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Abstract

Background: Medication-overuse headache (MOH) is a relatively frequently occurring secondary headache caused
by overuse of analgesics and/or acute migraine medications. It is believed that MOH is associated with dependence
behaviors and substance addiction, in which the salience network (SN) and the habenula may play an important
role. This study aims to investigate the resting-state (RS) functional connectivity between the habenula and the SN
in patients with MOH complicating chronic migraine (CM) compared with those with episodic migraine (EM) and
healthy controls (HC).

Methods: RS-fMRI and 3-dimensional T1-weighted images of 17 patients with MOH + CM, 18 patients with EM and
30 matched healthy HC were obtained. The RS-fMRI data were analyzed using the independent component
analysis (ICA) method to investigate the group differences of functional connectivity between the habenula and the
SN in three groups. Correlation analysis was performed thereafter with all clinical variables by Pearson correlation.

Results: Increased functional connectivity between bilateral habenula and SN was detected in patients with
MOH + CM compared with patients with EM and HC respectively. Correlation analysis showed significant correlation
between medication overuse duration and habenula-SN connectivity in MOH + CM patients.
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Conclusions: The current study supported MOH to be lying within a spectrum of dependence and addiction
disorder. The enhanced functional connectivity of the habenula with SN may correlate to the development or
chronification of MOH. Furthermore, the habenula may be an indicator or treatment target for MOH for its
integrative role involved in multiple aspects of MOH.
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Background
Medication-overuse headache (MOH) is a secondary
chronic disorder attributed to overuse of acute or symp-
tomatic headache medications that develops in patients
with a pre-existing primary headache, especially mi-
graine [1, 2]. The 1-year relapse rate of MOH patients
could reach to 24.8 %, and two-thirds of MOH patients
fulfill the criteria for substance addiction [3–5]. Neuro-
imaging, genetic and biological studies indicated that
MOH shares similar imaging features, associated gene
polymorphisms, and neurobiological changes with sub-
stance addiction [6–10]. In addition, MOH patients can
develop behaviors including ritualized drugs intake, psy-
chological drug attachment and withdraw symptoms
which are believed to be associated with addiction [11–
13].
Previous resting-state functional magnetic resonance

imaging (RS-fMRI) method has indicated dysregulation
of the reward circuit in MOH patients in line with sub-
stance abusers [14, 15]. And alterations of the functional
connectivity between the nucleus accumbens and the sa-
lience network (SN) as well as other brain regions in the
reward-related circuits have been reported [16]. Besides
the reward system, addiction is also associated with the
enhanced activation of the anti-reward circuit, in which
the habenula plays a key role [17]. The habenula func-
tions in addiction, cognition, reward, pain and analgesia
while the SN is to modulate information via integrating
sensory, affective and cognitive inputs, and assigning
relevance of the stimuli for continuous processing [18–
21]. However, few studies to date have focused on habe-
nula and its interaction with the SN.
Therefore, this study aims to investigate the resting-

state function connectivity of the habenula and the SN
in patients with MOH complicating chronic migraine
(CM) compared with those with episodic migraine (EM)
and healthy controls (HC). And we also searched for
possible correlations between these functional connect-
ivity alterations and clinical features (Fig. 1).

Materials and methods
Participants
All research procedures were approved by the Chinese
Ministry of Health and the Ethics Committee of the
Chinese PLA General Hospital, Beijing, China, which
were conducted in accordance with the ethical principles

of the Declaration of Helsinki. Participants were re-
cruited in Chinese PLA General Hospital and received
complete description of the study and gave written in-
formed consent before the study.
Patients were recruited consecutively in the Inter-

