanning along with

three fiducials and other location markers.

Data preprocessing

Data were motion-compensated and spatiotemporally filtered offline using Maxfilter

software (Elekta, Stockholm, Sweden). All further analysis was conducted using a

combination of Brainstorm software (Tadel et al., 2011) and custom analysis scripts, both

Matlab-based. From the preprocessed MEG data, we extracted trial epochs for each letter

presentation with a prestimulus baseline of 200 ms and 1000 ms post-stimulus onset. For

each epoch, the baseline mean was removed and a 30 Hz low-pass filter applied.
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Multivariate analysis of MEG data

We decoded letter identity from trial epochs using a linear support vector machine (SVM;

Chang and Lin, 2011 http://www.csie.ntu.edu.tw/~cjlin/libsvm/). For each time point in

the epoch, the following analysis was performed: The MEG data yielded a

306-dimensional pattern vector for each of N trials per condition (Fig. 1b). The

single-trial pattern vectors were whitened and reduced using PCA to improve SNR, then

randomly sub-averaged to yield N10=N/10 subaverages per condition, which were then

used in a leave-one-out cross-validation approach to train the SVM classifier for every

pairwise condition comparison (Cichy et al., 2014; Guggenmos et al., 2018). This process

was repeated 100 times, each time with randomized sub-averaging and assignment of

training and testing sets. The overall measure of decoding accuracy for a given pairwise

comparison and time point was the mean of those 100 permutations. Decoding each pair

of conditions (45 pairs for 10 conditions) produced a symmetric 10 x 10 decoding matrix

of pairwise decoding accuracies, with the diagonal undefined, for each time point. Thus,

analysis of each trial epoch resulted in 1201 such matrices. Interpreting decoding

accuracy as a measure of dissimilarity, the decoding matrix is a representational

dissimilarity matrix (RDM; Kriegeskorte et al., 2008). To generate the grand average

decoding time course for the epoch (Fig. 1c), a mean accuracy was computed from the

individual pairwise accuracies of the RDM for each time point.

MEG source estimation and ROI selection

We estimated cortical generators of the MEG signal using Brainstorm's minimum norm

estimate (MNE) method, normalized by noise estimates using a dynamical Statistical

Parametric Mapping (dSPM) approach (Dale et al., 2000). For 8 of 12 blind participants,

individual T1 structural MRI scans were used to create personalized cortical models; for

all remaining subjects, we used Brainstorm's default cortical model based on the MNI152

template (Fonov et al., 2009). Cortical source estimates were computed on a grid of

approximately 15,000 vertices spanning the cortical surface. The forward model was

constructed using the overlapping spheres approach (Huang et al., 1999), and MEG
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signals were mapped onto the cortex using dSPM. From the resulting cortical activity

map, we defined ROIs by selecting vertices corresponding to anatomical regions defined

in the Desikan-Killiany anatomical atlas (Desikan et al., 2006). For the Sensorimotor

(SM) ROI, we selected the pre- and postcentral gyrus atlas regions contralateral to the

braille-stimulated finger in the blind group (R hemisphere for 9 of 12 subjects); for the

sighted group, lacking an analogous selection principle, we used right-hemisphere

regions. Our Early Visual Cortex (EVC) ROI combines bilateral pericalcarine, lingual,

lateral occipital, and cuneus atlas regions. Finally, our Inferotemporal (IT) ROI combines

left-lateralized inferior temporal and fusiform atlas regions, comprising several

left-lateralized regions known to encode higher-level linguistic representations of written

text (Reich et al., 2011; Thesen et al., 2012; Fischer-Baum et al., 2017; Haupt et al.,

2024). The estimated activity in those regions was subjected to the same sensor-space

MVPA decoding analysis described above.

