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simulating Anisotropic quantum 
Rabi model via frequency 
modulation
Gangcheng Wang, Ruoqi Xiao, H. Z. shen, Chunfang sun & Kang Xue

Anisotropic quantum Rabi model is a generalization of quantum Rabi model, which allows its rotating 
and counter-rotating terms to have two different coupling constants. It provides us with a fundamental 
model to understand various physical features concerning quantum optics, solid-state physics, 
and mesoscopic physics. In this paper, we propose an experimental feasible scheme to implement 
anisotropic quantum Rabi model in a circuit quantum electrodynamics system via periodic frequency 
modulation. An effective Hamiltonian describing the tunable anisotropic quantum Rabi model can be 
derived from a qubit-resonator coupling system modulated by two periodic driving fields. All effective 
parameters of the simulated system can be adjusted by tuning the initial phases, the frequencies and 
the amplitudes of the driving fields. We show that the periodic driving is able to drive a coupled system 
in dispersive regime to ultrastrong coupling regime, and even deep-strong coupling regime. the derived 
effective Hamiltonian allows us to obtain pure rotating term and counter-rotating term. Numerical 
simulation shows that such effective Hamiltonian is valid in ultrastrong coupling regime, and stronger 
coupling regime. Moreover, our scheme can be generalized to the multi-qubit case. We also give some 
applications of the simulated system to the schrödinger cat states and quantum gate generalization. 
the presented proposal will pave a way to further study the stronger anisotropic Rabi model whose 
coupling strength is far away from ultrastrong coupling and deep-strong coupling regimes in quantum 
optics.

The quantum Rabi model (QRM)1–3 is a fundamental model to describe the light-matter interaction, which has 
been at the heart of important discoveries of fundamental effects of quantum optics. When the ratio of cou-
pling strength and mode frequency is much smaller than 1, rotating wave approximation (RWA) is valid and the 
QRM in this regime can be reduced to the Jaynes-Cummings (JC) model4,5, which has been used to describe the 
basic interactions in various systems6–14. Of particular interest is to implement the QRM in ultra-strong cou-
pling (USC) regime (the coupling strength is comparable to the cavity frequency)15–29, and even deep-strong  
coupling (DSC) regime (the coupling strength exceeds the cavity frequency)30, in which RWA is not suitable and 
the counter-rotating term (CRT) cannot be neglected. This is because various effects induced by CRT appear 
in these regimes31–42. Such tremendous advances in experiments have also motivated various potential appli-
cations to quantum information technologies43–47. Although great progresses have been achieved, it is also very 
challenging to implement such model in USC and DSC regimes experimentally. The quantum simulation pro-
posal provides us with an experimental accessible approach to implement the QRM in USC and DSC regimes, 
respectively48–59.

Recently, a generalized QRM with distinct RT and CRT coupling constants, which has been referred to ani-
sotropic quantum Rabi model (AQRM), is attracting interests60–66. Due to such interesting characteristics, the 
AQRM has been utilized to study various theoretical issues, e.g., quantum phase transitions67,68, quantum state 
engineering69, quantum fisher information70, and so on. To date, people have proposed several methods to realize 
AQRM, which include the natural implementations of AQRM in quantum optics in a cross-electric and mag-
netic field64, electrons in semiconductors with spin-orbit coupling70,71, and superconducting circuits systems72,73. 
Meanwhile, quantum simulation methods with superconducting circuits74 and trapped ions75 have also been 
proposed. The AQRM provides us with a paradigm to understand the light-matter interaction and solid-state 
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system. However, these implementations of AQRM are limited on the tunabilities, which motivate us to develop 
a frequency modulated method to realize a tunable AQRM in USC or even DSC regimes.

In this paper, we propose an effective method to simulate a tunable AQRM with a qubit coupled to a resonator 
in dispersive regime, and the transition frequency of the qubit is modulated by two periodic driving fields. The 
periodic driving have been widely used to modulate quantum systems76–85. We show that all the parameters in the 
effective Hamiltonian depend on the external driving fields. The frequencies of qubit and resonator for the sim-
ulated system can be adjusted by controlling the frequencies of the driving fields, while the anisotropic coupling 
coefficients of the RT and CRT are decided by the amplitudes of the driving fields. Our proposal to implement 
the AQRM has three features: (i) The effective Hamiltonian is controllable, and all the parameters can be tuned 
by controlling the external driving fields. (ii) We can drive the system from weak-coupling regime to USC regime 
and even DSC regime by tuning the frequencies and amplitudes of the driving fields. (iii) The ratio of coupling 
constants of RT and CRT can be controlled in a wide range of parameter space, which makes it possible to study 
the transitions from JC regime to anti-JC regime.