national Headache Center in the Chinese PLA General
Hospital from May 2018 to April 2019. All HC had no
primary headaches or other chronic pain disorders. The
included criteria of MOH and EM were as follows: (1)
The diagnosis of MOH and EM met the criteria of the
International Classification of Headache Disorders 3rd
edition (ICHD-3) [22]; (2) All MOH patients were con-
firmed to be with a prior migraine based on their past
history. Thus, according to ICHD-3, these patients
should be given the diagnosis of MOH + chronic mi-
graine (CM); (3) EM patients were excluded if they had
suffered a prior episode of MOH; (4) Without migraine
preventive medication in the past 3 months. The ex-
cluded criteria were as follows: (1) With chronic disor-
ders including hypertension, diabetes mellitus,
cardiovascular diseases, ischemia etc.; (2) With cranium
trauma, psychotic disorder, or regular use of a psycho-
active or hormone medication. All participants were
right hand dominant and reported no other neurologic
or psychiatric disorder. The evaluations of participants
were conducted by 2 neurologists. Meanwhile clinical
data as well as the Patient Health Questionnaire 9 De-
pression Scale (PHQ-9) and Generalized Anxiety Dis-
order Assessment 7-item Scale (GAD-7) were collected
before MRI scan. MRI scans were taken at least 24 h
after the latest migraine attack for MOH or EM patients.
The alcohol, nicotine, caffeine and other substances were
avoided at least 24 h before MRI examination.

MRI data acquisition
All MRI studies were performed on a 3.0T Siemens
scanner. The RS-fMRI were acquired right after localizer
images. Then whole-brain 3-dimensional T1-weighted
images of each one was then obtained as sagittal view
(repetition time = 2500 ms, echo time = 3.5 ms, flip
angle = 8°, field of view = 256 × 256 mm2, Matrix = 256 ×
256, slices = 192, thickness = 1 mm, interslice gap = 0.6
mm). RS-fMRI were obtained using a gradient echo-
planar imaging (EPI) sequence (repetition time = 2000
ms, echo time = 30 ms, flip angle = 90 , slice thickness =
3 mm, slice gap = 0.6 mm, field of view = 200 × 200 mm2,
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Matrix = 64 × 64). For all of the participants, the struc-
tural images were examined to exclude the possibility of
lesions by 2 radiologists.

RS-fMRI data preprocessing
The RS-fMRI data were preprocessing using the
FMRIB’s Software Library (FSL) tools (http://www.fmrib.
ox.ac.uk/fsl/)[23].The RS-fMRI data were processed by
the following steps as performed in previous studies
[24–26]. They were: (1) removing the first 5 volumes, (2)
correcting the head motion by MCFLIRT, (3) removing
the nonbrain tissues by BET (Brain Extraction Tool), (4)
spatial smoothing using a 4-mm FWHM (full width at
half maximum) Gaussian kernel, (5) removing slow drift
with a high-pass temporal filter of 0.01 Hz, and (6) regis-
tering the RS-fMRI data to the 3-dimensional T1-
weighted images and then to Montreal Neurological

Institute-152 standard space. The registered RS-fMRI
data were finally resampled to 2 × 2 × 2 mm.

TC-GICA and dual-regression
The temporal-concatenation group independent compo-
nent analysis (TC-GICA) on the datasets of 30 healthy
volunteers were created using the MELODIC (Multivari-
ate Exploratory Linear Optimized Decomposition into
Independent Components) tool in FSL [27]. The number
of components was fixed at 50. Then we built
individual-subject-level spatial maps by applying dual re-
gression to the preprocessed RS-fMRI data of each par-
ticipant by using the same approach. For each subject,
firstly we used the previously obtained GICA spatial
maps to regress against the individual’s preprocessed
RS-fMRI data to estimate the matrices of network time
series of each component. Secondly, the 50 network time
series which we obtained were regressed against each

