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Abstract

Pine sawyer beetle species of the genus Monochamus are vectors of the nematode pest Bursaphelenchus xylophilus. The
introduction of these species into new habitats is a constant threat for those regions where the forestry industry depends
on conifers, and especially on species of Pinus. To obtain information about the potential risk of establishment of these
insects in Chile, we performed climate-based niche modeling using data for five North American and four Eurasian
Monochamus species using a Maxent approach. The most important variables that account for current distribution of these
species are total annual precipitation and annual and seasonal average temperatures, with some differences between North
American and Eurasian species. Projections of potential geographic distribution in Chile show that all species could occupy
at least 37% of the area between 30u and 53uS, where industrial plantations of P. radiata are concentrated. Our results
indicated that Chile seems more suitable for Eurasian than for North American species.
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Introduction

Currently, there are hundreds to thousands of exotic species

established outside their native ecosystems [1]. Probably these

numbers will increase in the future as a result of the steady growth

in international trade which produces human-aided long-distance

dispersal of organisms [2].

Forests in Asia, Europe and North America have experienced

the introduction of insect pests which have caused ecological,

social and economic damage to natural forest, industrial planta-

tions and urban trees. Given that eradication of established

invasive species often implies large economic costs concurrent with

a low probability of success, the logical recommendation for

governments is to place the highest priority on preventing

introduction of such species [3–4]. In this regard, pest risk

assessment (PRA) is a key procedure that encompasses several

methodologies that aim to evaluate the likelihood of an exotic

species being introduced to a region and causing damage to

agriculture [5]. Thus, PRA uses biological and economic

information to determine whether some species should be

regulated and the strength of the sanitary measures to be taken

against it [6].

One of the necessary steps of a PRA is the assessment of the

suitability of the new habitat for the establishment of the exotic

organism [6–8]. Over the last decade, ecologists have developed

several tools with solid bases in mathematics, statistics and

information theory that facilitate these analyzes [4,9–12]. Among

these, climate-based ecological niche modeling is commonly used

in risk assessment [13–14]. Climate-based ecological niche models

may be considered as a subset of the more general species

distribution models, which are numerical tools that combine

observations of species (either presences or presences and

absences) in a set of locations with environmental variables to

obtain ecological and evolutionary insights and to predict

distributions across landscapes [11,15]. In recent years, niche

models have been used to predict potential geographic distribution

of several forest pests such as the Asian longhorn beetle [16], pine

shoot beetle [17], European woodwasp [18], redbay ambrosia

beetle [19] and emerald ash borer [14].

One of the most serious threats to pine forests in the world is

pine wilt disease, caused by the pinewood nematode, Bursaphe-

lenchus xylophilus. This disease is native to North America where it is

a secondary pathogen of native pines, but is the cause of pine wilt

disease in non-native pines [20]. In countries where the pinewood

nematode has been introduced, such as Japan, pine wilt is an

important non-native disease [21–22], with estimated losses of 46

million m3 of wood in the last 50 years [23]. Although this

nematode may be carried by several xylophagus insects, successful

transmission to conifers has only been demonstrated for the pine

sawyer beetles of the genus Monochamus [24–25].

There are no native species of Monochamus in South America

and they are included in the list of insects recommended for

regulation as quarantine pests of the COSAVE (Regional plant

protection organization of the Southern Cone of South America).

The potential introduction of these species to a continent where

Pinus plantations are a key component in the forest industry [26]
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could have serious economic consequences. In the case of Chile,

commercial plantations of P. radiata are the basis for the forestry

industry. Currently, Chile has 1.5 million ha of P. radiata

plantations established across several site types and climate

conditions that vary from 30u to 43uS latitude [27]. In addition,

urban trees of this species as well as of other Monochamus hosts

(Picea, Abies, Cedrus and Pseudotsuga) may be found in most Chilean

cities all over the country. In this study we used ecological niche

modeling methods to obtain insights on the role of climate in

shaping the current distribution of nine species of Monochamus

vectors of B. xylophilus and the relative importance of each variable

analyzed in determining native geographic ranges for each species.