The Derivation of the Effective Hamiltonian
In this section, we consider a qubit coupled to a harmonic oscillator in dispersive regime, and the qubit is mod-
ulated by the periodic driving fields. Such setup can be realized in a variety of different physical contexts, such as 
trapped ions6–9, circuit QED10–12, cavity QED13,14, and so on. Here, we adopt a circuit QED setup to illustrate our 
proposal (the architecture is depicted in Fig. 1(a)). We consider a tunable transmon qubit, which is comprised 
of split junctions, is capacitively coupled to a LC resonator. Such split structure allows the qubit to be modulated 
by the magnetic flux through the pair junctions. The system is described by a time-dependent Hamiltonian as 
follows (we set ħ = 1)

ˆ ˆ ˆ ˆ= + +H t H H H t( ) ( ), (1)d0 int

where Ĥ0, Hint
ˆ  and Ĥ t( )d  are given as follows

ˆ ˆ ˆ ˆ†ω ε σ= +H a a
2

, (2a)z0

σ= +ˆ ˆ ˆ ˆ†H g a a( ) , (2b)xint

ˆ ˆ∑ η ϕ σ= Ω Ω +
=

H tcos( ) ,
(2c)

d
j

n

j j j j z
1

d

where ε is the transition frequency of the tranmon qubit. σαˆ  is the α-component of the Pauli matrices. ω is the 
frequency of the LC resonator. â a( )ˆ†  is the annihilation (creation) operator. g is the coupling constant between the 
qubit and the bosonic field, and Ĥ t( )d  describes nd periodic driving fields with frequencies Ωj and normalized 
amplitudes ηi. In this work, we consider nd = 2 and the qubit coupled to the resonator in dispersive regime (i.e., 
g| | |Δ |±  with Δ± = ω ± ε). Without periodic driving, the RT and CRT terms can be ignored in dispersive 
regime. This is because all terms are fast oscillating terms in the rotating framework. If we choose proper 

Figure 1. (a) The circuit QED architecture of the system: A transmon qubit is capacitively coupled to a LC 
resonator with frequency ω99. The transmon qubit, which is implemented with split junctions, can be modulated 
by the time-dependent flux generated by modulation circuit. The modulation Hamiltonian is shown in Eq. (2c). 
(b) The energy level of the modulated qubit-resonator system. Red and blue sidebands detunings of driving 
fields allow us to tune coupling constants of RT and CRT.
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modulation frequencies and amplitudes such that the near resonant physical transitions are remained and far off 
resonant transitions can be discarded. Moving to the rotating frame defined by the following unitary operator

∑ η ϕ σ=





− − Ω +





=

ˆ ˆU t iH t i t( ) exp sin( ) ,
(3)j

j j j z1 0
1

2

we obtain the transformed Hamiltonian
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where σ σ σ= ±±ˆ ˆ ˆi( )/2x y . Using the following Jacobi-Anger expansion86,87
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with Jn(x) being the n-th order Bessel function of the first kind, we obtain
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Here, Ω±(n1, n2) = Δ± + n1Ω1 + n2Ω2. According to the RWA, only slowly varying terms appearing in α(t) 
and β(t) will dominate the dynamics. We should choose the suitable driving frequencies to obtain the rotating 
and counter-rotating interaction terms. We assume there is a small detuning δ1 (δ2) between Ω1 (Ω2) and the red 
(blue) sideband, and the definition of the detunings read

δ δ= Ω − Δ = Δ − Ω .− +, (8)1 1 2 2

The energy levels of the modulated system are shown in Fig. 1(b). Considering small detunings (i.e. 
δ| | |Δ |±i ) and dispersive coupling regime (i.e. | | |Δ |±g ), one can check that the RT and the CRT will con-

tribute to the dynamics only for lowest oscillating frequencies Ω−(−1, 0) = −δ1 and Ω+(0, −1) = δ2, respectively. 
When the oscillating frequencies are much larger than the effect couplings, i.e., 

