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ABSTRACT

Eosinophils play critical roles in the maintenance of homeostasis in innate and adaptive 
immunity. Although primarily known for their roles in parasitic infections and the 
development of Th2 cell responses, eosinophils also play complex roles in other immune 
responses ranging from anti-inflammation to defense against viral and bacterial infections. 
However, the contributions of pattern recognition receptors in general, and NOD-like 
receptors (NLRs) in particular, to eosinophil involvement in these immune responses 
remain relatively underappreciated. Our in vivo studies demonstrated that NLRC4 deficient 
mice had a decreased number of eosinophils and impaired Th2 responses after induction 
of an allergic airway disease model. Our in vitro data, utilizing human eosinophilic EoL-1 
cells, suggested that TLR2 induction markedly induced pro-inflammatory responses and 
inflammasome forming NLRC4 and NLRP3. Moreover, activation by their specific ligands 
resulted in caspase-1 cleavage and mature IL-1β secretion. Interestingly, Th2 responses such 
as secretion of IL-5 and IL-13 decreased after transfection of EoL-1 cells with short interfering 
RNAs targeting human NLRC4. Specific induction of NLRC4 with PAM3CSK4 and flagellin 
upregulated the expression of IL-5 receptor and expression of Fc epsilon receptors (FcεR1α, 
FcεR2). Strikingly, activation of the NLRC4 inflammasome also promoted expression of the 
costimulatory receptor CD80 as well as expression of immunoregulatory receptors PD-L1 
and Siglec-8. Concomitant with NLRC4 upregulation, we found an increase in expression 
and activation of matrix metalloproteinase (MMP)-9, but not MMP-2. Collectively, our results 
present new potential roles of NLRC4 in mediating a variety of eosinopilic functions.
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INTRODUCTION

Eosinophils, along with mast cells and basophils, play critical roles in Th2 responses by 
coordinating immune reactions to extracellular parasitic infections and by mediating 
allergic responses (1). Eosinophils are myeloid in origin, develop in the bone marrow and 
later migrate into the bloodstream (2). Although they constitute only a small portion of 
white blood cells, they have potent biological characteristics which activate extensive and 
destructive physiological and biological processes (3). Eosinophils are armed with granules 
containing chemokines and cytokines, metalloproteinases, parasite killing cationic proteins, 
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neurotoxins and reactive oxygen species. These granules can be released in a rapid and direct 
manner when exposed to stimulants (2,4). Eosinophil activation is deeply intertwined with 
adaptive immunity and particularly with Th2 responses (2,5). IL-4, IL-5, IL-13, IL-25 and 
IL-33 which are secreted by Th2 cells play critical roles in the maturation, activation and 
proliferation of eosinophils. Eosinophils also produce these cytokines which further drive 
Th2 activation (2). Notably, IL-5 is also required for eosinophil maturation and induces 
the expression of IL-4, IL-6, IL-13 in eosinophil precursors (6). Recent studies show that 
eosinophils exhibit additional regulatory roles mediated by secretion of IL-1β (7). Sugawara 
et al. also demonstrated that small intestine resident eosinophils negatively regulate Th17 
activation by secreting an IL-1 receptor antagonist under steady state conditions in mice, a 
process that occurs through GM-CSF receptor signaling (8). Furthermore, several studies 
have described the association between eosinophils and immune defenses against bacterial, 
fungal and respiratory viral infections. (9-11).

NOD-like receptors (NLRs) are cytosolic pattern recognition receptors (PRRs) that are 
activated by either pathogen-associated molecular patterns (PAMPs) or damage-associated 
molecular patterns (12). A number of NLRs (NLRP1, NLRP3, NLRC4, and NLRP6) form large 
multimeric protein complexes called inflammasomes that initiate the cleavage and secretion 
of IL-1β and IL-18 by auto-activated caspase-1 (13). NLRC4, together with NLRP3, are the 
most studied and well elucidated inflammasome forming NLRs. These 2 NLRs are reportedly 
activated by gram-negative bacteria such as Salmonella typhimurium, Legionella pneumophila and 
Pseudomonas aeruginosa (14). Despite having a leucine rich repeat domain, NLRC4 generally 
requires recognition of bacterial proteins by the upstream NLR family apoptosis inhibitory 
protein (NAIP) receptor for subsequent inflammasome activation (15). NLRC4 can bind to 
adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC) to interact 
with pro-caspase-1 and ASC is required for cytokine processing (16).

Eosinophils recognize pathogens primarily through their pattern recognition receptors, 
especially membrane bound TLRs (17). Certain nematodes have been shown to have a link with 
bacterial symbionts and their PAMPs can be recognized by TLR2 and TLR4 (18). Additionally, 
the polysaccharide chitin and secreted molecules of various nematodes are known ligands of 
TLR2 and TLR4 (19). Apart from bacteria and nematodes, TLR7 in human eosinophils was 
upregulated upon parainfluenza infection or treatment with TLR7 ligand (9). In contrast, the 
expression, function and roles of NLRs in shaping eosinophilic functions are poorly understood 
and largely unknown. Here, we report that NLRC4-deficient mice have significatly fewer 
eosinophils in the bronchoalveolar lavage fluid (BALF) as compared to wild-type mice following 
induction of allergic airway disease. We also demonstrate that NLRP3 and NLRC4 are expressed 
in human EoL-1 eosinophils. Futhermore, we show that NLRC4 expression is induced by 
PAM3CSK4 and flagellin (FLA) and that this induction, in turn, results in the secretion of IL-1β 
by human EoL-1 cells. PAM3CSK4 and FLA also induce the expression of proteins involved in 
eosinophilic responses such as matrix metalloproteinase (MMP)-9.

MATERIALS AND METHODS

Mice
Nlrc4−/− mice have been described previously (20). Mice were backcrossed 10 generations 
onto a C57BL/6N background. Age and sex matched C57BL/6N mice were purchased 
from the National Cancer Institute. This study was carried out in accordance with the 

2/20https://doi.org/10.4110/in.2021.21.e42

NLRC4 Regulates Eosinophilic Functions

https://immunenetwork.org



recommendations in the Guide for the Care and Use of Laboratory Animals of the National 
Institutes of Health. The Institutional Animal Care and Use Committee at the University of 
Iowa approved all protocols used in this study.