RDM representational models

To interrogate the representational content of the MEG responses, we computed RDMs

corresponding to predicted responses at different levels of analysis. Specifically, we

hypothesized sensory-specific low-level response patterns for each group, and a common

higher-level abstracted representation for both groups. To model low-level visual

representations in the sighted group (“Visual” model), we extracted activations elicited by

the visual letter images in the first convolutional layer of a deep neural network, AlexNet,

pretrained on ImageNet to categorize visual objects (Deng et al., 2009; Krizhevsky et al.,

2012; Cichy et al., 2016a). The analogous “Tactile” braille model for the blind group

computes simulated afferent nerve responses to the spatiotemporal braille indentation

pattern on the distal index fingerpad using the Matlab-based touchSIM toolbox (Saal et

al., 2017). We set the toolbox stimulation parameters to closely resemble the physical

experiment: pins of radius 0.7 mm spaced at 2.5 mm; 0.7 mm indentation in the center of

the distal index fingerpad (region D2d) for 500 ms with 20 ms linear ramp; all available

innervating fibers (SA1, RA, PC) simulated at full density. From the resulting
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945-afferent output, the time-averaged rate vector was extracted to represent the response

to each letter. The low-level model RDMs in both cases comprised the pairwise

correlation distances (1 – Spearman’s ⍴) between the extracted vectors for each stimulus

condition. Finally, because individual letters are semantically impoverished compared to

words or longer text, our higher-level model leveraged the statistics of pairwise letter

co-occurrences (“Bigrams”) over a Google Books English-language text corpus

comprising approximately 2.8 trillion exemplars (Norvig, 2013). Bigram co-occurrence

frequencies were normalized to the corpus, averaged to be order-independent (e.g. ‘BL’

and ‘LB’ frequencies were averaged), then inverted to index dissimilarity, thus matching

the pairwise format of our neural decoding approach. A neural correspondence to the

Bigrams model would imply high-level sensitivity to letter distributions in written

language, rather than to physical letter similarities: more frequent occurrences of a

particular bigram reflect lower pairwise dissimilarity in the model and lower MEG

decoding accuracy for that letter pair, and vice versa. For all models, Model-MEG

correspondence was computed via rank-order semipartial correlation (Spearman’s ⍴)

between each computational model RDM and the empirical RDM of the MEG pairwise

decoding matrix at each time point, controlling for the effect of the other model (Hebart

et al., 2018; Dobs et al., 2019).

Statistical analysis

The decoding time courses, temporal generalization results, MEG-model correlations,

and model-based commonality analyses were tested for significance via permutation tests

for cluster-size inference and bootstrap tests for peak and onset time confidence intervals

(Nichols and Holmes, 2002; Maris and Oostenveld, 2007; Cichy et al., 2014). The null

hypothesis against which correlations or decoding accuracies were tested was 50%

(chance) decoding accuracy or 0 correlation between MEG and model RDMs. To

generate an empirical null distribution, we created 1000 permutation samples in which

each participant’s MEG response was randomly multiplied by +1 or -1, thus allowing the

conversion of the data into p-values. We then corrected for multiple comparisons across
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time points via cluster-size inference (cluster-definition threshold = p < 0.05), using

cluster size as the statistic of interest, an analysis more sensitive to temporally extended

weak effects than brief strong effects. Clusters were reported as significant if they

contained more time points than 95% of the maximal cluster size distribution (cluster-size

threshold = p < 0.05). Note that while each individual cluster-based analysis corrects for

multiple comparisons across time points, we did not correct the inter-ROI, inter-group, or

inter-model analyses for multiple comparisons. Finally, for peak latency and cluster onset

distributions, we bootstrapped the participant sample (with replacement) 500 times,

repeating the above analysis for each iteration. This produced an empirical distribution of

onsets and peak/centroid latencies from which we estimated 95% confidence intervals.

For our directional hypotheses (e.g. low-to-high-level representation onset asynchrony

between two ROIs), we applied 1-tailed tests.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2024. ; https://doi.org/10.1101/2024.10.30.620429doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.30.620429
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES

Acha J, Ibaibarriaga G, Rodríguez N, Perea M (2024) Lexical and sublexical skills in children’s
literacy. J Lit Res 56:6–26.

Agrawal A, Hari K, Arun SP (2020) A compositional neural code in high-level visual cortex can
explain jumbled word reading. Elife 9 Available at: http://dx.doi.org/10.7554/eLife.54846.

Agrawal A, Hari KVS, Arun SP (2019) Reading Increases the Compositionality of Visual Word
Representations. Psychol Sci 30:1707–1723.

Amedi A, Hofstetter S, Maidenbaum S, Heimler B (2017) Task Selectivity as a Comprehensive
Principle for Brain Organization. Trends Cogn Sci 21:307–310.

Bedny M (2017) Evidence from Blindness for a Cognitively Pluripotent Cortex. Trends Cogn Sci
21:637–648.