 η η|Ω | | |+ m m gJ J( , ) (2 ) (2 )m m1 2 1 21 2
 

with (m1, m2) ≠ (0, −1) and q q gJ J( , ) (2 ) (2 )q q1 2 1 21 2
 η η|Ω | | |−  with (q1, q2) ≠ (−1, 0), one may safely neglect these 

fast oscillating terms in Eq. (6). Then the dominant terms in Eq. (7) are t J J e e( ) (2 ) (2 ) i i t
1 1 0 2

1 1α η η≈ − ϕ δ− −  and 
β η η≈ − ϕ δ−t J J e e( ) (2 ) (2 ) i i t

0 1 1 2
2 2 , where we have used the relation J−n(x) = (−1)nJn(x) for integer n. Then these 

approximations lead to the following near resonant time-dependent Hamiltonian

ˆ ˆ ˆ ˆ ˆ†
 σ σ′ ≈ + + . .δ ϕ δ ϕ+ − + + −H t g a e g a e( ) ( ) H c , (9)r

i t
cr
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where the effective coupling strengths of RT and CRT are

η η η η= − = − . g gJ J g gJ J(2 ) (2 ), (2 ) (2 ) (10)r cr1 1 0 2 0 1 1 2

The Hamiltonian in Eq. (9) is the so-called AQRM in interaction picture with effective resonator frequency 
ω δ δ= +


( )/21 2  and qubit transition frequency ε δ δ= −( )/22 1 . Defining the new rotating framework associated 
with the time-dependent unitary operator

ω ε σ=


 +



ˆ ˆ ˆ† 


U t i a at i t( ) exp

2
,

(11)z2

we obtain the effective Hamiltonian with anisotropic coupling strengths for RT and CRT



 

ω ε σ σ σ σ σ= + + + + +θ θ
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2
( ) ( ), (12)z r cr
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where we have set ϕ1 = 0 and ϕ2 = θ. The anisotropic parameter λ is the ratio of RT and CRT coupling strengths 
(i.e., λ =  g g/cr r). Thus we obtain a controllable AQRM. Below we analyze the parameters in our scheme. In our 
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circuit QED setup, we consider the following realistic parameters88,89: the transition frequency of the transmon 
qubit is ε = 2π × 5.4 GHZ with the decay rate κ = 2π × 0.05 MHz, the resonator frequency is ω = 2π × 2.2 GHz 
with the loss rate γ = 2π × 0.012 MHz, and the coupling strength of the resonator and qubit is g = 2π × 70 MHz. 
We can check that the dispersive condition (i.e., g| | |Δ |± ) is fulfilled. The frequency modulation can be imple-
mented by applying proper biasing magnetic fluxes. The modulation parameters Ωi, ηi and ϕi can be chosen on 
demand by tuning the modulation fields. In circuit QED setups, the modulation frequency and modulation 
amplitude range from hundreds of megahertz to several gigahertz. It is reasonable to set the modulation ampli-
tude ηiΩi ranges from 0 to 2π × 10 GHz16. The detunings δi can be tuned from 0 to hundreds of megahertz to fulfill 
the condition δ| | |Δ |±i .

the simulation of QRM and AQRM in UsC and DsC Regimes
To assess the robustness of our proposal in circuit QED system, we should consider the dissipation effects in the 
following discussions88. Considering the zero-temperature Markovian environments and large driven frequencies 
Ωj, the master equation governing the evolution of the system can be derived as follows52

 


ˆi H t[ ( ), ] [ ] [ ], (13)q rρ ρ ρ ρ= − + +

where  ˆ ˆ ˆ ˆ ˆ ˆρ σ ρσ ρσ σ σ σ ρ= − −κ
− + + − + −[ ] (2 )q 2

 and ˆ ˆ ˆ ˆ ˆ ˆ† † †a a a a a a(2 )r 2
ρ ρ ρ= − −γ  are the standard Lindblad 

super-operators describing the losses of the system. To obtain the master equation in the framework of effective 
Hamiltonian, we set U(t) = U2(t)U1(t). Let ρ


t( ) be the density matrix in the same framework with effective 

Hamiltonian. Inserting †ρ ρ=t U t t U t( ) ( ) ( ) ( )


 to the master Eq. (13), we obtain the following master equation

 ˆ�� � � �ρ ρ ρ ρ= − + +
∼i H t[ ( ), ] [ ] [ ], (14)q r

where = − ∂
∼̂ ˆ† †H t U t H t U t iU t U t( ) ( ) ( ) ( ) ( )( ( ))t  is the total system Hamiltonian in the new rotating framework. We 

show that the Hamiltonian Ĥeff  in Eq. (12) is the approximation of ∼̂H t( ) under RWA. Here we consider the initial 
phase difference of the driving fields is θ = 0. The parameters η1,2 and the detuning of first sideband δ1,2 are tunable 
parameters. Such tunable parameters determine the parameters in the simulated system in Eq. (12). To verify the 
validity of the effective Hamiltonian in Eq. (12), we should study the fidelity of the evolution state. Let ψ∼(0)  be an 
initial state in the new framework and the corresponding initial density matrix is 


