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Abstract

Nod-like receptors (NLRs) are nucleotide-binding domain and leucine-rich repeats containing proteins that are important in plant

resistancesignaling.Manyof theknownpathogenresistance (R)genes inplantsareNLRsand theycan recognizepathogenmolecules

directly or indirectly. As such, divergence and copy number variants at these genes are found to be high between species. Within

populations, positive and balancing selection are to be expected if plants coevolve with their pathogens. In order to understand the

complexityofR-genecoevolution inwildnonmodel species, it isnecessary to identify the full rangeofNLRsand infer their evolutionary

history. Here we investigate and reveal polymorphism occurring at 220 NLR genes within one population of the partially selfing wild

tomato species Solanum pennellii. We use a combination of enrichment sequencing and pooling ten individuals, to specifically

sequence NLR genes in a resource and cost-effective manner. We focus on the effects which different mapping and single nucle-

otide polymorphism calling software and settings have on calling polymorphisms in customized pooled samples. Our results are

accurately verified using Sanger sequencing of polymorphic gene fragments. Our results indicate that some NLRs, namely 13 out of

220, have maintained polymorphism within our S. pennellii population. These genes show a wide range of pN/pS ratios and differing

site frequency spectra. We compare our observed rate of heterozygosity with expectations for this selfing and bottlenecked pop-

ulation. We conclude that our method enables us to pinpoint NLR genes which have experienced natural selection in their habitat.

Key words: resistance genes, population genetics, RENSeq, Solanum penellii.

Introduction

Resistance genes are important players in the interaction be-

tween plants and pathogens. They are involved in direct and

indirect recognition of effector molecules from the pathogen

and are hence thought to be under constant evolutionary

pressure.

Most resistance genes (hereafter R-genes) including the

best characterized ones belong to the NLR (nod-like receptors)

or NB-LRR (nucleotide-binding site and leucine-rich repeat

containing) type (Caplan et al. 2008). These include important

R-genes from many food crops like Bs2 in pepper (Tai et al.

1999), R3a in potato (Huang et al. 2004), and Mi in tomato

(Rossi et al. 1998). All NLR genes code for receptor proteins

with a nucleotide-binding site (NB) and C-terminal leucine-rich

repeats (LRR). Generally, these NB-LRRs can be divided into

two groups, based on the sequence of their NB-ARC domain

(a nucleotide-binding adaptor shared by APAF-1, certain

R-gene products, and CED-4) and their N-terminal domains.

One group has N-terminal domains related to the toll and

interleukin receptors (TIR) and is also called TNL, whereas

the second non-TIR group often contains a coiled coil (CC)

and is also referred to as CNL (McHale et al. 2006).

Resistance conferred by R-genes was thought to predom-

inantly come from direct gene-for-gene interaction between

the R-gene and pathogen avirulence effectors (Flor 1971). This

recognition results in a strong defense response, called effec-

tor triggered immunity, which in place results in the produc-

tion of reactive oxygen species or a hypersensitive response in

the plant. This reaction leads to localized cell death and thus

stops the spread of the pathogen (Morel and Dangl 1997).

Several indirect modes of action have also been described. In

these cases, NLRs detect the modification of a (guarded)

target protein which triggers a similar defense response

GBE

� The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,

distribution, and reproduction in any medium, provided the original work is properly cited.

Genome Biol. Evol. 8(5):1501–1515. doi:10.1093/gbe/evw094 Advance Access publication April 27, 2016 1501

Deleted Text: s
Deleted Text: N
Deleted Text: N
Deleted Text:  
Deleted Text: B
Deleted Text: L
Deleted Text:  
Deleted Text: R
Deleted Text: R
Deleted Text: N
Deleted Text:  
Deleted Text: B
Deleted Text: S
Deleted Text: L
Deleted Text:  
Deleted Text: R
Deleted Text: R
Deleted Text:  (avr)
Deleted Text: c
Deleted Text:  (ETI)
Deleted Text: s
Deleted Text: c
http://creativecommons.org/licenses/by/4.0/


(Van der Biezen and Jones 1998; McHale et al. 2006). Several

examples exist that confirm direct interactions (Dodds et al.

2006), even though few sites for direct interaction are known.

R-gene effector interaction might also be more complex. In

wheat, Lr10 and RGA, both NLRs, need to be present simul-

taneously to confer leaf rust resistance (Loutre et al. 2009). In

tomato, NRC proteins are required for resistance conferred by

several other NLR (Gabriels et al. 2007; Wu et al. 2016). When

overexpressed in planta, individual domains of Rx, a tobacco

virus NLR, interact with each other (Moffett et al. 2002). In

rice, multiple NLRs and their various combinations have been

linked to highly redundant resistance profiles (Zhang et al.