Beier S, Oderkerk CAT (2019) Smaller visual angles show greater benefit of letter boldness than
larger visual angles. Acta Psychol (Amst) 199:102904.

Bi Y, Wang X, Caramazza A (2016) Object Domain and Modality in the Ventral Visual Pathway.
Trends Cogn Sci 20:282–290.

Brainard DH (1997) The Psychophysics Toolbox. Spat Vis 10:433–436.

Brodbeck C, Hong LE, Simon JZ (2018) Rapid Transformation from Auditory to Linguistic
Representations of Continuous Speech. Curr Biol 28:3976–3983.e5.

Büchel C (2003) Cortical hierarchy turned on its head. Nat Neurosci 6:657–658.

Carlson T, Tovar DA, Alink A, Kriegeskorte N (2013) Representational dynamics of object
vision: the first 1000 ms. J Vis 13 Available at: http://dx.doi.org/10.1167/13.10.1.

Caucheteux C, Gramfort A, King J-R (2023) Evidence of a predictive coding hierarchy in the
human brain listening to speech. Nat Hum Behav 7:430–441.

Chang C-C, Lin C-J (2011) LIBSVM: A library for support vector machines. ACM Trans Intell
Syst Technol 2:1–27.

Cichy RM, Kaiser D (2019) Deep Neural Networks as Scientific Models. Trends Cogn Sci
23:305–317.

Cichy RM, Khosla A, Pantazis D, Torralba A, Oliva A (2016a) Comparison of deep neural
networks to spatio-temporal cortical dynamics of human visual object recognition reveals
hierarchical correspondence. Sci Rep 6:27755.

Cichy RM, Pantazis D, Oliva A (2014) Resolving human object recognition in space and time.
Nat Neurosci 17:455–462.

Cichy RM, Pantazis D, Oliva A (2016b) Similarity-Based Fusion of MEG and fMRI Reveals
Spatio-Temporal Dynamics in Human Cortex During Visual Object Recognition. Cereb

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2024. ; https://doi.org/10.1101/2024.10.30.620429doi: bioRxiv preprint 

http://paperpile.com/b/kStuGi/0ysu
http://paperpile.com/b/kStuGi/0ysu
http://paperpile.com/b/kStuGi/oxjg
http://paperpile.com/b/kStuGi/oxjg
http://dx.doi.org/10.7554/eLife.54846
http://paperpile.com/b/kStuGi/oxjg
http://paperpile.com/b/kStuGi/2Ebe
http://paperpile.com/b/kStuGi/2Ebe
http://paperpile.com/b/kStuGi/mBYd
http://paperpile.com/b/kStuGi/mBYd
http://paperpile.com/b/kStuGi/k9xpI
http://paperpile.com/b/kStuGi/k9xpI
http://paperpile.com/b/kStuGi/nnpj
http://paperpile.com/b/kStuGi/nnpj
http://paperpile.com/b/kStuGi/i4KZ
http://paperpile.com/b/kStuGi/i4KZ
http://paperpile.com/b/kStuGi/Eyxv
http://paperpile.com/b/kStuGi/f5Wx
http://paperpile.com/b/kStuGi/f5Wx
http://paperpile.com/b/kStuGi/dWAT
http://paperpile.com/b/kStuGi/UmEMp
http://paperpile.com/b/kStuGi/UmEMp
http://dx.doi.org/10.1167/13.10.1
http://paperpile.com/b/kStuGi/UmEMp
http://paperpile.com/b/kStuGi/eMCu
http://paperpile.com/b/kStuGi/eMCu
http://paperpile.com/b/kStuGi/s63b
http://paperpile.com/b/kStuGi/s63b
http://paperpile.com/b/kStuGi/Mlcj
http://paperpile.com/b/kStuGi/Mlcj
http://paperpile.com/b/kStuGi/lmuv
http://paperpile.com/b/kStuGi/lmuv
http://paperpile.com/b/kStuGi/lmuv
http://paperpile.com/b/kStuGi/H06SG
http://paperpile.com/b/kStuGi/H06SG
http://paperpile.com/b/kStuGi/mKW8
http://paperpile.com/b/kStuGi/mKW8
https://doi.org/10.1101/2024.10.30.620429
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cortex 26:3563–3579.