(0) (0) (0)ρ ψ ψ=

∼ ∼ . Substituting 
(0)ρ


 into Eq. (12), we obtain the evolution density matrix 

ρ t( ). The ideal case can be obtained by solving the 

Schördinger equation governed by the effective Hamiltonian (12). We denote the ideal evolution state governed by 
the effective Hamiltonian (12) with ψ∼ t( ) . Then the fidelity of the evolution state reads ψ ρ ψ=

∼ ∼


F t t t t( ) ( ) ( ) ( ) .

the simulation of QRM. In this subsection, we will show the performance of the simulated QRM. To obtain 
equal effective RT and CRT coupling strengths (i.e., λ = 1), we need to adjust the normalized amplitude ηi. A 
simple case is η1 = η2 = η. Then the simulated coupling strength g gr cr= 

 and we denote the simulated coupling 
strength with η η= −g gJ J(2 ) (2 )0 1 . Assuming θ = 0, we can obtain the following tunable QRM

ω ε σ σ= + + + .ˆ ˆ ˆ ˆ ˆ ˆ† †




H a a g a a
2

( ) (15)z xQRM

The effective frequencies of resonator and qubit are determined by the detunings δi. One can tuning the ratios 
of modulation amplitudes and frequencies to obtain different relative coupling strength.

In Figs  2 and 3, we show the fidelity and dynamics under following four sets parameters: 2(a–c) 
Ω2 = 2π × 6.759 GHz, and η2Ω2 = 2π × 4.849 GHz; 2(d–f) Ω2 = 2π × 7.516 GHz, and η2Ω2 = 2π × 5.392 GHz; 3(a–c) 
Ω2 = 2π × 7.558 GHz, and η2Ω2 = 2π × 5.422 GHz; 3(d–f) Ω2 = 2π × 7.565 GHz, and η2Ω2 = 2π × 5.427 GHz. The red 
sideband modulation parameters are chosen as Ω1 = 2π × 3.2 GHz, and η1Ω1 = 2π × 2.296 GHz. These sets parame-
ters imply the normalized modulation amplitudes η = 0.7173. One also can lead to resonant red sideband (i.e., δ1 = 0) 
and the detuned blue sideband, and the corresponding detunings read δ2 = 2π × 840.7 MHz, 2π × 84.07 MHz, 
2π × 42.03 MHz and 2π × 35.03 MHz. These sets parameters correspond to the four relative coupling strengths 

ω| | = .


g / 0 05 (Fig. 2(a–c)), ω| | = .g / 0 5


 (Fig. 2(d–f)), g / 1ω| | =


 (Fig. 3(a–c)) and 

ω| | = .g / 1 2 (Fig. 3(d–f)). In the 

numerical simulation, we take ψ = ⊗
∼ g(0) 0 r  as initial state. Figure 2(a,d) show the fidelity as a function of 

evolution time governed by the master equation in Eq. (14) and the simulated Hamiltonian given in Eq. (12). 
Figure 2(b,e) show the qubit excitation number ˆ ˆσ σ〈 〉+ −  as a function of evolution time. Figure 2(c,f) show the excita-
tion number of the resonator 〈 〉ˆ ˆ†a a  as a function of evolution time. The dynamics is governed by the master equation 
in Eq. (14) (blue solid line) and the simulated Hamiltonian given in Eq. (12) (red dashed line with circles). In the case 
of g / 0 05


ω| | = . , the RWA is valid and the dynamics of qubit and the resonator are dominated by RT. The effects of 

CRT are very weak, and we can apply RWA safely. In the case of 

ω| | = .g / 0 5, the RWA is not valid and the effects of 

CRT cannot be ignored. The qubit and resonator can be excited simultaneously. The Fig. 3 shows the fidelity and 
dynamics when ω| | =


g / 1 (Fig. 3(a–c)) and 


ω| | = .g / 1 2 (Fig. 3(d–(f)). In these cases, the relative effective coupling 

strength reaches 1 and even exceeds 1. The CRT plays an important role in USC and DSC regimes. The exist of CRT 
makes the total excitation number operator σ σ= + + −