Induction and evaluation of airway inflammation
Mice were intraperitoneally (IP) sensitized on day 0 with either 2 mg alum (Thermo Fisher 
Scientific, Waltham, MA, USA) and 20 mg ovalbumin (Ova) or 2 mg alum and PBS. Mice 
were intranasally challenged with 20 mg Ova in 50 ml PBS on days 15, 16 and 17. Lymph 
nodes (LNs), lungs, blood, and BALF were harvested on day 19. Bronchoalveolar lavage (BAL) 
was performed by delivering 1 ml PBS into the airway via tracheal cannula and aspirating 
the fluid. The lavage was repeated 3 times. Red blood cells were lysed and the cells were 
stained with trypan blue to determine viability, and total cell counts were calculated using 
a hemocytometer. Cytospin slides were prepared by H&E staining with HEMA3 (Thermo 
Fisher Scientific) and numbers of neutrophils, lymphocytes, dendritic cells/macrophages 
(DC/Macs), and eosinophils were counted. Serum samples were collected on day 19 and Ova-
specific IgG1, IgG2c, and total IgE Abs were analysed by ELISA. Siglec F+ cells were prepared 
by positive selection from lungs of wild type or NLRC4−/− mice using Siglec F Miltenyi beads 
per the manufacturer's instructions (Miltenyi Biotec, San Diego, CA, USA). Total 5×106 cells 
were then transferred into NLRC4−/− mice via tail vein injection on day 15 after mice were 
immunized with aluminum hydroxide (Alum)/Ova or Alum/PBS as described above.

Cell culture and stimulation
The EoL-1 cell line was used as a model cell line. The cells were cultured in RPMI 1640 
medium (PAN-Biotech GmbH, Aidenbach, Germany) supplemented with 10% heat-
inactivated newborn calf serum, 2 mM glutamine, 1 mM sodium pyruvate, 0.1 mM 
nonessential amino acids, 100 U/ml penicillin, 100 μg/ml streptomycin, 10 mM HEPES 
and incubated at 37°C and 5% CO2. To assess the impact of Th2 responses on eosinophilic 
functions in EoL-1 cells, cells (1.6×106/ml) were treated with Th2 cytokines with recombinant 
human IL-5 (50 ng/ml) or IL-13 (50 ng/ml) separately or co-incubated with IL-5 and IL-
13. Cells were lysed 24 h after the treatment. Cells were treated with biologically active 
recombinant human IL-1β (R&D Systems, Minneapolis, MN, USA) at different doses (100 pg/
ml, 1 ng/ml, and 10 ng/ml) for 24 h. IgE stimulation was performed by treating EoL-1 cells 
with human native IgE (Abcam, Cambridge, UK) at different doses (0.5, 1, 5, 10 μg/ml) for 24 
h. To activate inflammasome assembly, cells were stimulated with TLR2 ligand PAM3CSK4 (1 
μg/ml; Invivogen, San Diego, CA, USA) as the first signal and treated with ATP (50 mM) for 30 
min, cell media were replaced and incubated for another 6 h.

FLA transfection
Cells were transfected with FLA at 4 h post PAM3CSK4 stimulation using lipofectamine 2000 
in antibiotic free medium (21). FLA (100 ng/ml; Invivogen) and lipofectamine were incubated 
for 20 min at room temperature and cells were treated with the mix. Cells were lysed 10 h or 
24h after PAM3CSK4 stimulation.

NLRC4 knockdown
NLRC4 short interfering RNA (siRNA) transfection of EoL-1 cells was performed as described 
previously (22-24). Three siRNAs targeted towards NLRC4 (Cohesion Biosciences, London, 
UK) were used. Transfection reagent Lipofectamine RNAiMAX (Thermo Fisher Fisher) 
was utilized in siRNA transfections and siRNAs were diluted in 250 µl Opti-MEM (Gibco, 
Waltham, MA, USA). A universal negative control siRNA (Stealth RNAi™ siRNA Negative 
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Control Lo GC; Invitrogen, Waltham, MA, USA), which is not homologous to anything in the 
vertebrate transcriptome was used to normalize relative gene inhibition of the target gene. 
Transfection efficiency was evaluated under a fluorescent microscope, using BLOCK-iT™ 
Alexa Fluor® Red Fluorescent Control (Thermo Fisher Fisher) at 24 postransfection.

BCA protein assay
Thermo Scientific Pierce BCA Protein Assay Kit was used to determine the protein 
concentrations of lysed cells. Cells were lysed in RIPA buffer. Lysates were precleared by 
centrifugation. Supernatants were used as protein samples. The absorbance of the standards 
and unkown samples were measured by using a spectrometer at 562 nm wavelength.

Immunoblotting and co-immunoprecipitation (co-IP)
Lysates (20–50 μg) were prepared in Laemmli buffer containing SDS and denatured at 
95°C for 10 min. Electrophoresis was carried out using SDS-PAGE in 10%–12% (w/v) 
polyacrylamide gel and transferred to polyvinylidene difluoride membrane (Bio-Rad 
Laboratories, Hercules, CA, USA). For protein detection, anti-ASC (Enzo Life Sciences, 
Farmingdale, NY, USA), anti-NAIP (Abcam), anti-NLRC4 (BioLegend, San Diego, CA, 
USA), anti-NLRP3 (CST, Danvers, MA, USA), anti-caspase-1 (Abcam), anti-IL-1β (CST), 
anti-FcεR1α (Thermo Fisher Scientific), anti-FcεR2 (St John's Laboratory, London, UK), 
anti-MMP2 (CST), anti-MMP9 (CST) Abs were used (anti-GAPDH [CST], anti-B-actin [CST], 
and anti-vinculin [CST] Abs were used as housekeeping proteins). The membrane was 
visualized after incubating with HRP-conjugated anti-rabbit and anti-mouse IgG Abs (CST) 
by electrochemiluminescence (ECL; Roche, Mannheim, Germany) using the ChemiDoc 
XRS+System (Bio-Rad Laboratories). Band intensity was quantified using Image Lab 
Software (Bio-Rad Laboratories).