Cohen LG, Celnik P, Pascual-Leone A, Corwell B, Falz L, Dambrosia J, Honda M, Sadato N,
Gerloff C, Catalá MD, Hallett M (1997) Functional relevance of cross-modal plasticity in
blind humans. Nature 389:180–183.

Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E (2000)
Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution
imaging of cortical activity. Neuron 26:55–67.

D’Andrea FM, Wormsley DP, Savaiano ME (2014) Chapter Five - Unified English Braille in the
United States: A Research Agenda for Transition and Instruction. In: International Review of
Research in Developmental Disabilities (Hatton DD, ed), pp 145–175. Academic Press.

de Haan EHF, Dijkerman HC (2020) Somatosensation in the brain: A theoretical re-evaluation
and a new model. Trends Cogn Sci 24:529–541.

Dehaene S, Cohen L (2011) The unique role of the visual word form area in reading. Trends Cogn
Sci 15:254–262.

de Heer WA, Huth AG, Griffiths TL, Gallant JL, Theunissen FE (2017) The Hierarchical Cortical
Organization of Human Speech Processing. J Neurosci 37:6539–6557.

Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) ImageNet: A large-scale hierarchical
image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp
248–255. IEEE.

Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM,
Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for
subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.
Neuroimage 31:968–980.

DiCarlo JJ, Cox DD (2007) Untangling invariant object recognition. Trends Cogn Sci
11:333–341.

DiCarlo JJ, Zoccolan D, Rust NC (2012) How does the brain solve visual object recognition?
Neuron 73:415–434.

Dobs K, Isik L, Pantazis D, Kanwisher N (2019) How face perception unfolds over time. Nat
Commun 10:1258.

Englebretson R, Cay Holbrook M, Fischer-Baum S (2023) A position paper on researching braille
in the cognitive sciences: decentering the sighted norm. Appl Psycholinguist 44:400–415.

Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral
cortex. Cereb Cortex 1:1–47.

Fischer-Baum S, Bruggemann D, Gallego IF, Li DSP, Tamez ER (2017) Decoding levels of
representation in reading: A representational similarity approach. Cortex 90:88–102.

Fonov VS, Evans AC, McKinstry RC, Almli CR, Collins DL (2009) Unbiased nonlinear average

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2024. ; https://doi.org/10.1101/2024.10.30.620429doi: bioRxiv preprint 

http://paperpile.com/b/kStuGi/mKW8
http://paperpile.com/b/kStuGi/o2YK4
http://paperpile.com/b/kStuGi/o2YK4
http://paperpile.com/b/kStuGi/o2YK4
http://paperpile.com/b/kStuGi/c0Ln
http://paperpile.com/b/kStuGi/c0Ln
http://paperpile.com/b/kStuGi/c0Ln
http://paperpile.com/b/kStuGi/pfz4
http://paperpile.com/b/kStuGi/pfz4
http://paperpile.com/b/kStuGi/pfz4
http://paperpile.com/b/kStuGi/Y4R8
http://paperpile.com/b/kStuGi/Y4R8
http://paperpile.com/b/kStuGi/A3Sz
http://paperpile.com/b/kStuGi/A3Sz
http://paperpile.com/b/kStuGi/v23g
http://paperpile.com/b/kStuGi/v23g
http://paperpile.com/b/kStuGi/EIAK
http://paperpile.com/b/kStuGi/EIAK
http://paperpile.com/b/kStuGi/EIAK
http://paperpile.com/b/kStuGi/gLCn
http://paperpile.com/b/kStuGi/gLCn
http://paperpile.com/b/kStuGi/gLCn
http://paperpile.com/b/kStuGi/gLCn
http://paperpile.com/b/kStuGi/wZAq
http://paperpile.com/b/kStuGi/wZAq
http://paperpile.com/b/kStuGi/BwOT
http://paperpile.com/b/kStuGi/BwOT
http://paperpile.com/b/kStuGi/lySx
http://paperpile.com/b/kStuGi/lySx
http://paperpile.com/b/kStuGi/ULgC
http://paperpile.com/b/kStuGi/ULgC
http://paperpile.com/b/kStuGi/xYoh
http://paperpile.com/b/kStuGi/xYoh
http://paperpile.com/b/kStuGi/2yC3
http://paperpile.com/b/kStuGi/2yC3
http://paperpile.com/b/kStuGi/g5EB
https://doi.org/10.1101/2024.10.30.620429
http://creativecommons.org/licenses/by-nc-nd/4.0/


age-appropriate brain templates from birth to adulthood. Neuroimage 47:S102.