Fig. 1 Summary of the current study. This figure is a concise summary of the current study. MOH + CM (medication-overuse headache + chronic
migraine) was shown as MOHCM here for a better layout in this figure. The picture of brain on the right shows the habenula and its connections
with other brain regions. The full lines with arrows connect regions which the habenula has afferent inputs from or efferent outputs to on
structural basis. The dotted lines represent functional connectivity identified by fMRI studies. Hb, habenula; SNc, substantia nigra pars; IPN,
interpeduncular nucleus; DRN, dorsal raphe nucleus; MRN, median raphe nucleus; VTA, ventral tegmental area; PAG, periaqueductal gray; RMTg,
rostromedial tegmental nucleus; EP, entopeduncular nucleus; NAc, nucleus accumbens; CP, caudate/putamen; LH, lateral hypothalamic; dACC,
dorsal anterior cingulate cortex; mPFC, medial prefrontal cortex
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subject’s preprocessed 4-dimensional RS-fMRI data to esti-
mate the subject’s network spatial component maps. The
independents were demeaned and normalized in both of
the 2 steps before being entered into the regression model
[25, 28]. Then we used FSL utility to spatially correlate all
the components to Yeo’s 7 network parcellation of cortex
with the results of r-value [29]. Each component of a
resting-state network was ensured that the bulk of its signal
falls on the lower end of the power frequency spectrum.
Visual inspections were performed as a final check.

Habenula and SN interaction difference analyses
In our study, we tested the alterations of habenula and SN
interaction in patients with MOH+CM and EM. Based
on the spatial maps generated by TC-GICA, we identified
SN as follows, mainly encompasses the dorsal anterior
cingulate cortex (dACC) and bilateral anterior insula/
frontal operculum [21].Then we got the SN spatial maps
which corresponded to each brain network across individ-
uals in a 4-dimensional file. And we compared three
group of MOH+CM vs. EM vs. HC using ANOVA in
DPABI toolkit under MATLABR2013b (version 8.2.0.701)
environment, and subsequent LSD test to compare the
difference between each two groups [30]. PHQ-9 and
GAD-7 scale were added as covariates when ANOVA
were performed to exclude the effects of depression or
anxiety. Finally, we performed FDR (false discovery rate)
procedure to correct for multiple comparisons within
habenula mask. The habenula masks were manually cre-
ated for every patient, by using the T1 images to visually
identify the right and left habenula of each subject land-
mark using SPM8 (www.fil.ion.ucl.ac.uk/spm/). In T1 im-
ages the habenula is visible as two small epithalamic
structures at the dorsomedial portion of thalamus point-
ing into the third ventricle [31]. All the habenula masks
were carefully inspected, and the mean MNI coordinates
of all the participant-specific habenula masks were ap-
proximately centered at [− 4, − 24, 2] for the left habenula
and [4, − 24, 2] for the right habenula which were consist-
ent with previous research [31]. The habenula masks were
defined as a 4-mm sphere centered at [− 4, − 24, 2] and [4,
− 24, 2]. As for MOH+CM and EM, each group will be
divided into two subgroups based on PHQ-9 scale (sub-
group 1 with scores 0–4 and subgroup 2 with scores 5–
27), or GAD-7 scale (subgroup 1 with scores 0–4 and sub-
group 2 with scores 5–27) to detect if there is a significant
difference between the subgroups in MOH+CM or EM.
Comparisons of functional connectivity will be performed
between two subgroups in order to validate if depression
or anxiety affects the functional connectivity.

Statistical analysis
Analyses of variance with subsequent post-hoc tests,
Chi-square tests, or Fisher’s exact tests were used as

appropriate for comparing demographic data among
participant cohorts. Pearson correlation analysis was
performed between functional connectivity of habenula-
SN in the imaging and the clinical variables within the
patients’ group using SPSS. The data with normal distri-
bution was described as mean ± standard deviation. P
value of < 0.05 was considered to indicate a statistically
significant correlation.