EoL-1 cell lysates and anti-human ASC (Enzo Life Sciences) Ab and isotype control (IgG2b, 
Sigma-Aldrich, St. Louis, MO, USA) were incubated by rotating overnight at 4°C. The Pierce™ 
Protein A/G Magnetic Beads (Thermo Fisher Scientific) were then added to the Ag/Ab 
mixture and incubated at room temperature for 1 h with rotation. The precipitated proteins 
were detected by immunoblotting with anti-human NLRC4 (BioLegend). The following 
co-IP protocol was performed as described in (24). Samples from the same cell lysates were 
analyzed separately because of different enhanced chemiluminescence sensitivities.

Flow cytometry
Cell staining with PE anti-human Siglec-8 (BioLegend), PE anti-human CD (CD80) 
(BioLegend), APC anti-human FcεR1α (BioLegend), APC anti-human CD86 (BioLegend), 
APC anti-human CD23 (BioLegend), APC anti-human CD63 (BioLegend), PE anti-human 
PDL1 (BioLegend), PE anti-human IL-5 receptor alpha (IL-5Rα; R&D Systems) were assessed 
by flow cytometry on an Accuri C6 flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA) 
and data analyzed with FlowJo software (Tree Star Inc., Ashland, OR, USA).

Cytokine measurement
ELISA was performed to determine cytokine measurement in supernatants from EoL-1 cells. 
Nunc MaxiSorp 96 well plates (Thermo Fisher Scientific) were coated with purified capture 
anti-human Abs specific for the Ag of interest diluted in PBS (1:250) and incubated overnight 
at 4°C. The wells were washed with PBS-T 3 times and blocked with 10% blocking solution 
(10% FBS containing PBS) for 1 h at room temperature. Biotin conjugated anti-human Abs for 
the Ag of interest were diluted in blocking solution (1:250) and incubated for 1–2 h at room 
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temperature. HRP Avidin D diluted in blocking solution (1:2,000) was added to the wells 
and incubated for 30 min at room temperature. A 1:1 mixture of TMB Peroxidase Substrate 
and TMB Peroxidase Substrate Solution B mixture was added to each sample and after the 
color change was observed, the reaction was stopped by adding 1N HCl. The absorbance was 
measured at 450 nm with the spectrometer. Data were analyzed using GraphPad Prism 6. 
Purified anti-human IL-1β, IL-5, IL-6, IL-13 (BioLegend) and biotin-conjugated anti-human 
IL-1β, IL-5, IL-6, IL-13 (BioLegend) Abs and MMP-9 human ELISA kit (BioLegend) were used 
for this study.

Real-time RT-PCR
Total RNA was isolated from samples (3 wells from 24 well plates, 3 replicates per each 
treatment) using RNAquous© (Ambion, Austin, TX, USA) according to manufacturer's 
instructions. All RNA samples were DNase treated with DNA-Free (Ambion) according to 
manufacturer's instructions before quantitative PCR.

MMP-9 primers: (F 5′-TTCTCCAGAAGCAACTGTCC-3′, R 5′-TAGGTGATGTTGTGGTGGTG-3′), 
MMP-2 primers: (F 5′-CCGTGTTTGCCATCTGTTTTAG-3′, R 5′-AGGTTCTCTTGCTGTTTACTT 
TGGA-3′), hNLRC4 set 1 primers (variant 1, 2, 3): (F 5′-GTGTTCTCCCACAAGTTTGA-3′, R 5′-AGT 
AACCATTCCCCTTGGTC-3′), hNLRC4 set 2 primers (variant 4): (F 5′-AAGATGAATGAAGAAGAT 
GCTATAA-3′, R 5′-ATCAAGAATGCTCAGTTTGACC-3′), hNAIP primers: (F 5′-CTGGATAAGTTC 
CTGTGCCTG-3′, R 5′-AGGATCATACTCAGCTGAAATTTGG-3′), Siglec-8 primers (F 5′-CTGCAG 
GAAGAAATCGGCA-3′, R 5′-ATGCTCGGTGTGGAGAAGC-3′), proteoglycan 2 (PRG2) primers  
(F 5′-AAACTCCCCTTACTTCTGGCT-3′, R 5′-GCAGCGTCTTAGCACCCAA-3′) (25), eosinophil- 
derived neurotoxin (EDN) primers (F 5′-AGATCAACGACGAGACCCTC-3′, R 5′-GCTGAAGGGGT 
ATGGAGACT-3′), hypoxanthine guanine phosphoribosyl transferase (HPRT) 1 primers (F 5′-GAC 
CAGTCAACAGGGGACAT-3′, R 5′-AACACTTCGTGGGGTCCTTTTC-3′). Each RT-PCR reaction 
was performed as previously described (23,24). The mRNA levels for the target gene 
corrected to those for the housekeeping gene (HPRT) were calculated by subtracting their 
corresponding cycle threshold (Ct) before and after stimulation using the following formula:

 Before stimulation, ΔCtcontrol=Cttarget gene control−CtHPRT control  (1)
 After stimulation, ΔCtstimulated=Cttarget gene stimulated−CtHPRT stimulated (2)

The fold change in mRNA was determined by: Fold change 2Ct(stimulated)−Ct(control). Experiments 
were performed at least twice, and one representative experiment is depicted. Results were 
expressed as fold-change in expression of stimulated cells relative to non-stimulated cells.

Zymography
MMP-9 and MMP-2 secretion and activity were investigated by zymogram analysis. Cell 
supernatants were electrophoresed into 7.5% (w/v) polyacrylamide gel copolymerized with 
gelatin (3 mg/ml). Supernatants were electrophoresed under nonreducing conditions. After 
electrophoresis, gels were incubated 2 times for 30 min in Triton X-100 at room temperature 
and then incubated in zymogram activation solution for 2–4 nights at 37°C. After incubation, 
gels were stained with Coomassie staining solution for 2 h and visualized using the 
ChemiDoc XRS+System (Bio-Rad Laboratories). Band intensity was quantified using Image 
Lab Software (Bio-Rad Laboratories).
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Statistical analysis
Statistics were performed using unpaired Student's 2-tailed t-test or 2-way ANOVA. We 
performed a nonparametric Mann-Whitney U test for BAL counts and serum Ab levels.