Fyshe A (2020) Studying language in context using the temporal generalization method. Philos
Trans R Soc Lond B Biol Sci 375:20180531.

Fyshe A, Sudre G, Wehbe L, Rafidi N, Mitchell TM (2016) The semantics of adjective noun
phrases in the human brain. bioRxiv Available at: http://dx.doi.org/10.1101/089615.

Giordano BL, Esposito M, Valente G, Formisano E (2023) Intermediate acoustic-to-semantic
representations link behavioral and neural responses to natural sounds. Nat Neurosci
26:664–672.

Grainger J, Rey A, Dufau S (2008) Letter perception: from pixels to pandemonium. Trends Cogn
Sci 12:381–387.

Graumann M, Ciuffi C, Dwivedi K, Roig G, Cichy R (2022) The spatiotemporal neural dynamics
of object location representations in the human brain. Nat Hum Behav 6:796–811.

Guggenmos M, Sterzer P, Cichy RM (2018) Multivariate pattern analysis for MEG: A
comparison of dissimilarity measures. Neuroimage 173:434–447.

Hamilton RH, Pascual-Leone A (1998) Cortical plasticity associated with Braille learning. Trends
Cogn Sci 2:168–174.

Hamilton R, Keenan JP, Catala M, Pascual-Leone A (2000) Alexia for Braille following bilateral
occipital stroke in an early blind woman. Neuroreport 11:237–240.

Haupt M, Graumann M, Teng S, Kaltenbach C, Cichy RM (2024) The transformation of sensory
to perceptual braille letter representations in the visually deprived brain.
bioRxiv:2024.02.12.579923 Available at:
https://www.biorxiv.org/content/biorxiv/early/2024/03/22/2024.02.12.579923 [Accessed
April 2, 2024].

Haynes J-D, Rees G (2006) Decoding mental states from brain activity in humans. 7:523–534.

Hebart MN, Bankson BB, Harel A, Baker CI, Cichy RM (2018) The representational dynamics of
task and object processing in humans. Elife 7 Available at:
http://dx.doi.org/10.7554/eLife.32816.

Huang MX, Mosher JC, Leahy RM (1999) A sensor-weighted overlapping-sphere head model
and exhaustive head model comparison for MEG. Phys Med Biol 44:423–440.

Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture
in the cat’s visual cortex. J Physiol 160:106–154.

Ioannides A, Liu L, Poghosyan V, Saridis G, Gjedde A, Ptito M, Kupers R (2013) MEG reveals a
fast pathway from somatosensory cortex to occipital areas via posterior parietal cortex in a
blind subject. Front Hum Neurosci 7:429.

Isik L, Meyers EM, Leibo JZ, Poggio T (2014) The dynamics of invariant object recognition in

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2024. ; https://doi.org/10.1101/2024.10.30.620429doi: bioRxiv preprint 

http://paperpile.com/b/kStuGi/g5EB
http://paperpile.com/b/kStuGi/QGjH
http://paperpile.com/b/kStuGi/QGjH
http://paperpile.com/b/kStuGi/LYqB
http://paperpile.com/b/kStuGi/LYqB
http://dx.doi.org/10.1101/089615
http://paperpile.com/b/kStuGi/LYqB
http://paperpile.com/b/kStuGi/xyX1
http://paperpile.com/b/kStuGi/xyX1
http://paperpile.com/b/kStuGi/xyX1
http://paperpile.com/b/kStuGi/xhDrx
http://paperpile.com/b/kStuGi/xhDrx
http://paperpile.com/b/kStuGi/jmCe
http://paperpile.com/b/kStuGi/jmCe
http://paperpile.com/b/kStuGi/oCnb
http://paperpile.com/b/kStuGi/oCnb
http://paperpile.com/b/kStuGi/gGyes
http://paperpile.com/b/kStuGi/gGyes
http://paperpile.com/b/kStuGi/wfpS2
http://paperpile.com/b/kStuGi/wfpS2
http://paperpile.com/b/kStuGi/JYYOV
http://paperpile.com/b/kStuGi/JYYOV
http://paperpile.com/b/kStuGi/JYYOV
https://www.biorxiv.org/content/biorxiv/early/2024/03/22/2024.02.12.579923
http://paperpile.com/b/kStuGi/JYYOV
http://paperpile.com/b/kStuGi/JYYOV
http://paperpile.com/b/kStuGi/XuYU
http://paperpile.com/b/kStuGi/qZpG
http://paperpile.com/b/kStuGi/qZpG
http://dx.doi.org/10.7554/eLife.32816
http://paperpile.com/b/kStuGi/qZpG
http://paperpile.com/b/kStuGi/Sifn
http://paperpile.com/b/kStuGi/Sifn
http://paperpile.com/b/kStuGi/1dpH
http://paperpile.com/b/kStuGi/1dpH
http://paperpile.com/b/kStuGi/eZd0
http://paperpile.com/b/kStuGi/eZd0
http://paperpile.com/b/kStuGi/eZd0
http://paperpile.com/b/kStuGi/XGGDb
https://doi.org/10.1101/2024.10.30.620429
http://creativecommons.org/licenses/by-nc-nd/4.0/