Results
Participant characteristics
Table 1 shows the demographic and clinical characteris-
tics of the subjects included in this study. Sixty-five sub-
jects were included in the RS-fMRI analysis. Seventeen
patients with MOH +CM (3 males and 14 females, mean
age 46.6 ± 10.3 years), 18 patients with EM (4 males and
14 females, mean age 38.0 ± 14.4 years) and 30 HC (11
males and 19 females, mean age 40.8 ± 9.7 years). Age
and sex did not differ across groups. Disease duration of
MOH +CM group (22.8 ± 8.9, range: 3–40 years) was
significantly higher (p < 0.001) than EM group (10.8 ±
6.9, range: 0.83–20 years). The medication-overuse dur-
ation of MOH +CM subjects was 7.3 ± 6.4 with range of
0.25–17 years. The visual analog scale of MOH +CM
and EM group resulted no significant difference. The
PHQ-9 depression scale of MOH + CM patients (8.7 ±
6.7, range: 0–23) was significantly higher than EM (2.4 ±
4.8 range: 0–11) and HC (2.5 ± 2.2, range: 0–6), with p
value of 0.018 and 0.002 separately. There was no differ-
ence of GAD-7 anxiety scale of participants in three
groups. Overused medications were combination analge-
sics for all MOH +CM participants (chiefly
aminopyrine-phenacetin-phenobarbital-caffeine and
caffeine-aminopyrine).

GICA spatial maps
RS-fMRI data were separated from the entire HC group
into 50 independent components. We obtained 9 nonar-
tifactual components based on correlation analysis re-
sults and visual inspection of each component’s spatial
map (Fig. 2). Then we selected the SN on the basis of
the r-value and spatial similarity to the reported spatial
maps previously [32].

Altered resting-state interaction of the habenula and the
SN in patients with MOH + CM
We identified an increased functional connectivity of
habenula-SN in both the right and left habenula masks
of the MOH +CM subjects compared with EM and HC.
While there was no difference detected between EM
subjects and HC in the same brain regions. Further de-
tails are shown in Table 2; Fig. 3. No difference was de-
tected between subgroups with or without depression
based on PHQ-9 scale in MOH +CM (Table 2).
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Correlation analysis between habenula-SN functional
connectivity and clinical variables
Table 3; Fig. 4 presented that there was significant cor-
relation between SN-habenula functional connectivity
and medication overuse over time (p = 0.043, r = 0.512,
95 %CI = 0.116–0.790). There were no significant corre-
lations between SN-habenula connectivity and other
clinical variables (p > 0.05).

Discussion
To the best of our knowledge, it is the first time that
functional connectivity between the habenula and the
SN in patients with MOH +CM and EM were investi-
gated. Based on the independent component analysis
(ICA) method, bilateral habenula showed increased
resting-state functional connectivity with the SN in
MOH +CM patients compared with EM and HC. Our

results suggested this aberrant enhanced functional con-
nectivity may play an important role in MOH and pro-
vided understanding for the pathophysiology of this
condition.
So far, the pathophysiology of MOH has been believed

to be associated with the central sensitization, deficit en-
dogenous pain modulation, genetic predisposition, and
substance addiction [6, 33, 34]. As for MOH, the chronic
pain itself is a complicated and multidimensional sen-
sory experience that includes three domains: sensory,
cognitive, and affective, which overlap largely with the
function of the habenula and the SN [35].
In the current study, the increased functional connect-

ivity of habenula-SN was shown in patients with MOH
and CM but not in EM or HC, or between subgroup of
MOH +CM patients with or without depression, which
indicated that this alteration may correlate with either

Table 1 Demographic and clinical data for all participants

Clinical details MOH + CMa patients EMb patients Healthy controls p value

Age, years 46.6 ± 10.3 38.0 ± 14.4 40.8 ± 9.7 0.078

Sex 3Mc, 14Fd 4 M, 14 F 11 M, 19 F 0.298

Headache history, years 22.8 ± 8.9 10.8 ± 6.9 N/Ae < 0.001

Medication-overuse duration, years 7.3 ± 6.4 N/A N/A N/A

Headache location

Right; Left; Bilateral 2 (11.8 %); 2 (11.8 %); 13 (76.5 %) 2 (11.1 %); 7 (38.9 %); 9 (50 %) N/A; N/A; N/A N/A; N/A; N/A