RESULTS

NLRC4 is expressed and inducible in EoL-1 eosinophils
The human eosinophilic leukemia cell line (EoL-1) has been employed as a model cell line 
for studying eosinophilic functions (25). The similarities and comparability of this cell line 
with human primary eosinophils have already been established (26). Even though NLRC4 
is expressed in multiple innate immune cells, its functional role in eosinophils is largely 
unknown. Quantitative analysis of gene expression and immunoblotting experiments revealed 
the basal expression of the inflammasome forming molecules NLRC4 and NLRP3 in EoL-1 
cells (Fig. 1). Unlike mice, the human NLRC4 gene has 4 isoforms; therefore, we utilized 2 
primer sets to enable detection of all NLRC4 isomers (Fig. 1A). Additionally, we showed that 
NAIP, ASC and caspase-1, the other members of the NLRC4 inflammasome, are expressed in 
EoL-1 cells (Fig. 1B and C). Based on the two-signal model (27-29), we utilized PAM3CSK4 as 
the priming signal (signal 1) and FLA from S. typhimirium as the activation signal (signal 2) for 
NLRC4; PAM3CSK4 (signal 1) and ATP (signal 2) were utilized for NLRP3. Stimulation of EoL-1 
cells with PAM3CSK4 and FLA led to the upregulation of NLRC4. We then performed several 
experiments to determine if this upregulation of NLRC4 led to formation of functional NLRC4 
inflammasomes and recognition of bacterial molecular patterns (Fig. 1B) (30,31). Although, 
we did not detect any change in NLRP3 and ASC protein expression by immunoblotting, 
IL-1β and active caspase-1 protein levels were increased after EoL-1 cells were stimulated 
with PAM3CSK3 and ATP (Fig. 1C). Furthermore, we measured a significant increase in the 
production of extracellular IL-1β, but not IL-6 cytokines by ELISA after treating EoL-1 cells with 
either NLRC4 or NLRP3 ligands (signals 1 and 2) (Fig. 1D), suggesting that NLRC4 and NLRP3 
inflammasomes can be activated and are functional in EoL-1 cell line (Fig. 1D).

Additionally, we confirmed the inflammasome formation by examining the interaction 
between NLRC4 and ASC adaptor protein by co-IP and detected that endogenous NLRC4 
protein precipitated with the ASC after treated with NLRC4 ligands but did not interact 
with ASC in the non-treated cells (Fig. 1E). Although, IL-1β levels in EoL-1 eosinophils are 
low, it is biologically relevant and data are consistent with the current literature (7,8). In 
contrast, IL-33, an important mediator of Th2 responses and eosinophil activation (32), was 
not secreted by EoL-1 cells at basal levels or upon stimulation (data not shown). To verify 
that NLRC4 activation was indeed the reason for the IL-1β secretion upon FLA transfection, 
NLRC4 mRNA expression was downregulated by RNA interference (RNAi) technology. 
Human EoL-1 eosinophils transfected with multiple NLRC4-target siRNAs exhibited 45% 
decrease in NLRC4 mRNA expression by quantitative PCR (Fig. 1E), and this partial NLRC4 
knockdown was sufficient to ablate IL-1β secretion, further confirming the NLRC4's role in 
IL-1β secretion in EoL-1 cells (Fig. 1F). Since bacterial FLA is a cognate ligand of TLR5 (33), 
we included extracellular FLA in the experimental groups as well to examine whether the 
cytokine production is via NLRC4. In this case, EoL-1 cells were stimulated with FLA without 
transfection as TLR5 protein is a transmembrane protein which recognizes its ligand via its 
extracellular domain (33). Interestingly, induction through TLR5 did not affect the caspase-1 
and IL-1β cleavage and secretion (Fig. 1G).
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Th2 cytokines, IL-5 and IL-13 might be operating through NLRC4 in EoL-1 
eosinophils
IL-5 is one of the key cytokines in eosinophilic functions. Considered a critical element of 
Th2 responses, IL-5 can be secreted by Th2 cells, mast cells, ILC2 cells and also eosinophils 
(34). IL-5 binds to the high affinity IL-5Rα, which triggers signaling pathways leading to a 
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Figure 1. NLRC4 is expressed and inducible in EoL-1 cells. NLRC4 and NAIP mRNA expression in EoL-1 eosinophils treated with TLR2 ligand PAMCSK4 (1 ug/ml) 
as the first signal and transfected with FLA (100 ng/ml) as the second signal for NLRC4 activation (A). Values represent the mean±SD and experiments were 
carried out in triplicates. Student's t-test shows the significant difference between stimulated and nonstimulated cells.Immunoblot analysis of EoL-1 cells 
treated with PAMCSK4 (1 ug/ml) for 4 h and transfected with 100 ng/ml FLA and incubated for another 20 hours (B) or 5 mM ATP for 30 min (C); media was 
replaced with fresh media and cells were further incubated for another 6 h. EoL-1 cytokine secretion into culture media following PAM3CSK4, PAMCSK4+FLA or 
PAM3CSK4+ATP treatment was measured by ELISA (D). Cell lysates were prepared and immunoprecipitated with anti-ASC Ab, then followed by precipitation 
with protein-A/G-magnetic beads. Blots were probed with an anti-NLRC4 Ab and visualized using ECL. Middle panels: controls. Right lane: cell lysates were 
separated by SDS-PAGE and immunoblotted (E). Human EoL-1 eosinophils were transfected with scrambled siRNA or 3 different siRNAs targeting NLRC4 (S1, S2, 
S3) or co-transfected with the combination of S1, S2 and S3 siRNAs. A 24 h after transfection, cells were stimulated with NLRC4 agonist and IL-1β secretion was 
measured by ELISA (F) (scr: scramble siRNA, siRNA cocktail= S1+S2+S3). Immunoblot analysis of cleaved caspase-1 and IL-1β in EoL-1 cells treated with PAMCSK4 
and extracellular or transfected FLA (G). Values represent the mean±SD of 2 separate experiments. 
*p<0.05, **p<0.01, ***p<0.001.