the human visual system. J Neurophysiol 111:91–102.

Kim JS, Kanjlia S, Merabet LB, Bedny M (2017) Development of the Visual Word Form Area
Requires Visual Experience: Evidence from Blind Braille Readers. J Neurosci
37:11495–11504.

King J-R, Dehaene S (2014) Characterizing the dynamics of mental representations: the temporal
generalization method. Trends Cogn Sci 18:203–210.

Kriegeskorte N, Kievit RA (2013) Representational geometry: integrating cognition,
computation, and the brain. Trends Cogn Sci 17:401–412.

Kriegeskorte N, Mur M, Bandettini P (2008) Representational similarity analysis - connecting the
branches of systems neuroscience. Front Syst Neurosci 2:4.

Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional
neural networks. Adv Neural Inf Process Syst 25:1097–1105.

Kupers R, Ptito M (2014) Compensatory plasticity and cross-modal reorganization following
early visual deprivation. Neurosci Biobehav Rev 41:36–52.

Lochy A, Jacques C, Maillard L, Colnat-Coulbois S, Rossion B, Jonas J (2018) Selective visual
representation of letters and words in the left ventral occipito-temporal cortex with
intracerebral recordings. Proc Natl Acad Sci USA 115 Available at:
https://www.pnas.org/doi/abs/10.1073/pnas.1718987115.

Lowe MX, Mohsenzadeh Y, Lahner B, Charest I, Oliva A, Teng S (2021) Cochlea to categories:
The spatiotemporal dynamics of semantic auditory representations. Cogn Neuropsychol
38:468–489.

Madec S, Rey A, Dufau S, Klein M, Grainger J (2012) The time course of visual letter
perception. J Cogn Neurosci 24:1645–1655.

Makin TR, Krakauer JW (2023) Against cortical reorganisation. Elife 12 Available at:
http://dx.doi.org/10.7554/eLife.84716.

Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and MEG-data. J
Neurosci Methods 164:177–190.

Martiniello N, Wittich W (2022) The association between tactile, motor and cognitive capacities
and braille reading performance: a scoping review of primary evidence to advance research
on braille and aging. Disabil Rehabil 44:2515–2536.

Merabet LB, Pascual-Leone A (2010) Neural reorganization following sensory loss: the
opportunity of change. Nat Rev Neurosci 11:44–52.

Millar S (1997) Reading by touch. https://psycnet.apa.org › recordhttps://psycnet.apa.org › record
337 Available at: https://psycnet.apa.org/fulltext/1997-05059-000.pdf.

Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2024. ; https://doi.org/10.1101/2024.10.30.620429doi: bioRxiv preprint 