2015).

The effector–NLR interactions are crucial to determine the

outcome of infection. NLRs are therefore expected to show

variations and evidence of selective pressures. In this light,

NLRs are often found as large gene families and consequently

annotation, origin, and evolution of NLRs in plants (and ani-

mals) are an important field of study (Maekawa et al. 2011;

Jacob et al. 2013). The numbers of identified NLR differ greatly

within and between plant families, but also based on anno-

tation methods (Jupe et al. 2013). In Arabidopsis thaliana,

about 150 NLR genes have been identified (Meyers et al.

2003). In Solaneceous species like tomato and potato this

number rises to about 355 and 438, respectively (Jupe et al.

2012; Andolfo et al. 2014). In rice so far 466 NLRs have been

annotated (Li et al. 2010). No clear correlations seem to exist

among age, genome size, and number of NLR because, for

example, in the brassica family Brassica rapa, which has a

similar sized genome to A. thaliana, has only 80 known

NLRs (Mun et al. 2009).

In A. thaliana, NLR genes are located clusterwise on the

genome and due to their hypervariable nature a model of a

rapid birth and death process was suggested to explain ex-

pansion and diversification of the gene family (Michelmore

and Meyers 1998). The 150 NLRs identified in A. thaliana

are very divergent, but it is possible to cluster many of them

together in groups by sequence similarity, while some remain

orphan. Of the 22 groups, 10 groups show genes with pos-

itively selected positions. The number of sites however varies

from 1 to 26; while the majority of selected sites occur in the

LRR region, still 33 out of 116 are located in the NBS domain

or other regions (Mondragón-Palomino et al. 2002). Studies of

worldwide within-species variability of NLRs demonstrated the

strong pervasive selection pressure. NLRs are thus likely to

evolve under neutrality or purifying selection, and few under

balancing selection (Stahl et al. 1999; Bakker et al. 2006). A

study including sequence data from both A. thaliana and

Arabidopsis lyrata showed similar results using divergence es-

timates, and indicated that the genes unique to a species, for

example, lacking homologs, appeared to show weaker selec-

tive pressure and less copy number variation (CNV; Guo et al.

2011).

Other studies focused on comparing the NLR complement

between multiple species, and 2,363 NLRs were identified in

12 eudicot plants, including 6 crop species. Of these genes,

50% show tandem duplications associated with strong posi-

tive selection (the ratio of nonsynonymous to synonymous

substitutions, Ka/Ks > 1.5). However, a small set of NLRs ap-

pears to be conserved for over 100 Myr in most eudicot ge-

nomes (Hofberger et al. 2014). In monocots, the divergence

between species appears to be large, as numbers of NLRs

differ greatly among maize, sorghum, brachypodium, and

rice (Li et al. 2010). NLR clusters built from phylogenetic meth-

ods can exhibit a wide range of Ka/Ks ratios (0.5–3.3) (Yang

et al. 2013). Because between-species comparisons have

lower statistical power to detect selection if divergence is

high (Gharib and Robinson-Rechavi 2013), and they do not

allow detecting the occurrence of balancing selection, we in-

vestigate within-population variation to understand short-

term evolution of NLRs.

Wild Solanum species provide the optimal model organisms

for such studies. During its domestication Solanum lycopersi-

cum has suffered significantly from a reduction in genetic di-

versity (100 Tomato Genome Sequencing Consortium et al.

2014; Lin et al. 2014). Hence, wild tomato species regularly

serve as germplasm source in current breeding programs,

making them economically interesting to study (Bai and

Lindhout 2007). In addition, genomic resources are already

available for a selection of wild and cultivated tomato.

In this study, we make use of Solanum pennellii. This wild

species contains several disease-resistance loci, including ca-

nonical NLRs, against Oomycete pathogen Phytophthora

infestans (Smart et al. 2007). It is the source for the I-1 and

I-3 genes which confer resistance against Fusarium wilt

(Sarfatti et al. 1991; Scott et al. 2004). It also contains other

resistance loci, like RXopJ4, a bacterial spot resistance locus

(Sharlach et al. 2012), and thus has large value for plant bree-

ders. Solanum pennellii LA0716 has been used to develop

introgression lines with S. lycopersicum cultivar M82, which

has been instrumental in understanding yield parameters and

generating increased yields (Eshed and Zamir 1994; Eshed

et al. 1996; Gur and Zamir 2004). Solanum pennelli is a self-

compatible species which is expected to show low levels of

within-population diversity. The recent sequencing of one

plant of S. pennellii LA0716 yielded a high quality reference

genome and led to the identification of a number of abiotic

stress associated genes (Bolger, Scossa, et al. 2014).