multiplicity of responses, from proliferation to cytotoxicity (34). Yet the relationship between 
NLRC4 and IL-5 signaling in eosinophilic functions remains unclear. Hence, we initially 
examined the IL5/NLRC4 axis in vivo by IP injecting wild-type and NLRC4 deficient mice 
with mouse recombinant IL-5, and then harvesting cells from the intraperitoneal cavities at 
24 and 72 h post injection. Interestingly, the number of eosinophils recruited to the site of 
infection were significantly lower in NLRC4-deficient mice than in wild-type mice at both 
time points (Fig. 2A). Next, to examine the expression and inducibility of NLRC4 in human 
EoL-1 eosinophils in vitro, we treated EoL-1 cells with human recombinant IL (hrIL)-5 and 
hrIL-13. We then investigated the extent to which NLRC4 promoted the production of IL-1β, 
an inflammasome dependent cytokine. To determine the NLRC4 dependency of Th2 immune 
responses, we utilized siRNAs directed at the NLRC4 and transfected EoL-1 cells with these 
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siRNAs. Transfection of cells with siRNAs targeting NLRC4 resulted in a 55% reduction in 
NLRC4 mRNA expression (Fig. 2B). NLRC4 knockdown diminished IL-1β, IL-5, and IL-13 
secretions from EoL-1 cells induced with hrIL-5 and hrIL-13 treatment (Fig. 2B).

NLRC4 induction regulates eosinophilic protein expression in human EoL-1 cells
In addition to their well studied roles in defense against extracellular parasites and in the 
generation of Th2 responses, numerous studies have reported that eosinophils also have 
immunoregulatory functions in the gastrointestinal tract (8), as well as roles in the activation 
of Th1 and Th17 responses against bacterial, fungal and viral infections (11,35,36). Eosinophil 
phenotyping based on gene profiling; the role of eosinophils in tissues including intestine, 
respiratory track and esophagus; determination of biomarkers of eosinophil activation, (de)
granulation and tissue load and a better understanding of the role of eosinophils in human 
diseases remain important pursuits. Given the basal expression and activation of NLRC4 in 
eosinophilic EoL-1 cells, we evaluated the biological processes that shape eosinophilic functions. 
Strikingly, NLRC4 activation by treatment with PAM3CSK4 upregulated the protein expression 
of both the high and low affinity IgE receptors FcεR1α and FcεR2 (Fig. 3A-C). The low affinity 
receptor FcεR2 was also upregulated by TLR signaling alone. These broad but important effects 
of TLRs in mediating the activation of eosinophilic cells are somewhat expected considering that 
TLRs are known to have roles in pathogen recognition by eosinophils (17,19). More importantly, 
flow cytometry analyses showed that both TLR and NLRC4 induction in EoL-1 cells resulted in 
increased surface expression of IL-5Rα, revealing a reciprocal molecular relationship between 
NLRC4 and IL-5–IL-5Rα signaling and expression (Fig. 3B). In contrast, NLRP3 induction had 
no significant effect on FcεRs and IL-5Rα expression (Fig. 3A and B). Here, we also included 
the exctracellularly recognized FLA to further verify the inflammasome dependent proteins, 
and concluded that not only IL-1β and caspase-1, but also FcεRs are secreted through NLRC4 
inflammasome but not TLR5 signaling (Figs. 1G and 3C). These data also suggest that PRRs 
(NLRC4 and TLR signaling) may impact the interaction between eosinophils and humoral 
immunity involving B lymphocytes, e.g., the role of IL-6 in aiding the survival of B-cells (37). 
Furthermore, NLRC4 activation upregulated the human eosinophilic marker Siglec-8 which 
has an anti-inflammatory function in eosinophil activation and survival (Fig. 3D and E) (38,39), 
indicating the involvement of NLRC4 in negative feedback mechanisms as well.

Eosinophils are known to have Ag presenting roles and to express the costimulatory receptors 
CD80 and CD86. They can also physically interact with T cells (40). The effect of pattern 
recognition receptors on costimulatory receptors expressed on eosinophils are not well studied. 
Our flow cytometry results revealed that, similar to DC/Macs (18,41,42), the surface expression 
of CD80 was upregulated in EoL-1 upon TLR induction (Fig. 3F). On one hand, this upregulation 
was further enhanced upon NLRC4 activation in a manner independent of NLRP3 as its induction 
did not alter CD80 expression (Fig. 3F). On the other hand, CD86 was constitutively expressed in 
EoL-1 cells. The expression of costimulatory molecules on human Eol-1 eosinophils suggest that 
these cells could function as immunoregulatory cells involved in the release of cytokines.