We then use these models to generate a map of the potential

distribution of each of these species in Chile, which may be used as

a proxy of the suitability of the new habitat in a PRA.

Materials and Methods

Species occurrence
Records of confirmed presences (i.e. confirmed establishment) of

Monochamus species were obtained from multiple primary sources.

The primary sources used were the open databases Invasive

Species Compendium [28] and the EPPO Plant Quarantine Data

Retrieval System (PQR, [29]). Both datasets are considered within

the PRATIQUE initiative of EPPO [30]. To complement this

information, we also used information from Dillon and Dillon [31]

and Cherepanov [32] for North American and Eurasian

Monochamus, respectively. When no geo-referenced localities (just

locality names) were provided, geographic coordinates were

obtained from official gazetteers (GeoNet, [33]; TGN, [34]). We

restricted our study to species with at least 20 confirmed records.

These procedures allowed us to obtain datasets for five North

American species, and four Eurasian species. The species

considered and the respective number of data points were as

follows. In North America: M. carolinensis (34), M. marmorator (25),

M. notatus (36), M. scutellatus (47), M. titillator (39). For Eurasia: M.

alternatus (32), M. galloprovincialis (49), M. saltuarius (24) and M. sutor

(47) (Table S1–S2). All these species are either known to be vectors

of B. xylophilus or are considered potential vectors [24–25]. All

confirmed records were used, making no difference between native

and exotic distributions [35–40].

Climatic variables
Current global climatic conditions grids with a spatial resolution

of 2.5 arc-minutes were obtained from the WorldClim database

[41]. These grids contain variables compiled from monthly data

collected from 1950 to 2000. Based on the biological knowledge

about these species [24–25,42–43], we selected six ecologically

relevant bioclimatic variables: annual mean temperature, mean

temperature of the coldest quarter, mean temperature of the

warmest quarter, annual accumulated degree days (base 5uC),

mean relative humidity and total annual precipitation. The

‘‘coldest’’ and ‘‘warmest’’ quarter are defined according to the

Worlclim database: the mean temperature of the three-months

period with the lowest and highest average temperature,

respectively. We also incorporate altitude as a descriptor of

topography to obtain seven explanatory variables in our modeling

procedure (Table 1).

Modeling methods
Because of our datasets were based on presence-only localities,

we used a maximum entropy modeling approach to estimate

climate-based niche models for all 9 species. Analysis was

performed with the Maxent 3.3.3 k software [44–48]. Comparison
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of the prediction accuracy across several niche modelling methods

showed Maxent to be among the best modeling approaches for

presence-only data [48]. Briefly, Maxent is a machine-learning

algorithm that works by minimizing the relative entropy of the

probability densities calculated from the presence records versus

those probability densities were calculated from random sampling

over the study region [44,46–47]. It is important to note that

Maxent is a density estimation method, and not a regression

method, and as such it has properties that make it robust to limited

amounts of training data (small samples) [11,45]. Also, its results

are less affected by variable autocorrelation and it allows flexible

modeling of different types of functions between environmental

variables and the probability of species occurrence [44].

We examined the output of the fitted model in logistic format, to

indicate the suitability of the habitat of each species in the

landscape. The study area to fit the model was restricted to the

95% spatial kernel for North America and Eurasia according the

current registered presence of each species. Models were then

evaluated using area under the curve (AUC) of the Receiver

operating characteristic (ROC) curve and regularized training

gain. The ROC curve corresponds to the plot between 1-

specificity (proportion of false positives) versus sensitivity (propor-

tion of true positives, [45]). The AUC index measures the ability

(probability) of the maxent model to discriminate between

presence sites versus background sites [44,49–50]. To complement

the model evaluation by AUC values, we also used regularized

training gain (hereafter gain), which corresponds to the logarithm

of the average ratio between the likelihood assigned to an observed

presence site and the likelihood assigned to a background site. The

observed value of gain was also used to estimate the relative

importance of each variable by using a jackknife method. Briefly,

the decrease in gain by fitting a model using all variables except

the focal one was compared with the gain of the previously full

model (including all variables). Next, we fit a model using only the

focal variable and compared the gain in relation to the full model.