The costs of generating NGS data are constantly dropping;

however, for complex plant species with large genomes, se-

quencing costs and also computation time for mapping or

assembly are still considerable. R-gene enrichment sequencing

(RENSeq) can be used to reduce the complexity of the DNA

sample, by enriching the R-gene component and thus reduc-

ing overall sequence complexity before sample submission.

To this purpose, RENSeq has successfully been used to identify

the NLR complement of both cultivated tomato and potato
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(Jupe et al. 2013; Andolfo et al. 2014). Nevertheless, for pop-

ulation genetic studies, ideally large numbers of individuals per

population as well as large numbers of populations are desired

to allow inference of short time-scale selective pressures, and

thus driving up in return the sequencing costs. Recently, sev-

eral studies have shown that pooled sequencing can dramat-

ically reduce the sequencing costs, as well as time and costs

associated with sample preparation (Schlötterer et al. 2014).

Note that with pooled sequencing it is not possible to assign

sequences to a single individual, but population genetics sta-

tistics can be successfully computed (Ferretti et al. 2013) and

sampling uncertainties can be accounted for (Kofler et al.

2011; Lynch et al. 2014). Pooled sequencing has been suc-

cessfully used to study population evolution in, for example,

quail (Boitard et al. 2013), drosophila (Zhu et al. 2012), arabi-

dopsis (Fracassetti et al. 2015), and the wild tomato species

Solanum chilense (Böndel et al. 2015). Here we show proof of

principle that pooled RENSeq can be used to identify R-genes

of interest within a single population.

Our overall aim is to identify R-genes that maintain poly-

morphisms within wild populations. As a first step, we provide

proof-of-principle in S. pennellii. Due to its limited genetic di-

versity, S. pennellii is particularly suited to test the statistical

power of various population genetics methods on pooled

data. We accurately identify a large set of NLR genes in the

species and provide robust analysis to identify single nucleo-

tide polymorphisms (SNPs) and calculate population genetics

statistics. With this, we show that a small subset of R-genes

maintains particular high diversity within S. pennellii.

Methods

NLR Identification, Analysis, and Probe Design

To identify high confidence NLR genes, we used the pub-

lished S. pennelli sequence data and NLRParser as recom-

mended by the authors (Steuernagel et al. 2015) We ran

MAST (Bailey et al. 2009) (1 � 10�6) using previously de-

scribed NLR-associated motifs (Jupe et al. 2012). Matching

sequences were extracted and submitted to NLRParser for

annotation. The output was used to extract gene sequences

and gff files with predicted protein annotations, to be used

in follow-up analysis. A phylogenetic tree based on protein

alignment was constructed using the extracted NB-ARC do-

mains of the identified NLR. All domains were aligned with

MUSCLE (Edgar 2004). Manual curation and removal of the

biggest gaps was done in jalview (Waterhouse et al. 2009)

before construction of the tree with PhyML (Guindon et al.

2010) (WAG model, BioNJ starting tree, and NNI tree search-

ing, 100 bootstraps).

Probes (supplementary file S2, Supplementary Material

online) were designed using Agilent’s SureSelect Software

with the predicted NLR for S. pennellii and published NLR

for S. lycopersicum, Solanum tuberosum, and A. thaliana.

We also included a set of 22 control genes used in previous

evolutionary studies of potato or tomato (supplementary file

S3, Supplementary Material online). These included five resis-

tance signaling associated genes (Pto, Fen, Rin4, Prf, and Pfi)

(Rose et al. 2011), three proteases (Rcr3, C14, and PIP1), and

14 metabolism-related genes, the so-called reference genes in

Böndel et al. (2015). We used BLAST and a second run of

NLRParser to confirm that all targeted sequences were

indeed putative NLR genes. Several probes gave false positive

hits (targeting LRR-containing, but non NLR genes). Those

probes were manually removed. In total, 12,331 probes

were selected to use with the SureSelect platform.