IL-1β might coordinate the immunoregulatory functions of EoL-1 eosinophils
To elucidate the molecular mechanisms behind CD80 upregulation by NLRC4 activation, we 
investigated 2 potential downstream effectors of the NLRC4 inflammasome; caspase-1 activation 
and IL-1β secretion. To address whether NLRC4 activation is solely responsible for eosinophils' 
Ag presenting cell features, we treated human EoL-1 eosinophils with hrIL-1β or conditioned 
media to detect the broad effects of secreted molecules and possible autocrine effects following 
the TLR and NLRC4 induction. Given that the immunoregulatory receptor PD-L1 has critical 
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roles in the interaction with T cells, we measured PD-L1 as well as CD80 surface expressions 
by flow cytometry (Fig. 4) (10). In parallel with CD80, PD-L1 surface expression increased 
upon TLR and NLRC4 induction (Fig. 4). Therefore, similar to increased Siglec-8 expression, 
upregulation of PD-L1 suggests a negative feedback mechanism which might be necessary for 
balancing the highly potent biological effects of eosinophils. In addition, treatment with hrIL-1β 
or conditioned media suppressed the effects of NLRC4 induction which might be promoting 
de novo expression of IL-1β at the time of incubation. It is possible that we did not detect a 
significant increase in CD80 or PD-L1 surface expressions after hrIL-1β or conditioned media 
treatment because the IL-1β dose and exposure time in comparison to de novo IL-1β expression 
in response to NLRC4 induction or any other cell secreted molecule in the conditioned media 
might have reversed the impact on the expression patterns of these receptors.
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Figure 3. TLR2 and NLRC4 induction promotes a number of eosinophilic receptors. Surface expression of FcεR1α (A) and FcεR2 (B) on EoL-1 eosinophils treated 
with TLR2 ligand PAM3CSK4 (1 ug/ml) for 4 h, transfected with FLA (100 ng/ml) and incubated for another 20 h. After the treatment of PAM3CSK4 for 4 h, cells 
were also treated with 5 mM ATP for 30 min; media were replaced with fresh media and cells were further incubated for another 20 h. Cells were harvested at 24 
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are representative of three independent experiments. 
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*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.



NLRC4 inflammasome promotes degranulation and MMP-9 expression and 
secretion, but not MMP-2
CD63, a potential surface marker for eosinophil degranulation, is a transmembrane-4 
glycoprotein and a member of the tetraspanin superfamily. We took advantage of this marker to 
investigate the degranulation of EoL-1 eosinophils following NLRC4 induction with PAM3CSK4 
and FLA by using flow cytometry to measure its expression (Fig. 5A). Our results demonstrated 
that induction through TLR2 alone and NLRC4 further increased CD63 surface expression, 
suggesting degranulation in response to NLRC4 activation (Fig. 5A). Additionally, we measured 
the mRNA expression levels of PRG2 (aka major basic protein) and EDN (Fig. 5A), as these 
proteins are secreted during degranulation (2). MMPs are zinc dependent proteases that 
play various roles in tissue remodeling and degradation of extracellular matrix proteins in 
acute and chronic lung diseases (43-45). In addition to their roles in tissue repair-wound 
healing, MMPs can also play roles in angiogenesis and metastasis (46). Previous studies 
demonstrated that MMP-9 correlates with airway remodeling and asthma associated with 
eosinophils (47,48). Since MMPs have an important biological significance in eosinophilic 
functions associated with inflammation, tissue remodeling and homeostasis, regulation 
of MMPs in eosinophilic responses has been the focus of numerous studies (43,49). For 
these reasons, we investigated the ability of EoL-1 cells to produce and secrete active MMP-2 
and MMP-9 upon stimulation with PAM3CSK4 and FLA. We also studied the production of 
MMP-2 and MMP-9 in EoL-1 eosinophils by Western blotting. Quantitative analysis revealed 
that MMP-2 and MMP-9 mRNA expression was significantly upregulated following induction 
of TLR alone and NLRC4 in EoL-1 cells (Fig. 5B). Gelatin zymography and extracellular 
MMP-9 measurement by ELISA also showed an increased gelatinolytic activity of MMP-9 
in both TLR2 and NLRC4 stimulated EoL-1 eosinophils; however, we did not detect such a 
significant change in MMP-2 protein expression or in its proteolytic activity (Fig. 5C and D). 
To further verify the increase in MMP-9 gelatinolyctic activity through NLRC4 induction, we 
stimulated EoL-1 cells with native human IgE and Ova specific IgE to activate the cells via 
different pathways. Interestingly, stimulation with native IgE and immune complexes did not 
significantly alter MMP-9's proteolytic activity (Fig. 5E).
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Figure 5. Degranulation in EoL-1 cells after TLR2 and NLRC4 agonist treament. Surface expression of CD63 by flow cytometry, MPB and EDN mRNA expression was 
measured by quantitative PCR (A). MMP-2 and MMP-9 mRNA expression was measured by quantitative PCR after treatment with either TLR2 or NLRC4 agonists 
(B). MMP-2 and MMP-9 protein expression after treatment with either TLR2 or NLRC4 agonists. Cell lysates were separated by SDS-PAGE, and immunoblotted 
(C). Pro- and active MMP-9 enzyme activity by zymogram assay and extracellularly secreted MMP-9 by ELISA (D). Cells were treated with either TLR2 or NLRC4 
agonists, native human IgE (0, 0.5, 1, 5, 10 µg) or Ova specific IgE. Immune complexes were prepared at a ratio of 1:10 (Ova:anti-Ova IgE), supernatants were 
collected and enzyme activity was measured by Gelatin Zymography. Results are representative of at least two independent experiments. Eol-1 cells were initially 
gated on the basis of size and granularity using FSC-H/SSC-H by first removing debris and doublet cells using FSC-A/FSC-H. Single cells were sub-gated using 
CD63 (APC) and subsequently degranulated cells were discriminated by the expression of CD63 (APC). Percentages within the gates indicate the proportion of 
CD63 (APC) expressing cells in the Eol-1 cell population. 
*p<0.05, **p<0.01, ****p<0.0001.