This procedure yielded an estimate of the relative importance of

each variable in the model. Modeling results to a 20-fold cross-

validation scheme considering the usual highly correlation

between climatic variables [50–51]. This cross-validation scheme

divides the dataset into 20 subsets. In each step the model is fitted

using 19 subsets and using the last one (independent) to test

(validate) the fitting. This procedure is repeated 20 times, and the

AUC and jackknife values reported correspond to the average

value of the 20 testing procedures.

Fitted models of each species were later projected over the

continental Chilean territory using the same environmental

variables described previously. Given the logistic scale used, these

maps may be interpreted as a measure of the suitability of the

habitat (0 = unsuitable, 1 = highly suitable) and are a proxy of how

favorable the habitat is for the establishment of these pests. To

estimate the extent of Chilean territory these species could occupy,

original logistic maps were converted to binary maps (0 = absence,

1 = presence) applying a threshold that maximizes test sensitivity

and specificity [52]. These binary maps were projected on Chilean

territory and on the proportion of territory covered by Pinus

plantations. The percentage of all territory and Pinus plantations

potentially covered for each species was calculated. Area of Pinus

plantations was obtained using the VII national agricultural,

livestock and forestry census [53]. This map corresponds to

agricultural districts that contain at least one commercial Pinus

plantation.

Manipulation of environmental layers was performed in R

environment [54], Quantum GIS 1.8.0 [55] and GRASS 6.4.2

[56].
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Results

All fitted models showed high values of AUC, which makes us

confident of a high discriminative ability. The lowest AUC (0.64)

was obtained for the North American M. titillator, while the highest

(0.77) was obtained for the Eurasian M. saltuarius (Table 2).

In general, models fitted using all variables except the focal one,

showed that the exclusion of total annual precipitation and mean

temperature of the warmest season caused the highest reduction in

gain (Table 2). The analysis of models including just one variable

showed that models fitted using total annual precipitation, mean

temperature of the coldest season and mean annual temperature

reached the highest gain (Table 2).

When we separate North American and Eurasian species, some

differences appear. Models excluding the focal variable showed

that for North American species (Fig. S1–S5) the exclusion of total

annual precipitation caused the highest reduction in gain, but for

Eurasian species (Fig. S6–S9) the highest reduction is caused by

total annual precipitation and annual mean temperature (Table 2).

On the other hand, using one variable, North American and

Eurasian models showed that the variable with the highest gain

was total annual precipitation in almost all species (Table 2).

Projections of the models into the Chilean territory showed that

climate in this region is moderately to highly suitable for most

species (Fig. 1, 2). Specifically, the central and southern regions

Figure 1. Projections of the Maxent model fitted for each North American species into Chile. Colors represent the probability of each
pixel being a suitable habitat for the corresponding species.
doi:10.1371/journal.pone.0102592.g001

Figure 2. Projections of the Maxent model fitted for each Eurasian species into Chile. Colors represent the probability of each pixel being
a suitable habitat for the corresponding species.
doi:10.1371/journal.pone.0102592.g002
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(35u–55uS) of Chile seem more suitable for the establishment of

Monochamus species than the northern region (18u–35uS). The

proportion of territory corresponding to suitable and unsuitable

habitat showed a clear distinction between species. For North

American species the main proportion of suitable habitat is

between 35u to 44uS, but for Eurasian species it occurs from 35u to

56uS (Table 3).

Discussion

In this study, we performed climate-based niche modeling for

five North American and four Eurasian Monochamus species.

Interestingly, most models showed an acceptable discriminatory

power (.0.7, [49]). However, average values of AUC for North

American and Eurasian species were very similar (Table 2),

suggesting that model quality was equivalent between regions.

The relative importance of each variable for the fitted models

showed that total annual precipitation is commonly the most

important variable for species of North America and Eurasia. The

decrease in gain by excluding this variable represents the amount

of information provided by the excluded variable that is not

present in other variables and is lost in the model by excluding it.