Plants, DNA Extraction, and RENSeq

Ten S. pennellii plants (LA0716) were grown in our glass-

house under 16 h light conditions and a minimum tempera-

ture of 18 �C. The seeds were obtained from Wageningen

University Centre for Genetic resources of the Netherlands

(CGN). Leaf tissue was collected from 8-week-old plants and

ground in liquid nitrogen. DNA was extracted using a CTAB

(hexadecyl trimethyl–ammonium bromide) buffer based

method (https://www.protocols.io/view/DNA-extraction-

from-plants-eusbewe, last accessed May 3, 2016). The

DNA was quantified using Life Technologies’ Qubit and qual-

ity confirmed with Agilent Bioanalyzer 2100. DNA for ten

plants was pooled and NLR enrichment was performed ac-

cording to Agilents SureSelect XT protocol with minor mod-

ifications: DNA was sheared on a Covaris S220 to 800 bp,

size selection and cleaning was done using AMPure XP beads

(Beckman Coulter) in two steps using 1.9:1 and 3.6:2 frag-

ment DNA to beads ratio. The quality was assessed using a

Bioanalyzer 2100 (Agilent). End repair, adenylation, and

adaptor ligation were performed as described by Agilent.

Precapture amplification was done using Q5 high-fidelity

PCR mixes. The amplified library was quality checked on a

Bioanalyzer 2100. Hybridization was performed as suggested

for libraries <3 Mb. The library was indexed with 8-bp index

primers using Q5 PCR mix and quality was assessed using the

Bioanalyzer 2100 and quantified using Qubit. Our library was

pooled with seven other samples in equal DNA amounts and

the resulting pool was quantified by qPCR using the

NGSLibrary quantification kit for Illumina (Quanta biosci-

ences) and diluted down to a final concentration of 20 nM.

Illumina MiSeq was run twice on the same library following

the manufacturer’s instructions for MiSeq v3. chemistry.

Data Analysis

Our SNP detection methods are outlined in detail in supple-

mentary figure S1, Supplementary Material online. FASTA files

with sequencing data were quality controlled (QC) using trim-

momatic (Bolger, Lohse, et al. 2014) (HEADCROP:3

SLIDINGWINDOW:4:30 TRAILING:30 MINLEN:40) and map-

ping was performed with trimmed reads using Stampy

Diversity and Evolution in R-genes GBE
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(Lunter and Goodson 2011) and BWA (Li and Durbin 2009)

(default settings). Supplementary figure S2, Supplementary

Material online, shows the quality scores before and after

trimming. Low-quality mappings and duplicated reads were

removed using Picard Tools (http://broadinstitute.github.io/

picard/), before SNP calling. SNP calling was performed

using Popoolation (Kofler et al. 2011), using the author’s rec-

ommended settings, min-cov was varied from 3 to 9 (supple-

mentary fig. S3A, Supplementary Material online), and the

expected allele count set to 20. We tried several subsampling

methods. Supplementary figure S3B, Supplementary Material

online, shows that subsampling in general appears to reduce

the number of called SNPs and does not improve the quality.

In addition, we used GATK Haplotypecaller and SelectVariants

(McKenna et al. 2010). GATK allows for advanced filtering

options, hence we used filters based on our Sanger sequenced

data. We aligned our Sanger reads with the GATK data and

manually optimized the values for all filters based on these

sequenced regions. The used filters are outlined in supplemen-

tary file S5, Supplementary Material online. For completeness

we used two more popular SNP callers Varscan2 (Koboldt

et al. 2012) and BCFTools (http://www.htslib.org/) using de-

fault settings for polyploid organisms.

The classic population genetics statistic p (Tajima 1983)

was computed based on the estimated minor allele frequen-

cies using SNPGenie (Nelson et al. 2015). The folded site

frequency spectrum (SFS) estimations were done using sev-

eral methods. Pool-HMM (Boitard et al. 2013) was run to

calculate the allele frequency in our data (option -spectrum)

directly from the alignment file. These data were fed back

into Pool-HMM (option -estim) to estimate absolute allele

frequency and summarized into folded spectrum. Second,

an SFS was calculated from GATK output (generated using

HaplotypeCaller with -ploidy 20), by parsing expected allele

frequencies from the filtered output VCF, folding and sum-

marizing them. Finally, we used filtered Popoolation outputs

and deduced SFS from the observed allele frequencies. We

computed the ratio of nonsynonymous to synonymous di-

versity pN/ps using SNPGenie which uses an estimator based

on the method of Nei and Gojobori (1986). Possible homo-

logs for all the SNP containing genes were identified using

BLAST against the curated swissprot database, to allow iden-

tification of homologs of evidence-based NLR. Only NLR with

>30% sequence identity and over 70% coverage with the

original NLR were reported.

Sanger Sequencing

Primers were designed to anneal around at least one exonic

region of the following genes: Sopen02g021920,

Sopen12g030570, Sopen11g028610, and Sopen12g032710

(supplementary file S6, Supplementary Material online). Genes

were amplified from DNA extracted from each of the individual

plants used in our pool with Q5 polymerase (NEB), using the

manufacturer’s recommendations. Amplified gene fragments

were purified (Qiaprep Qiagen) and sequenced directly, or li-

gated into the pENTR-TOPO2.1 vector (Life technologies) and

transformed into Escherichia coli TOP10 cells. Positive colonies

were selected and plasmid DNA was extracted using Qiagen

Qiaprep.