VASf 8.4 ± 1.4 8.0 ± 1.4 N/A 0.465

PHQ9 8.7 ± 6.7 2.4 ± 4.8 2.5 ± 2.2 < 0.05h

GAD-7i 2.9 ± 3.9 1.6 ± 3.6 2.6 ± 2.1 0.729
a MOH + CM, medication-overuse headache + chronic migraine; b EM, episodic migraine; c M, male; d F, female; e NA, not applicable; f VAS, visual analog scale; g

PHQ-9, Patient Health Questionnaire 9 Depression Scale; h Post-hoc analysis using LSD resulted significant difference between MOH + CM and EM with p value of
0.018, MOH + CM with HC with p value of 0.002. Meanwhile there was no significant difference between EM and HC with p value of 0.978; i GAD-7, Generalized
Anxiety Disorder Assessment 7-item Scale. Data are mean ± standard deviation

Fig. 2 Group ICA–estimated resting-state networks based on 50-component analysis. Sagittal, axial, and coronal views of the ICA spatial maps
estimated by correlation to the known reference network using FSL utility and confirmed by visual inspections, considering 9
nonartifactual components
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repetitive headache attacks or overuse of medication.
Previous studies have demonstrated increased functional
connectivity and decreased gray matter volume within
SN in MOH patients compared with healthy individuals
[9, 36], indicating the involvement of SN in MOH. In
MOH patients who evolved from migraine, the dACC
was demonstrated to be overactivated during switch be-
tween noxious and innocuous stimuli, yielding dysregu-
lated salience processing of sensory in chronic migraine,
and this overactivation to unspecific salient stimuli may

play a role in migraine chronification [37]. On the other
hand, habenula activation has been observed in noxious
stimulation together with increased functional connect-
ivity with periaqueductal grey [38]. The increased syn-
chronous neuronal activity of habenula-SN is likely to
correlate with the MOH processing and might contrib-
ute to the MOH development or chronification through
aberrant overactivation to unspecific sensory stimuli.
MOH is hypothesized to be lying within a spectrum of

addiction disorder involving the mesocorticolimbic

Table 2 Altered resting-state functional connectivity of the habenula and the SNa amongst MOH + CMb, EMc and HCd, and between
MOH + CM subgroups with or without depression

Brain region Number
of
voxels

Cluster
size,
mm3

MNI coordinates, mm F
score
(max)

p
valuex y z

MOH + CM VS HC

Re habenula 7 56 4 -25 2 3.38 < 0.001

Lf habenula 7 56 -3 -25 2 3.09 0.002

MOH + CM VS EM

R habenula 7 56 4 -23 2 2.73 0.006

L habenula 7 56 -3 -23 2 3.03 0.002

EM VS HC

R habenula 0 0 3 -25 2 1.76 0.079

L habenula 0 0 4 -24 2 1.51 0.132

MOH + CM depression VS MOH + CM without depression

R habenula 0 0 5 -24 2 0.85* 0.475

L habenula 0 0 4 -24 2 1.99* 0.077
a SN, salience network; b MOH + CM, medication-overuse headache + chronic migraine; c EM, episodic migraine; d HC, healthy controls; e R, right; f L, left
*T score from two-sample t test

Fig. 3 Altered habenula-SN functional connectivity maps. Altered resting-state functional connectivity of habenula and the SN region in MOH +
CM vs. that in HC and EM patients. (A) the increased resting-state functional connectivity of the left habenula and the SN in patients with MOH +
CM compared with HC; (B) the increased resting-state functional connectivity of the right habenula and the SN in patients with MOH + CM
compared with HC; (C) the increased resting-state functional connectivity of the left habenula and the SN in patients with MOH + CM compared
with EM; and (D) the increased resting-state functional connectivity of the right habenula and the SN in patients with MOH + CM compared with
EM. SN, salience network; MOH + CM, medication-overuse headache + chronic migraine; HC, healthy controls; EM, episodic migraine
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dopamine system [39]. As a core component of the brain
anti-reward system, the lateral habenula receives input
from limbic-forebrain and basal ganglia and sends out-
put to midbrain nucleus including ventral tegmental area
(VTA) and substantia nigra compacta (SNc) [40]. The
habenula is activated by exposure to negative reinforces
such as pain or stress and provides inhibitory tone to de-
crease the activity of VTA and SNc. This will turn off
the reward system and results in reduced dopamine re-
lease [41, 42]. As for MOH which evolves from a pre-
existing headache, presumably the repetitive headache