NLRC4 deficiency impairs Th2 responses in a mouse model of allergic airway 
disease
NLRs are capable of regulating the production of cytokines from T cells through interactions 
with DC/Macs (12). The role of inflammasome dependent IL-1β and IL-18 in regulating Th1 and 
Th17 responses has been investigated utilizing several different disease models. Because these 
studies are mostly limited to NLRP3 inflammasomes, less is known about the roles of NLRC4 in 
modulating T cell responses. To addess this deficiency, we used a mouse allergic airway disease 
model. Mice were immunized IP with Alum, an adjuvant that induces a robust Th2 response, 
in the presense of either (Ova) or PBS. Mice were subsequently challenged intranasally with 
Ova on days 15, 16 and 17 and sacrificed on day 19. Airway inflammation was assessed by 
examining the immune cell composition of BALF and by restimulating T cells with Ova. 
Insterestingly, the number of eosinophils were markedly decreased in NLRC4-deficient mice 
as compared to wild-type mice (Fig. 6A). We did not see a significant change in the number 
of neutrophils, lymphocytes, or macrophages in the BALFs of NLRC4-deficient and wild-type 
mice (Fig. 6A). We also measured the Th1 (IFN-γ), Th2 (IL-4, IL-5, and IL-13) and Th17 (IL-17) 
cytokine responses after ex vivo re-stimulation of lung-draining mediastinal LNs with Ova. IL-4, 
IL-5, and IL-13 cytokine production in LN cells from NLRC4-deficient mice was significantly 
diminished when compared to wild-type mice (Fig. 6B). However, upon restimulation, IFN-γ 
and IL-17A cytokine levels were comparable in NLRC4-deficient and wild-type mice (Fig. 6B). 
As expected and consistent with the literature (50), Alum/Ova induced Th1 and Th17 responses 
were much weaker than Th2 respones, consistent with the literature. Furthermore, IL-4, IL-5, 
and IL-13 cytokines were partially and significantly recovered after wild-type or NLRC4-deficient 
eosinophil transfer into NLRC4-deficient mice (Fig. 6C). We also evaluated the extent of airway 
inflammation by measuring ovalbumin-specific IgG1, IgG2c and IgE immunoglobulin levels 
in the serum of both mice groups. IgE levels were significantly lower in NLRC4-deficient mice 
than wild-type mice; however, differences in IgG1 and IgG2c levels between the two mice 
groups were not statistically significant (Fig. 6C). Taken together, and consistent with decreased 
eosinophilic influx into the lungs of NLRC4 knockout mice injected with Alum/Ova, LN cells 
secreted reduced levels of Th2 cytokines upon induction of airway inflammation.

DISCUSSION

Eosinophils have critical functional roles in Th2 responses and defense against extracellular 
parasitic infections (51). Their potentially potent inflammatory and damaging impacts in the 
body are generally offset by their relatively low number and tightly regulated proliferation 
and activation mechanisms. Eosinophils generally recognize parasitic pathogens through 
PRRs, most notably TLRs (17). Nonetheless, few studies focus on the effects of PRRs on 
eosinophilic functions and their relationship with the Th2 responses. Moreover, their low 
abundance makes eosinophils more difficult to study compared to many other immune 
cell types. For these reasons, we used the EoL-1 model cell line to study eosinophilic 
characteristics. Here, we report that EoL-1 cells displayed a number of specific characteristics 
of human eosinophils. Together with their morphological similarities to eosinophils, 
EoL-1 cells express IL-5Rα, a critically important receptor for the survival and activation of 
eosinophils, as well as the allergy related IgE low affinity receptor FcεR2 which is likewise 
expressed on human eosinophils (1,52). Moreover, EoL-1 cells also express the high affinity 
IgE receptor FcεR1α along with Siglec-8, the eosinophilic marker reported to have anti-
inflammatory effects on eosinophil activation and maturation (53,54), upon induction. 
Therefore, EoL-1 cells are an ideal model for the investigation of eosinophilic functions.
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Figure 6. Th2 cytokine response is impaired in NLRC4−/− mice. Wild-type and NLRC4−/− mice were injected IP with either Alum/PBS or Alum/Ova on day 0; mice 
were intranasally challenged with Ova on days 15, 16 and 17. Two days after the last intranasal challenge, differential cell counts in BALF were analyzed (A). Lung 
draining LN were harvested and restimulated in vitro with or without Ova (10 µM) for 72 h and cytokine levels in the supernatants measured by ELISA. Values 
represent the mean±SD and are representative of three separate experiments each with a minimum of 3 mice per group (B). Eosinophils from wild-type or 
NLRC4−/− mice were transferred into NLRC4−/− mice on day 15 after mice were immunized with Alum/PBS or Alum/Ova, Th2 cytokines were assessed by ELISA 4 
days later (C). Ova-specific IgG1 and IgG2c levels in serum were measured by ELISA. Values represent the mean±SD of three separate experiments (n=3–5 mice 
per group) (D). 
*p<0.05, **p<0.01, ***p<0.001.



Allergic airway inflammation is an inflammatory disease associated with the recruitment 
of inflammatory cells, especially eosinophils, to the pulmonary airways, along with 
increased levels of Th2 cytokines (particularly IL-4, IL-5, and IL-13) and occurs very early 
in an immune response within LNs (55). Eosinophils directly process and present Ag to 
CD4+ T cells, thereby boosting Th2 differentiation and clonal expansion. These attributes 
are essential functions of eosinophils in the generation of Th2 responses as evidenced 
by the diminished Th2 immunity in acute and chronic mouse models of allergic airway 
inflammation in eosinophil deficient mice (56,57). Given that we are examining the roles of 
eosinophils regulated by NLRC4, we utilized the allergic airway inflammation model for its 
reproducibility, robustness and quantifiable readouts including BAL counts for eosinophils, 
serum Ab levels and LN Th2 cytokine measurements.