To identify all SNPs at each gene segment, we sequenced

at least two plasmids per plant. We used CodonCode Aligner

(CodonCode Inc) to check the sequence quality and align the

plasmid sequenced with the reference genes. Up to 21 SNPs

were manually annotated for each gene section.

Visualization

Visualization of reads, annotations, motifs, and SNPs was

done using IGV (Thorvaldsdóttir et al. 2013). Mapped reads

were shown on the reference sequence and bedtools was

used to generate custom tracks for the different NLR motifs,

gene annotations, and SNPs. Graphs were made in R (R

Foundation for Statistical Computing, Vienna, Austria), using

the package ggplot.

Results

Solanum pennellii Contains 220 High-Confidence NLRs

The automated gene annotation for S. pennellii (Bolger,

Scossa, et al. 2014) contains 486 proteins that contain do-

mains associated with canonical NLRs. However, annotations

are rather incomplete and describe only individual domains

(214 NB-ARC; 259 LRRs; 13 CC, TIR, or other domains). As

individual NB-ARC or LRR domains can also be part of other

signaling proteins, like receptor-like proteases, careful reanno-

tation was required. We reannotated S. pennellii proteins and

inferred whether they were putative complete or partial NLRs,

where complete NLRs contain an N-terminal region (CC or

TIR), NB-ARC, and one or more LRRs. Partial genes lack one

of the three domains. All partial genes are included in our

analysis, because to date it is not known whether these are

nonfunctional pseudogenes or whether some are functional

R-genes. We ran NLRParser against the predicted proteins for

S. pennellii V2. This yielded 220 putative NLRs, of which 93

were complete (supplementary file S1, Supplementary

Material online). We found 164 members of the CNL class,

39 of the TNL class, 17 lacking their N-terminus. As in previous

RENSeq studies (Jupe et al. 2013; Andolfo et al. 2014), manual

inspection showed that some putative NLRs might be wrongly

annotated in the S. pennelli V2 genome. Some of our reads

aligned well outside the annotated genes. As we were not yet

able to accurately predict coding regions lying within these

reads, which will be required for calculation of population

genetics statistics, these reads were ignored and we focused

only on those NLRs for which coding region data were avail-

able. To show that our data set is likely to be a good repre-

sentation of the NLRs to be found in S. pennelli, we
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constructed a phylogenetic tree based on the NB-ARC domain

of the identified NLR. Figure 1 shows that our tree contains the

main NLR classes that can be found in other tomato species

and close homologs of known NLRs from unrelated species,

similar to those described for S. lycopersicum and Solanum

pimpenellifolium.

Sequencing, QC, and Mapping Statistics

We used sequence data of the 220 predicted NLR together

with previously annotated NLR from tomato (S. Lycopersium),

potato (S. tuberosum), and previously described known NLR

sequences (Jupe et al. 2012) to design NLR-specific probes

(supplementary file S2, Supplementary Material online). DNA
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FIG. 1.—NLR genes in Solanum pennellii. Phylogenetic tree for the identified S. pennellii NLR genes generated using PhyML (WAG) with 1,000

bootstraps after alignment of all NB-ARC using MUSCLE. TNLs are highlighted in yellow background. Collapsed triangles represent known NLR clusters

with high bootstrap values (>75%, clade CNL-RPW8: 54%). NLR families are indicated above the different clades and several named resistance genes from

other species have been included for references.
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samples were sequenced as part of a larger pool. Two runs

were done for our pool, which resulted in 805,122 and

2,147,039 reads. We performed basic quality control with

Trimmomatic and trimmed all parts of the reads with quality

lower than 30. Unpaired and low-quality read pairs were re-

moved and finally we retained 669,869 and 1,283,203 high-

quality paired reads. We were able to map 642,331 and

1,230,551 of the read pairs to the reference using Stampy

for run1 and run2, respectively, and 494,012 and 986,210

read pairs using BWA. Downstream analysis revealed that

the BWA alignment gave better results for the SNP calling,

hence we thereafter report the values obtained with the BWA

mapped reads only.

RENSeq Provides Deep Coverage in Targeted Regions

To assess the success of our enrichment sequencing, we plot-

ted the depth of coverage per site against the fraction of the

targeted region with the given coverage. Our probes were

designed using exon data only, this reduces the coverage in

intronic regions, but assures high read depth in coding re-

gions. Figure 2 shows that close to 80% of the exonic

target regions for the 22 control genes have a coverage of

at least 130 reads, and 50% a coverage for at least 269 reads.