ˆ ˆ ˆ ˆ ˆ†N a a  not a conserved quantity. The excitations of qubit and 
resonator can be excited from the vacuum. The Fig. 3(d–f) show the fidelity and dynamic when 


ω| | = .g / 1 2. In this 

case, DSC regime is reached.
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Figure 2. The fidelity and dynamics of the simulated QRM with effective coupling ratio ω| | = .


g / 0 05 (a–c) and 



g / 0 5ω| | = .  (d–f) as a functions of evolution time. (a,d) Show the fidelity as a function of evolution time 
governed by the master equation in Eq. (14) and the simulated Hamiltonian given in Eq. (12). (b,e) Show the 
qubit excitation number σ σ〈 〉+ −ˆ ˆ  as a function of evolution time. (c,f) Show the excitation number of the 
resonator ˆ ˆ†a a〈 〉 as a function of evolution time. The dynamics is governed by the master equation in Eq. (14) 
(solid blue line) and the simulated Hamiltonian given in Eq. (12) (red dashed line with circles). The red 
sideband modulation parameters are chosen as Ω1 = 2π × 3.2 GHz, and η1Ω1 = 2π × 2.296 GHz. The blue 
sideband modulation parameters are chosen as follows: Ω2 = 2π × 6.759 GHz, and η2Ω2 = 2π × 4.849 GHz for 
(a–c) and Ω2 = 2π × 7.516 GHz, and η2Ω2 = 2π × 5.392 GHz for (d–f). The initial state is prepared on the state 
ψ = ⊗
∼ g(0) 0 r . The other parameters are listed in Table 1.
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Figure 3. The fidelity and dynamics of simulated QRM with effective coupling ratio g / 1ω| | =


 (a–c) and 
g / 1 2ω| | = .


 (d–f) as functions of evolution time. (a,d) Show the fidelity as a function of evolution time governed 
by the master equation in Eq. (14) and the simulated Hamiltonian given in Eq. (12). (b,e) Show the qubit 
excitation number σ σ〈 〉+ −ˆ ˆ  as a function of evolution time. (c,f) Show the excitation number of the resonator 
〈 〉†a a  as function of evolution time. The dynamics is governed by the master equation in Eq. (14) (blue solid line) 
and the simulated Hamiltonian given in Eq. (12) (red dashed line with circles). The red sideband modulation 
parameters are chosen as Ω1 = 2π × 3.2 GHz, and η1Ω1 = 2π × 2.296 GHz. The blue sideband modulation 
parameters are chosen as follows: Ω2 = 2π × 7.558 GHz, and η2Ω2 = 2π × 5.422 GHz for (a–c) and 
Ω2 = 2π × 7.565 GHz, and η2Ω2 = 2π × 5.427 GHz for (d–f). The initial state is prepared on the state 
ψ = ⊗
∼ g(0) 0 r . The other parameters are listed in Table 1.
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the simulation of JC model and anti-JC model. In this subsection, we will show how to obtain the JC 
model and anti-JC model by tuning the driving parameters to suppress the CRT or RT, respectively. To obtain the 
JC model, we chosen the modulation parameters as follows: Ω1 = 2π × 3.2 GHz, η1Ω1 = 2π × 3.848 GHz, 
Ω2 = 2π × 7.565 GHz, and η2Ω2 = 2π × 5.427 GHz, ϕ1 = ϕ2 = 0. The other parameters are listed in Table 1. These 
modulation parameters imply η1 = 1.2024, η2 = 0.7173, δ1 = 0, δ2 = 2π × 35.03 MHz and θ = 0. One can check that 
g 0cr =  and the relative coupling strength ω| | = .


g / 1 137r . In this case, the rotating term is suppressed to zero and 

the effective Hamiltonian reduced to the following the JC model in DSC regime

ˆ ˆ ˆ† †ω ε σ σ σ= + + + .+ −





H a a g a a
2

( ) (16)z rJC

Taking the initial state ψ = ⊗
∼ e(0) 0 r , we obtain the fidelity and dynamics of the evolution state governed 

by the master equation in Eq. (14) and the simulated Hamiltonian given in Eq. (16), which are shown in  
Fig. 4(a–c). The results show that the numerical simulation agrees well with the exact dynamics. It also shows that 
there exists the Rabi oscillation between states e0 r ⊗  and ⊗ g1 r  with period π | |g/ r . For the case δ ≠ 01  and 
the initial state ψ = ⊗

∼ e(0) 0 r , the period of the Rabi oscillation is π δ+g2 / 4 r
2

1
2.