http://paperpile.com/b/kStuGi/XGGDb
http://paperpile.com/b/kStuGi/C9ZWp
http://paperpile.com/b/kStuGi/C9ZWp
http://paperpile.com/b/kStuGi/C9ZWp
http://paperpile.com/b/kStuGi/TKq9u
http://paperpile.com/b/kStuGi/TKq9u
http://paperpile.com/b/kStuGi/4Dwy
http://paperpile.com/b/kStuGi/4Dwy
http://paperpile.com/b/kStuGi/CMaqP
http://paperpile.com/b/kStuGi/CMaqP
http://paperpile.com/b/kStuGi/QxcPE
http://paperpile.com/b/kStuGi/QxcPE
http://paperpile.com/b/kStuGi/vEYa
http://paperpile.com/b/kStuGi/vEYa
http://paperpile.com/b/kStuGi/UZ9f
http://paperpile.com/b/kStuGi/UZ9f
http://paperpile.com/b/kStuGi/UZ9f
https://www.pnas.org/doi/abs/10.1073/pnas.1718987115
http://paperpile.com/b/kStuGi/UZ9f
http://paperpile.com/b/kStuGi/bZ1B
http://paperpile.com/b/kStuGi/bZ1B
http://paperpile.com/b/kStuGi/bZ1B
http://paperpile.com/b/kStuGi/XHpqY
http://paperpile.com/b/kStuGi/XHpqY
http://paperpile.com/b/kStuGi/LPjf
http://dx.doi.org/10.7554/eLife.84716
http://paperpile.com/b/kStuGi/LPjf
http://paperpile.com/b/kStuGi/3b0I
http://paperpile.com/b/kStuGi/3b0I
http://paperpile.com/b/kStuGi/mnmX
http://paperpile.com/b/kStuGi/mnmX
http://paperpile.com/b/kStuGi/mnmX
http://paperpile.com/b/kStuGi/KcQuT
http://paperpile.com/b/kStuGi/KcQuT
http://paperpile.com/b/kStuGi/hVNl
http://paperpile.com/b/kStuGi/hVNl
https://psycnet.apa.org/fulltext/1997-05059-000.pdf
http://paperpile.com/b/kStuGi/hVNl
http://paperpile.com/b/kStuGi/6Dwb
https://doi.org/10.1101/2024.10.30.620429
http://creativecommons.org/licenses/by-nc-nd/4.0/


primer with examples. Hum Brain Mapp 15:1–25.

Norvig P (2013) English Letter Frequency Counts: Mayzner Revisited. Peter Norvig Available at:
http://norvig.com/mayzner.html [Accessed March 4, 2024].

Ogg M, Carlson TA, Slevc LR (2020) The Rapid Emergence of Auditory Object Representations
in Cortex Reflect Central Acoustic Attributes. J Cogn Neurosci 32:111–123.

Pascual-Leone A, Amedi A, Fregni F, Merabet LB (2005) The plastic human brain cortex. Annu
Rev Neurosci 28:377–401.

Pascual-Leone A, Hamilton R, Tormos JM, Keenan JP, Catalá MD (1999) Neuroplasticity in the
Adjustment to Blindness. In: Neuronal Plasticity: Building a Bridge from the Laboratory to
the Clinic, pp 93–108. Springer Berlin Heidelberg.

Popham SF, Huth AG, Bilenko NY, Deniz F, Gao JS, Nunez-Elizalde AO, Gallant JL (2021)
Visual and linguistic semantic representations are aligned at the border of human visual
cortex. Nat Neurosci 24:1628–1636.

Rączy K, Urbańczyk A, Korczyk M, Szewczyk JM, Sumera E, Szwed M (2019) Orthographic
Priming in Braille Reading as Evidence for Task-specific Reorganization in the Ventral
Visual Cortex of the Congenitally Blind. J Cogn Neurosci 31:1065–1078.

Reich L, Szwed M, Cohen L, Amedi A (2011) A ventral visual stream reading center independent
of visual experience. Curr Biol 21:363–368.

Ritchey KD, Speece DL (2006) From letter names to word reading: The nascent role of sublexical
fluency. Contemp Educ Psychol 31:301–327.

Saal HP, Delhaye BP, Rayhaun BC, Bensmaia SJ (2017) Simulating tactile signals from the whole
hand with millisecond precision. Proc Natl Acad Sci U S A 114:E5693–E5702.

Sadato N, Pascual-Leone A, Grafman J, Ibañez V, Deiber M-P, Dold G, Hallett M (1996)
Activation of the primary visual cortex by Braille reading in blind subjects. Nature
380:526–528 Available at: http://dx.doi.org/10.1038/380526a0.

Seibold DR, McPhee RD (1979) Commonality analysis: A method for decomposing explained
variance in multiple regression analyses. Hum Commun Res 5:355–365.

Seydell-Greenwald A, Wang X, Newport EL, Bi Y, Striem-Amit E (2023) Spoken language
processing activates the primary visual cortex. PLoS One 18:e0289671.