For the NLRs, 80% of the predicted target region has a cov-

erage of 245x or higher, and 50% of coverage of more than

408x. The difference in coverage between R-genes and con-

trol genes can be explained by the probe design. For R-genes,

we have used a very redundant database containing all known

tomato, potato, and arabidopsis R-genes and additional genes

from other species, while, for the control genes, each gene

was included only once. Hence an R-gene with orthologs in

tomato, potato, and arabidopsis will have many more suitable

probes in our probset than a control gene.

As our initial mapping might contain misaligned or dupli-

cated reads and mapping over introns, we performed an ad-

ditional series of quality controls and filtering as described in

the Methods section before identification of SNPs in both

control and NLR data sets. Figure 2 shows the coverage plot

after deduplication and filtering. The coverage at the first

quartiles (e.g., 75% of the regions have higher coverage) is

112�, 172�, and 251� in respectively run1, run2, and both

runs combined, whereas the median coverage was 163�,

243�, and 346�, respectively.

GATK and Popoolation Show Highly Congruent SNP
Calls in Our Population

Next we set out to identify SNPs in all exons of the NLR and

control genes within our sequenced population. We ran

Popoolation using different cut-off values to establish the

maximum sensitivity while minimizing the number of false
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positives. SNPs were called for run1, run2, and both runs

combined, with minimum coverage set at 20, 30, and 40.

We assumed equal amounts of DNA per plant and an average

coverage near 120 in the run with the lowest coverage, and

we expect a singleton allele frequency of 1/20. Minor single-

ton alleles should thus be readily picked up in the majority of

cases with a minimum SNP count of 5 or 6. supplementary

figure S3, Supplementary Material online, shows that with

low minor allele count (3–5) very large numbers of SNPs are

detected, and that indeed after the count of 6 the detection

curves flatten off. Importantly, differences between separate

runs (and thus read depth) as well as the minimum overall

depth tend to have a negligible effect on SNP calls (with min-

count 5–9) (supplementary fig. S3, Supplementary Material

online). However, at higher stringency we observe a loss of

sensitivity (mincount > 10). To guarantee high-quality SNPs,

we decided to keep the minimum depth for follow-up analysis

at 30. This way, minor alleles occurring in frequency 4/20 can

still be found with the minimum SNP count set at 6. Lowering

the minimum count could increase false positive rates in highly

covered regions due to possible PCR bias. We also calculated

the average coverage for all exons of each predicted gene to

assure no correlation between SNP and coverage.

Subsampling strategies implemented by Popoolation appear

to have detrimental effect on the SNP calling (supplementary

fig. S3B, Supplementary Material online) and were not used.

Using the setting described, in total 249 SNPs were identified

in the NLRs.

Next we used GATK as a second method to verify the pre-

viously called SNPs by Popoolation. Using GATK we could

predict 222 SNPs. We compared GATK predicted SNPs with

our popoolation data. We found that 185 SNPs in 12 genes

overlap between both data sets (table 1). We manually in-

spected all SNPs called uniquely for GATK and found that

20 were called because they showed difference from the ref-

erence genome but did not show polymorphism within the

sample, 3 were called in low coverage (<30) regions, and 7

were called with GATK with fewer than 6 occurrences of the

SNPs. The final six are close to indel regions. To avoid false SNP

calling, we excluded those regions in Popoolation. We also

analyzed all SNPs called only with Popoolation, and 28

appear to be on locations where also low-quality reads can

be found and 4 are near too high coverage regions (likely PCR

bias). We could not observe any oddities for the other 32.

We further tested Varscan and Bcftools to call SNPs in our

data set; however, both these callers seem to underperform

with 172 and 130 SNPs, respectively. Possible reasons might

be that contrary to Popoolation and GATK, the versions we

used have not been optimized for multiploid (>2) specimens

or pooled data. Figure 3A shows a Venn diagram with the

number SNPs called for each software. Popoolation and GATK

together call the highest numbers of SNPs and also have the

highest overlap.

We also used Popoolation and GATK to identify polymor-

phisms in our control genes. Overall, 12 SNPs were called in

the control gene set by both tools, using settings previously

described. One SNP was called by GATK only because it dif-

fered from the reference genome, but it did not show poly-

morphisms within our sample. Thus highlighting the

importance of noting how SNP callers treat a reference se-

quence. As we are only interested in variation within our pop-

ulation (and not with the reference genome), such SNPs will

be omitted in the remainder of this article.