attacks may gradually reduce dopamine release through
habenula during the process. The habenula-dopamine
pathway was proved to motivate anticipation through
the integrity of phasic salience-related signals and tonic
reward-related signals [43]. And the insula of SN was
proved to charge in the conscious desire for drugs for it
role in incentive motivation [44]. Taken together, this
habenula-SN dysfunction is likely to intervene with cog-
nitive control to take the medications and fail to inte-
grate motivational information in the long-term and
may play a role in the development or the aggravation of
MOH. Meanwhile, the increased functional connectivity
of habenula-SN showed significant correlation with
medication overuse duration, which indicated that the
time length of medication overuse was related to the en-
hanced synchronous neuronal activity of habenula and
SN. Furthermore, the habenula might be an efficient in-
dicator or treatment target for MOH for its integrative
role that covering multiple aspects of MOH.

Limitations
Our study has several limitations. First, the sample size
was limited. Second, the participants were not matched
according to the depression or anxiety scale since the
highly presence of depression in MOH population in the

Fig. 4 Correlation analysis between functional connectivity of habenula and SN and medication overuse duration. Correlation analysis results of
the functional connectivity between habenula and SN and medication overuse duration. The relationship between these resting-state
abnormalities and the other clinical variables were also checked. No results exceeded the threshold. SN, salience network

Table 3 Correlation analysis between functional connectivity of
habenula-SN and clinical variables of MOH + CMa subjects

Clinical variables r p value 95% CI of r

Headache history 0.103 0.703 -0.204–0.557

Medication overuse duration 0.512 0.043 0.116–0.790

Attack frequency 0.299 0.260 -0.451–0.702

VASb 0.205 0.446 -0.300–0.714

PHQ-9c 0.482 0.158 -0.333–0.882

GAD-7d 0.206 0.568 -0.488–0.659
a MOH + CM medication-overuse headache + chronic migraine; b VAS visual
analog scale; c PHQ-9 Patient Health Questionnaire 9 Depression Scale; d GAD-
7 Generalized Anxiety Disorder Assessment 7-item Scale
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real world. Although PHQ-9 and GAD-7 scale were used
as covariates to minimize these effects, and further sub-
group comparisons within MOH patients were per-
formed based on two scales, we cannot definitely
exclude the possibility that part of the functional con-
nectivity changes may be due to depression or anxiety.
Third, we were not able to draw a causative relationship
of the increased functional connectivity of habenula-SN
and the MOH development. Fourth, we were not able to
compare the habenula-SN functional connectivity
amongst patients overusing different medications in
MOH, since all our participants had overused combin-
ation analgesics. Previous studies based in China showed
patients who overused combination analgesics and more
than two kinds of analgesics accounted for almost 90 %
of MOH [2, 45]. While triptan, ergotamine and opioid
were rarely used either for its relatively high cost as a
prescription only available in a few hospitals, or for its
side effect and no longer available in the market, or
strictly constricted [2]. Meanwhile combination analge-
sics were available as over the counter at a relatively low
price. Further studies are needed to clarify the effects of
headache medications per se on the entity-specific alter-
ations in the brain.

Conclusions
The current study demonstrated an increased functional
connectivity of habenula-SN in patients with MOH +
CM compared with EM and HC by ICA-based analyses
of RS-fMRI data. Our findings supported MOH to be
lying within a spectrum of dependence and addiction
disorder. The enhanced functional connectivity of the
habenula with SN may correlate to the development or
chronification of MOH. Furthermore, the habenula may
be an indicator or treatment target for MOH for its inte-
grative role involved in multiple aspects of MOH.
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