To obtain the anti-JC model, we set Ω1 = 2π × 3.2 GHz, η1Ω1 = 2π × 2.296 GHz, Ω2 = 2π × 7.565 GHz, and 
η2Ω2 = 2π × 9.096 GHz, ϕ1 = ϕ2 = 0. The other parameters are listed in Table 1. These modulation parameters 
imply η1 = 0.7173, η2 = 1.2024, δ1 = 0, δ2 = 2π × 35.03 MHz and θ = 0. In this case, we can check that 

g 0r =  and 
the relative coupling strength 




g / 1 137cr ω| | = . . The effective Hamiltonian is reduced to the following anti-JC 
model in DSC regime





ω ε σ σ σ= + + + .− +ˆ ˆ ˆ ˆ ˆ ˆ ˆ† †H a a g a a

2
( ) (17)z crAJC

In the anti-JC model, the rotating term is suppressed to zero and only the CRT remains. We can check the validity 
and dynamics of the effective Hamiltonian. Let g(0) 0 rψ = ⊗

∼  be the initial state. The fidelity and dynamics of 

ε/2π ω/2π g/2π γ/2π κ/2π

5.4 GHz 2.2 GHz 70 MHz 12 KHz 50 KHz

Table 1. The system parameters are listed.
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Figure 4. The fidelity and dynamics of simulated QRM with effective coupling ratio 



g / 1 137r ω| | = .  (a–c) and 



g / 1 137cr ω| | = .  (d–f) as functions of evolution time. (a,d) Show the fidelity as a function of evolution time are 
governed by the master equation in Eq. (14) and the simulated Hamiltonian given in Eq. (12). (b,e) Show the 
qubit excitation number σ σ〈 〉+ −ˆ ˆ  as a function of evolution time. (c,f) Show the excitation number of the 
resonator ˆ ˆ†a a〈 〉 as a function of evolution time. The dynamics is governed by the master equation in Eq. (14) 
(blue solid line) and the simulated Hamiltonian is given in Eq. (12) (red dashed line with circles). The 
parameters are taken as follows: Ω1 = 2π × 3.2 GHz, η1Ω1 = 2π × 3.848 GHz, Ω2 = 2π × 7.565 GHz, and 
η2Ω2 = 2π × 5.427 GHz, ϕ1 = ϕ2 = 0 for (a–c) and Ω1 = 2π × 3.2 GHz, η1Ω1 = 2π × 2.296 Ghz, 
Ω2 = 2π × 7.565 GHz, and η2Ω2 = 2π × 9.096 GHz, ϕ1 = ϕ2 = 0 for (d–f). The other parameters are listed in 
Table 1.
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the evolution state governed by the master equation in Eq. (14) and the simulated Hamiltonian given in Eq. (17) are 
shown in Fig. 4(d–f). The Fig. 4(d) shows that the numerical simulation agrees well with the exact dynamics. The 
Fig. 4(e,f) show that excitation number of the resonator and qubit possesses the same behavior. It also shows that 
there exists the Rabi oscillation between states ⊗ g0 r  and ⊗ e1 r  with period π δ+g2 / 4 cr

2
2
2. For the case 

δ2 = 0, the period of the Rabi oscillation is 
π | |g/ cr . Such behavior is induced by pure effect of CRT and have been 

studied in ref.90.

the simulation of degenerate AQRM. In this subsection, we will simulate the dynamics of the AQRM. 
For simplify, we choose the modulation parameters are as follows: Ω1 = 2π × 3.2 GHz, η1Ω1 = 2π × 2.296 GHz, 
Ω2 = 2π × 7.6 GHz, ϕ1 = ϕ2 = 0, and the blue sideband modulation amplitude ranges from 0 to 2π × 9.138 GHz. 
The other parameters are given in Table 1. Then we can obtain δ1 = δ2 = 0, η1 = 0.7173 and θ = 0. The normalized 
amplitude of blue sideband ranges from 0 to 1.2024. In this case, only interaction terms remain and the effective 
Hamiltonian reduces to the following degenerate AQRM

 σ σ σ σ= + + + .+ − − +
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† †H g a a g a a( ) ( ) (18)r crDAQRM