The same situation appears in the results of models fitted using just

one variable. For both regions total annual precipitation is again

the most important variable. Hence, this variable could be

considered as providing the highest amount of information,

independently if this information is contained or not in other

variables.

To the best of our knowledge, the greater importance of

precipitation over temperature in conditioning the distribution of

Monochamus species is an unexpected result. In a recent study,

Chen et al. [57] pointed out that precipitation is important for the

population dynamics of M. alternatus, but only as a secondary

variable and less important than temperature. One potential

explanation could be related to the link between precipitation and

the distribution of host trees [58] or the influence of water content

of the soil on the incidence of the symbiont nematode B. xylophilus

[59].

Mean temperature of the warmest season, mean temperature of

the coldest season and mean annual temperature are all indicators

of the thermal restrictions that an organism experiences in the

field. Thermal restrictions for completing development and lower

thermal developmental threshold have been described for North

Table 3. Percentage of potential area covered for each species.

Region Species Threshold % All % Pinus

M. carolinensis 0.442 16.6 61.0

M.marmorator 0.514 21.7 64.7

North America M.notatus 0.510 13.9 37.1

M. scutellatus 0.522 22.4 72.4

M. titillator 0.494 32.2 71.9

M. alternatus 0.472 43.9 72.5

Eurasia M. galloprovincialis 0.430 45.9 95.5

M. saltuarius 0.446 36.0 54.1

M. sutor 0.473 46.0 92.6

Threshold is the logistic threshold applied to obtain a binary map. This threshold correspond to the value that maximize test sensitivity plus specificity. % All is the
percentage of Chilean territory that could be potentially covered by the species. % Pinus is the percentage of territory covered by Pinus plantations that could be
potentially covered by each Monochamus species.
doi:10.1371/journal.pone.0102592.t003

Figure 3. Agricultural districts of Chile that contains at least
one commercial plantation of P. radiata (dark areas, www.
odepa.cl).
doi:10.1371/journal.pone.0102592.g003
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American (M. carolinensis [60]) and Eurasian Monochamus (M.

alternatus [42]; M. saltuarius [61] and M. galloprovincialis [62]). Ma et

al. (2006) [43] even propose the 210uC January mean temper-

ature isotherm as the northern limit of M. alternatus potential

distribution in China. Therefore, the inclusion of these variables in

our models is not surprising. However, considering the importance

of thermal requirements of ectotherms we expected a higher

importance of accumulated degree days, but this variable had little

influence in most species.

When models were projected into Chilean territory two

important results arise. First, there are important differences in

the potential suitable habitat between species. On average climate

in Chile seems to be more suitable for Eurasian species than for

North American species, especially in the area covered for Pinus

plantations. The reasons behind these differences may be related

to the range in climatic conditions experiences by each species in

its native range. In general, North American species show a more

restricted distribution than the Eurasian species analyzed [28–

29,31–32].

Pinus plantations in Chile are primarily P. radiata, a species with

controversial evidence about susceptibility to the pine wilt disease.

In its native distribution, a survey performed in 1988 found no

evidence of infection [63]. However, Furuno et al [64] reported

approximately 80% mortality of P. radiata due to pine wilt disease

in Japan in a 30-year experiment. Due to the contradictory

evidence, EPPO classify P. radiata as a moderately susceptible

species to B. xylophilus [24]. Our results show that areas with the

highest probability of being suitable for Monochamus species are

located in Central and Southern Chile mainly between 30u and

53uS. However, commercial plantations in Chile are restricted to

30u–43uS (Fig. 3). The area between 45uS and 53uS is composed

mainly of conservation areas with native forest (national parks),

and therefore, this region could be considered at low risk of

Monochamus establishment. However, the region between 30u and

43uS could be considered to be at moderate to high risk of

establishment of Monochamus (Fig. 3), if enough individuals arrives.