As previously mentioned, eosinophils mediate inflammatory responses upon pathogen 
recognition through PRRs, especially TLRs. However, the role of NLRs in these functional 
processes are largely unknown and have not attracted much attention to date. This 
fact motivated us to focus on NLRs. Since NLRC4 and NLRP3 are the more widely 
studied receptors of this family and since both are essential components of multimeric 
inflammasome complexes, we concentrated on these 2 receptors with a greater emphasis 
on NLRC4. Importantly, we demonstrated that eosinophil like EoL-1 cells not only express 
NLRC4 and NLRP3 proteins, but inflammasome structures are activated in these cells upon 
treatment with NLRC4 and NLRP3 ligands. Treatment with NLRC4 and NLRP3 ligands 
bacterial FLA and ATP, respectively, led to caspase-1 and IL-1β cleavage in EoL-1 cells. 
Interestingly, NLRC4 mRNA and protein expression are elevated upon treatment with two 
signals (PAM3CSK4 stimulation and FLA transfection). Together with the inflammasome 
activation, EoL-1 cells secreted the pro-inflammatory cytokine IL-1β. Strikingly, NLRC4 
knockdown diminished IL-1β secretion, an observation that points to a direct role for NLRC4 
activation in inflammasome formation and caspase-1 and IL-1β cleavage. TLR activation 
mediates other pro-inflammatory pathways that are inflammasome independent, such as 
IL-6, and as expected, IL-6 was not differentially expressed after stimulation with NLRC4 
ligand. Even though EoL-1 cells have been shown to express TLR5 mRNA (data not shown) 
and protein, IL-1β expression was not differentially expressed when treated with FLA alone, 
a cognate ligand of TLR5. Despite the low levels of IL-1β and IL-6 production in this cell line, 
secretion of these cytokines can play roles in maintaining a balance between Th2 and Th17 
responses during an infection since IL-1β and IL-6 are the mediators of Th17 activation and 
eosinophils are known to be the components of the Th2 response. Additionally, MMP-9 
expression and secretion were also promoted upon TLR and NLRC4 induction, an additional 
outcome of the impact of pattern recognition receptors on regulating the potent eosinophilic 
responses in a broad sense. As the regulation of MMPs could be involved in eosinophil egress 
into the BAL (58), NLRC4 regulation of MMP-9 might have roles in BAL recruitment in a 
mouse model of allergic disease.

Apart from the promotion of pro-inflammatory responses, in EoL-1 cells, NLRC4 and 
TLR activation contributed to the development of eosinophilic functions. Induction with 
PAM3CSK4 stimulation and FLA transfection promoted increases in the expression of the 
eosinophilic marker IL-5Rα. Furthermore, the TLR activation also led to the enhancement 
of the allergic responses since low affinity Fc epsilon receptor FcεR2 expression levels were 
significantly augmented upon treatment with TLR2 ligand. Moreover, NLRC4 activation 
upregulated the expression of the high affinity Fc epsilon receptor FcεR1α, Siglec 8 and FcεR2 
whereas NLRP3 activation or TLR5 induction had no such an impact on the expression of 
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these receptors. Also, we observed a reciprocal relationship between NLRC4 and IL-5Rα. 
EoL-1 cells expressed higher levels of NLRC4 protein when cells were stimulated with IL-5 
and the number of IL-5Rα expressing EoL-1 cells increased upon NLRC4 activation. The effect 
of NLRC4 activation on eosinophilic functions provides new insights to the regulation of 
allergic responses but also generates new questions. The reciprocal relationship between IL-
5Rα and NLRC4 activation and the positive effects of TLR signaling present PRRs and NLRC4 
inflammasome as new potential mediators of allergic and eosinophilic responses.

In human monocytes and macrophages, alternative inflammasome pathways have been 
shown to promote caspase and IL-1β cleavage and secretion through LPS stimulation alone 
and furthermore, this occurs through an MyD88 independent and caspase-8 dependent 
pathway, but not through other TLR ligands such as PAM3CSK4 (59). Data presented here 
show that IL-1β is cleaved into its biologically active form in EoL-1 eosinophils through TLR2 
activation. The constitutive cleavage of caspase-1 or mechanisms downstream the MyD88 
independent TLR pathways must also be investigated to elucidate this unique phenomenon.

The Ag presentation capability of eosinophils, mainly upon activation, has been reported (2). 
Moreover, any potential interaction between eosinophils and Th2 cells resulting from NLR 
activation and inflammasome formation is essential in the characterization of eosinophilic 
responses. EoL-1 cells exhibited the characteristics of Ag presenting cells by expressing 
the costimulatory receptors CD80 and CD86. Strikingly, almost all of the EoL-1 population 
expressed CD86 under steady conditions. Furthermore, as expected, CD80 expression was 
upregulated upon TLR activation (60) and interestingly, NLRC4 and NLRP3 activation 
led to an additional increase in CD80 expression, suggesting a broader role for NLRs in 
inflammasome activation.

Although eosinophils are one of the least abundant subpopulations of cells in blood 
circulation, their low number is compensated for by their production of granules with a 
highly potent content. Moreover, their involvement in a broad spectrum of pathological 
conditions such as acute and chronic infections, cancer and thrombosis make them an 
important research topic. Upon activation, eosinophils secrete their granule content which 
then determines the course of allergic, inflammatory, and immunoregulatory responses. To 
elucidate the possible mechanisms of promoting impact of NLRC4 activation on CD80, we 
formulated 2 possible hypotheses: i) caspase-1 cleavage through NLRC4 activation results in 
further activation of downstream caspase proteins and subsequent activation of transcription 
factors that result, in turn, in upregulated gene expression of the CD80; ii) IL-1β secretion 
acts as a autocrine signal in EoL-1 cells and upregulates CD80 expression. However, human 
recombinant IL-1β treatment or conditioned media treatments supressed the response 
we measured upon NLRC4 activation. This might be due to the dose and time of hr IL-1β 
treatment or another cell secreted molecule in EoL cell culture media.

It is possible to speculate that NLRC4 is more intimately related to allergic responses while 
TLR signaling promotes more general, global immune responses in EoL-1 cells. Nonetheless, 
it may be concluded that PRRs in general take part in promoting the expression of several 
allergy related and eosinophil specific genes. Thus, this study also raises further questions 
on how the expression patterns are affected through the signaling of PRRs and other 
immunoreceptors (IL-5Rα, effect of IgE binding to Fc epsilon receptors) and how the gene 
expression profiles of the NLRs are regulated.
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The heterogeneity of eosinophil-associated diseases (EAD), the complexity of tissue 
involvement, the limited number of animal models as well as the low number of eosinophils 
in blood, are all factors that pose technical difficulties in working with eosinophils 
and hinder progress in eosinophil basic research. Furthermore, clinical trials and drug 
development studies on EADs are limited (61,62). Therefore, design of new drugs targeting 
eosinophils for selective eradication and to generate better treatment options for EAD 
diseases should be prioritized. Future studies will be extended to primary human eosinophils 
from EAD patients and to parasitic and viral infection models. These approaches would 
constitute a more complex framework for investigating and understanding the interactive 
relationship between PRRs and eosinophilic functions.
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