We check that the simulated Hamiltonian varies from JC model to anti-JC model by tuning the normalized 
amplitude η2. Let g(0) 0 rψ = ⊗

∼  be the initial state. We can obtain the dynamics of the evolution states gov-
erned by the master equation in Eq. (13). The excitations of qubit and resonator as a function of evolution time 
and η2 are shown in Fig. 5. The Fig. 5(a) shows the excitation of qubit σ σ〈 〉+ −ˆ ˆ  as a function of evolution time and 
η2. When 

η 12 , we can check that gcr  approaches to zero and rotating term dominates the dynamics. The qubit 
and resonator are not excited in the evolution process. If we increase the normalized amplitude η2, the effects of 
the CRT emerge. In this regime, the qubit and resonator are excited in the evolution process. When η2 = 0.7173 
(red dashed line), the ration of the RT and CRT approaches to 1. In this regime, the RT and CRT dominate the 
dynamics of the evolution. The Fig. 5(b) shows the excitation number of resonator a aˆ ˆ†〈 〉. When η2 = 0.7173 (red 
dashed line), the excitation number reaches its maximum value in the evolution process, which originates from 
the competition of RT and CRT. When η2 reaches 1.2024, we can check that when 

gr approaches to zero, the CRT 
dominates the evolution. The higher excitation number of the resonator can be excited. The dynamics of the qubit 
and resonator show the periodic oscillation behavior. The results show that we can drive the system from JC 
regime to anti-JC regime through quantum Rabi regime (indicated by red dashed line).

Some Applications on the Quantum Information Theory
Our scheme could be utilized as a candidate platform to implement the quantum information and computation 
device. As an example, we show the generations of Schrödinger cat states and quantum gate. For this purpose, we 
first generalize our scheme to the multi-qubit case12. Considering N qubits coupled to a resonator, we can obtain 
the simulated anisotropic quantum Dicke model with the same treatment. We assume all the qubits possess the 
same energy split (i.e., εi = ε) and the periodic driving fields described in Eq. (2c) act on all the qubits. By means 
of the same approach, we can obtain the simulated anisotropic quantum Dicke model. The simulated anisotropic 
quantum Dicke model in the interaction picture reads

Figure 5. The dynamics of simulated degenerate AQRM as a function of evolution time and η2. (a) Shows the 
excitation of qubit ˆ ˆσ σ〈 〉+ −  as a function of evolution time and η2. (b) Shows the excitation of resonator ˆ ˆ†a a〈 〉 as a 
function of evolution time and η2.The parameters are taken as follows: Ω1 = 2π × 3.2 GHz, 
η1Ω1 = 2π × 2.296 GHz, Ω2 = 2π × 7.6 GHz, ϕ1 = ϕ2 = 0, and the blue sideband modulation amplitude ranges 
from 0 to 2π × 9.138 GHz (i.e., η2 ranges from 0 to 1.2024). The other parameters are given in Table 1. The initial 
state is chosen as g(0) 0 rψ = ⊗

∼ . The red dashed line is plotted for η2 = 0.7173. The evolution states are 
governed by the master Eq. (14).
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ˆ ˆ ˆ ˆ ˆ= + + . .δ ϕ δ ϕ
+

− +
−

− +
 H g aJ e g aJ e H c , (19)r

i t
cr

i t
DM

( ) ( )1 1 2 2

where ˆ σ̂= ∑± ±J i
N

i  and ˆ ˆ ˆ= + −J J J[ , ]z
1
2

. If we set the detunings of the blue and red sidebands δ1 = δ2 = δ, we obtain 
the degenerate two-level system (i.e., ε = 0), and the effective frequency of resonator is ω δ= . We also can adjust 
the normalized amplitudes of the driving fields to make = =  g g gr cr . For simplicity, we set amplitudes η1 = η2 
and initial driving phases ϕi = 0. In this case, the simulated Hamiltonian in the interaction picture reduces to the 
following form

ˆ ˆ ˆ ˆ†= + .ω ω−∼ ∼
H g a e ae J( ) (20)i t i t

xDM

The evolution operator for the Hamiltonian in Eq. (20), which could be obtained by means of the Magnus 
expansion, reads91