SNPs Can Be Verified Using Sanger Sequencing

To verify our SNP calling using Sanger sequencing, we designed

primers annealing around one or more exons of two non-NLR

genes, Sopen02g021920 (Rcr3) and Sopen12g030570 (C14),

and two NLRs, Sopen11g028610 and Sopen12g032710 (sup-

plementary file S3, Supplementary Material online). Our Sanger

sequencing data confirm that Sopen02g021920 does not con-

tain any polymorphisms (supplementary file S6, Supplementary

Table 1

SNPs Identified in One Population of Solanum pennellii LA0716

Name Popool GATK Both

Sopen01g033800 1 0 0

Sopen02g006820 0 2 0

Sopen04g002150 0 2 0

Sopen04g002170 0 1 0

Sopen04g003320 0 1 0

Sopen05g028830 0 2 0

Sopen05g032470 0 2 0

Sopen05g032480 5 2 2

Sopen05g032500 0 6 0

Sopen05g032510 8 6 4

Sopen06g003570 2 1 0

Sopen06g023160 6 5 5

Sopen06g023290 0 1 0

Sopen07g001870 0 1 0

Sopen07g017170 6 6 0

Sopen08g003220 0 1 0

Sopen09g023290 0 6 0

Sopen09g035210 2 0 0

Sopen10g024970 5 5 5

Sopen10g024980 0 1 0

Sopen11g027060 0 2 0

Sopen11g028330 24 14 14

Sopen11g028360 22 16 15

Sopen11g028600 0 1 0

Sopen11g028600 0 1 0

Sopen11g028610 41 22 21

Sopen12g022450 96 88 83

Sopen12g032710 10 19 10

Sopen12g032720 9 9 9

Sopen12g032730 10 10 10

Sopen12g032810 1 1 1

Sopen12g032830 1 0 0
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Material online). For simple genomic regions, like those in

Sopen12g030570 and Sopen12g032710, both GATK and

Popoolation identified all Sanger sequenced SNPs. In complex

regions, like part of Sopen11g028610, both GATK and

Popoolation seem to call several, nonoverlapping false positive

SNPs (fig. 3B). Due to its more flexible filtering we are better

able to approach the true SNP set using GATK, yet no filtering

method keeps in all positives and filters out all false negatives.

Again, Varscan and BCFTools significantly underperform in this

gene. To assure high-quality SNPs to calculate population ge-

netics statistics, we will use SNPs as called by both GATK and

Popoolation (table 1). This overlapping set shows lower false

positive (3.6%) and false negative rates (6.4%) compared with

the Sanger data than the individual SNP sets and also removes

SNPs picked up because they only differ from the reference (see

previous paragraph).

Low Sequence Diversity Was Already Evident in the
Original Population

Because we pick up low number of SNPs in our population,

we wanted to infer how the maintenance of the plants in

various collections affected genomic diversity in the NLRs.

Solanum pennellii is a facultative selfing plant, and some

loss of diversity can be expected. However, both the

Tomato Genetic Resource Centre (TGRC, UC Davis, USA)

and the Centre for Genetic Resources of the Netherlands

(CGN, Wageningen University, the Netherlands), who main-

tained this population, confirm that since acquisition (by TGRC

in 1958 and Wageningen from 1985) no more than 5–10

reproductive rounds have taken place and multiple plants

were used in the process of multiplication. This reasoning is

based on information provided by TGRC (Chetelat R, personal

communication) and Wageningen University (Dooijeweert

WV, personal communication). We can therefore reconstruct

the following population model. We assume an initial hetero-

zygosity H0 which is defined here as the probability to sample

two alleles which are different in a population (Charlesworth

and Charlesworth 2010) at the time of sampling. If one plant

was initially sampled, the first generation of multiplication by

selfing decreases heterozygosity by half to a value of H1 =

0.5H0. If two or more plants were sampled and crossed to

produce F1, a proportion 0.5s of heterozygosity is lost due to

the selfing rate s, yielding H1 = (1� 0.5s)H0. Subsequently,

between 8 and 12 diploid plants were produced every gener-

ation and crossed randomly in TGRC and CGN. In such ran-

domly mixing population of size 2N = 16 or 2N = 24

chromosomes, the expectation for the decrease in heterozy-

gosity between two consecutive generations (t and t + 1) is

Ht + 1 = (1� 1/2N)Ht. At the time point of our sample, the

number of NLR genes showing heterozygosity is Hsample =

13/220. Applying these formulae, we can estimate the initial

heterozygosity after t rounds of mutliplication as H0 = Hsample/

[H1(1�1/2N)t]. The initial proportion of heterozygote NLR loci

in the initial wild population of S. pennellii would therefore be

between H0 = [0.17, 0.21] for s = 1, and H0 = [0.12, 0.14] for

s = 0.5, when assuming t = 10 generations of multiplication.