Striem-Amit E, Cohen L, Dehaene S, Amedi A (2012) Reading with sounds: sensory substitution
selectively activates the visual word form area in the blind. Neuron 76:640–652.

Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly
application for MEG/EEG analysis. Comput Intell Neurosci 2011:879716.

Thesen T, McDonald CR, Carlson C, Doyle W, Cash S, Sherfey J, Felsovalyi O, Girard H, Barr
W, Devinsky O, Kuzniecky R, Halgren E (2012) Sequential then interactive processing of

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2024. ; https://doi.org/10.1101/2024.10.30.620429doi: bioRxiv preprint 

http://paperpile.com/b/kStuGi/6Dwb
http://paperpile.com/b/kStuGi/KhNF
http://norvig.com/mayzner.html
http://paperpile.com/b/kStuGi/KhNF
http://paperpile.com/b/kStuGi/5Gyf
http://paperpile.com/b/kStuGi/5Gyf
http://paperpile.com/b/kStuGi/nTDwd
http://paperpile.com/b/kStuGi/nTDwd
http://paperpile.com/b/kStuGi/vIDr
http://paperpile.com/b/kStuGi/vIDr
http://paperpile.com/b/kStuGi/vIDr
http://paperpile.com/b/kStuGi/NjYg
http://paperpile.com/b/kStuGi/NjYg
http://paperpile.com/b/kStuGi/NjYg
http://paperpile.com/b/kStuGi/7QbWo
http://paperpile.com/b/kStuGi/7QbWo
http://paperpile.com/b/kStuGi/7QbWo
http://paperpile.com/b/kStuGi/fAQ0
http://paperpile.com/b/kStuGi/fAQ0
http://paperpile.com/b/kStuGi/hh4b
http://paperpile.com/b/kStuGi/hh4b
http://paperpile.com/b/kStuGi/Ur9TU
http://paperpile.com/b/kStuGi/Ur9TU
http://paperpile.com/b/kStuGi/nhss
http://paperpile.com/b/kStuGi/nhss
http://paperpile.com/b/kStuGi/nhss
http://dx.doi.org/10.1038/380526a0
http://paperpile.com/b/kStuGi/nhss
http://paperpile.com/b/kStuGi/l4ss
http://paperpile.com/b/kStuGi/l4ss
http://paperpile.com/b/kStuGi/QVNs
http://paperpile.com/b/kStuGi/QVNs
http://paperpile.com/b/kStuGi/iRW0
http://paperpile.com/b/kStuGi/iRW0
http://paperpile.com/b/kStuGi/BNK6V
http://paperpile.com/b/kStuGi/BNK6V
http://paperpile.com/b/kStuGi/zsQF
http://paperpile.com/b/kStuGi/zsQF
https://doi.org/10.1101/2024.10.30.620429
http://creativecommons.org/licenses/by-nc-nd/4.0/


letters and words in the left fusiform gyrus. Nat Commun 3:1284.

Wetzel R, Knowlton M (2000) A comparison of print and braille reading rates on three reading
tasks. J Vis Impair Blind 94:146–154.

Wilson C, Mc Clinton Z, Silvano E, Alfonso C, Jaicaman LP, Yun H, Bedny M (2024)
Contextual, lexical, and sublexical effects on braille reading. Available at:
https://hsp2024.github.io/abstracts/submission_201.pdf.

Yamins DLK, DiCarlo JJ (2016) Using goal-driven deep learning models to understand sensory
cortex. Nat Neurosci 19:356–365.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2024. ; https://doi.org/10.1101/2024.10.30.620429doi: bioRxiv preprint 

http://paperpile.com/b/kStuGi/zsQF
http://paperpile.com/b/kStuGi/vZHW
http://paperpile.com/b/kStuGi/vZHW
http://paperpile.com/b/kStuGi/hXhx
http://paperpile.com/b/kStuGi/hXhx
https://hsp2024.github.io/abstracts/submission_201.pdf
http://paperpile.com/b/kStuGi/hXhx
http://paperpile.com/b/kStuGi/9pjh
http://paperpile.com/b/kStuGi/9pjh
https://doi.org/10.1101/2024.10.30.620429
http://creativecommons.org/licenses/by-nc-nd/4.0/