Also, this region is the more populated part of the country and

contains a high number of terrestrial, aerial and maritime ports

where several interceptions of Monochamus have occurred in the

past [65]. The combination of several potential points of

introductions due to ports (high propagule pressure) and highly

suitable habitat (high probability of introduction) suggest that

efforts for early detection of these species should be concentrated

in this region. However, it is necessary to note that low suitability

habitat or low probability of establishment does not mean zero

risk, and reasonable monitoring levels as well as preventive

activities should be carried out even outside the 30uS–43u region.

Climate-based niche modeling has proved to be useful in

forecasting the potential distribution of pest species, especially

in the initial phase of a risk assessment. However, the addition

of complementary distributional information (e.g. real absenc-

es) and variables other than climatic ones will reduce

uncertainty in long-term risk assessment. Difficulties in the

interpretation of correlative models (such as MaxEnt) have

been previously highlighted [66–67]. Correlative models seems

to be sensitive to the training data set and the addition of new

information (new presences from new habitats) could caused

increases in the sensitivity of the model (detection of true

positives) jointly with increases of estimated prevalence [67]. In

our case, the absence of independent data sets impedes the

quantification of the estimated prevalence and sensitivity. This

situation is common in the risk analysis of potential forest pests

where information is poor and in some cases even the native

distribution of the organism is not clearly defined. To

overcome this problem the use of mechanistic models, that

link physiological characteristics with habitat occupation

provide an alternative approach [67–68].

The incorporation of these approaches in plant health

management will help planning and design of activities aimed

at preventing establishment of pest species and improving

phytosanitary status of forestry and agriculture in developing

countries.

Supporting Information

Figure S1 Projections of the fitted models into the 95%

geographic kernel defined for M. carolinensis. Colors represent

habitat suitability (0 = unsuitable, 1 = highly suitable). Red

points correspond to the presence points used in the study.

(TIF)

Figure S2 Projections of the fitted models into the 95%

geographic kernel defined for M. marmorator. Colors represent

habitat suitability (0 = unsuitable, 1 = highly suitable). Red points

correspond to the presence points used in the study.

(TIF)

Figure S3 Projections of the fitted models into the 95%

geographic kernel defined for M. notatus. Colors represent habitat

suitability (0 = unsuitable, 1 = highly suitable). Red points corre-

spond to the presence points used in the study.

(TIF)

Figure S4 Projections of the fitted models into the 95%

geographic kernel defined for M. scutellatus. Colors represent

habitat suitability (0 = unsuitable, 1 = highly suitable). Red points

correspond to the presence points used in the study.

(TIF)

Figure S5 Projections of the fitted models into the 95%

geographic kernel defined for M. titillator. Colors represent habitat

suitability (0 = unsuitable, 1 = highly suitable). Red points corre-

spond to the presence points used in the study.

(TIF)

Figure S6 Projections of the fitted models into the 95%

geographic kernel defined for M. alternatus. Colors represent

habitat suitability (0 = unsuitable, 1 = highly suitable). Red points

correspond to the presence points used in the study.

(TIF)

Figure S7 Projections of the fitted models into the 95%

geographic kernel defined for M. galloprovincialis. Colors represent

habitat suitability (0 = unsuitable, 1 = highly suitable). Red points

correspond to the presence points used in the study.

(TIF)

Figure S8 Projections of the fitted models into the 95%

geographic kernel defined for M. saltuarius. Colors represent

habitat suitability (0 = unsuitable, 1 = highly suitable). Red points

correspond to the presence points used in the study.

(TIF)

Figure S9 Projections of the fitted models into the 95%

geographic kernel defined for M. sutor. Colors represent habitat

suitability (0 = unsuitable, 1 = highly suitable). Red points corre-

spond to the presence points used in the study.

(TIF)

Table S1 Geographic coordinates of the presence points used

for each North American species.

(PDF)

Niche Modeling of Monochamus spp.

PLOS ONE | www.plosone.org 6 July 2014 | Volume 9 | Issue 7 | e102592



Table S2 Geographic coordinates of the presence points used

for each Eurasian species.

(PDF)
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