 φ ξ= ˆ ˆt i t J D t J( ) exp[ ( ) ] [ ( ) ], (21)x x
2

where ˆ ˆ† ⁎ξ ξ ξ= −D a a( ) exp( ), ξ ω= − ω∼



t g e( ) ( / )(1 )i t  and φ ω ω ω= −
  

t g t t( ) ( / ) ( sin( ))2 . Based on the dynamics 
of this effective Hamiltonian, the Schrödinger cat states and quantum gate can be generated.

the generation of schrödinger cat states. Superposition of coherent states plays an important role in 
quantum theory79,80,92–94. In this subsection, we consider how to generate superposition of coherent states for a 
single-qubit case. Assuming the initial state prepared on ψ = ⊗

∼ g(0) 0 r , we obtain the evolution state as 
follows

t e t t( )
2

( ( ) ( ) ),
(22)

i t

r r

( )
ψ ξ ξ= ⊗ + − − ⊗ −
∼ φ

where ± = ±e g( )1
2

 are the eigenstates of σ̂x  and t D t( ) [ ( )] 0r rξ ξ± =  are the coherent states with 
amplitude ±ξ(t). In the basis e  and g , the above state can be rewritten as following form

 ψ = ⊗ + ⊗
∼ φ

− +t e t e t g( )
2

( ( ) ( ) ), (23)

i t

r r

( )

where C N ξ ξ= ± −± ±t t t( ) ( ( ) ( ) ) with normalization coefficients  ξ= ± − | |± t2(1 exp( 2 ( ) ))2 . 
Performing a projection measurement on the states e  and g , we obtain the states  t( )+  and − t( ) , which cor-
respond to the even and odd Schrödinger cat states. The magnitude of the displacement for  t( )±  is 


 

ξ ω ω| | = | |t g t( ) 2 ( / ) sin( /2) . When the evolution time π ω=


t /0 , the magnitude of the displacement reaches its 
maximum value 


ω| |g2 / .

the implementation of quantum gate. In this subsection, we consider two-qubit case. Assuming the 
evolution time 

T 2 /π ω= , we obtain ξ(T) = 0 and 


φ π ω=T g( ) 2 ( / )2. The evolution operator is reduced to the 
following form

 φ= .T i T J( ) exp[ ( ) ] (24)x
2

where σ σ= +ˆ ˆJx x x1 2  for two-qubit case. The Eq. (24) can be rewritten as the form U I ˆ ˆϑ σ σ= + ϑT i( ) cos sin x x1 2 , 
where φϑ = T2 ( ) and   is identity operator for two-qubit. Here, we have omitted the total phase factor. To assess 
the capacity of the quantum gate, Zanardi et al. introduced the entangling power95,96. The entangling power for 
this unitary operator reads  = ϑe ( ) sin (2 )p

2
9

2 . So the evolution operator can be viewed as a nontrival two-qubit 
quantum gate when θ π≠ k

2
 (k is integer). When πϑ = /4 (i.e., 


ω = .g / 0 25), the quantum gate reads 

U I σ σ= + ˆ ˆT i( ) ( )x x
1
2 1 2 . Such quantum gate is local equivalent to the control-not (CNOT) gate97,98. The equiva-

lent relation reads

= ⊗ ⊗u u T u uCNOT ( ) ( )( ), (25)1 2 3 4

where local unitary operators are as follows

= − = = − −
−

= .( ) ( ) ( ) ( )u u u i
i u i

i
1
2

1 1
1 1 , 1 0

0 1 , 1
2

1
1 , 1

2
1

1 (26)1 2 3 4

Discussion
In conclusion, we have proposed a method to simulate a tunable AQRM, which is achieved by driving the qubit(s) 
with two-tone periodic driving fields. We have analyzed the parameter conditions under which this proposal 
works well. By choosing proper modulation frequencies and amplitudes, the coupling constants of RT or CRT 
can be suppressed to zero, respectively. Consequently, we study the dynamics induced by CRT or RT correspond-
ingly. In addition, we have also discussed the applications of our scheme to the generations of quantum gate and 
Schrödinger cat states. This proposal provides us with a reliable approach for studying the effects of RT and CRT 
in different regimes individually. Although we explore the scheme with the circuit QED system, which could be 
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implemented in other systems, e.g., cavity QED and trapped ion systems. The presented proposal will pave a way 
to further study the stronger light-matter interaction in a system whose coupling strength is far away from the 
USC and DSC regimes in quantum optics.

Extensions of presented scheme to a variety of physically relevant systems, such as multi-qubit and multi-mode 
fields interaction system and the system coupling with the environments, deserve future investigations.
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