For convenience, heterozygosity equates here with the pro-

portion of polymorphic loci in our 220 NLRs with the popula-

tion sample of 10 diploid plants (20 chromosomes). Increasing

the number of initial plants would lower the expected initial

heterozygosity even more. Hence, we can conclude that S.

A B

FIG. 3.—SNP calls from four different callers. (A) Overlap of called SNPs between different SNP callers. Popoolation and GATK share the most common

SNPs. (B) SNPs called for a region of NLR Sopen11g028610. Top shows the coverage (gray) and SNPs that appear directly from the .bam file (including

putative false positives). The blue lines in the lower parts of the figure show the SNPs as identified by Sanger sequencing and four SNP callers. Popoolation

and GATK show the best performance judging by overlap.
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pennellii LA0716 must have had very low original diversity

with more than 75% of the NLR showing no polymorphisms.

Different Site Frequency Spectrum Estimators Yield
Comparable Results

We used different methods to estimate the SFS of our NLR

data. Pool-HMM (Boitard et al. 2013) calculates an allele fre-

quency spectrum (SFS) directly from the mapped reads and

uses this as a prior to estimate SNP frequency at a given loca-

tion. We used GATK to infer allele frequency in

HaplotypeCaller (using -ploidy 20), expected allele frequencies

were then extracted after filtering. Finally, we estimated allele

frequency from the Popoolation output data on minor alleles

in our data set. All individual SNP frequencies were summed

and turned into a folded SFS of the population. Figure 4A

shows that in absolute values, Pool-HMM shows many more

singletons and overall SNPs in the data, but this is likely due to

the absence of the necessary filtering options. The relative SFS

calculated from Pool-HMM and GATK derived data show very

strong congruence (Pearson correlation = 0.98).

Interestingly, our folded SFS shows an increase for class 5–

7. Inspection of SFS per gene reveals that, due to the low

number of SNPs in our data, single genes with outlying SFS

can be responsible for this pattern. Individual patterns for

some R-genes show that indeed the genes seem to have dif-

fering spectra (fig. 4B). Sopen12g022450 shows an expected

spectrum with high singleton count and flattening tail.

Sopen07g01710 shows an increase in SNPs with intermediate

frequency (greater than eight), whereas Sopen12g032710

shows an odd pattern with many SNPs occurring five to

seven times, hence causing this intermediate frequency in-

crease in the global SFS (fig. 4C).

NLR Genes Show Differential Evolutionary Patterns

None of our 14 house-keeping control genes show any poly-

morphisms. For the pathogen-related control genes, only one

out of eight (Sopen12g030570) had a significant number of

SNPs within our population and a Ts/Tv ratio of 2.33. We

identified 235 SNPs in our NLR data, with an average Ts/Tv

ratio of 1.13. These SNPs were concentrated in only 13 NLRs.

Strikingly, the numbers of SNPs per gene range from 1 to 66

and are not correlated to gene length or average coverage

depth (r = 0.42 and 0.16). All genes meet the minimum cov-

erage criteria in over 88%. Nucleotide diversity is measured

within the population as p per site and per gene (table 2).

Variation in p per gene ranges in two orders of magnitude

between the different NLRs.

The assumptions that make Ka/Ks ratio a reliable estima-

tor for selective pressure on R-genes between species are

not met when analyzing data within populations

(Kryazhimskiy and Plotkin 2008). To assess potential selec-

tive pressures we calculated pN/ps for all R-genes, which is a

better measure within populations (Charlesworth and

Charlesworth 2010) (table 2). In our set, overall, partial

NLR genes show higher values for pN/ps; however, many

complete and partial NLR did not show any polymorphisms

at all. Two NLRs (Sopen05g032510 and Sopen10g02490)

show high (>1) pN/ps values and three others

(Sopen05g032480, Sopen06g023160, Sopen07g017170)

contain several nonsynonymous, but no synonymous mu-

tations—both cases are indicative of positive selection.

Table 2 also shows that the identified SNPs are not limited

to certain regions of the genes. Some NLRs have SNPs in their

C-terminus, other only in the NB-ARC domain or LRR do-

mains, and in some cases SNPs are in all domains. Finally,

we looked at the homology of our identified NLR with previ-

ously annotated NLRs from well-known pathosystems. As ex-

pected with a highly divergent gene family, only five NLRs

show resemblance with previously verified NLRs. These are

one homolog of R1A from potato, one of Arabidopsis RPP8,

and three of Arabidopsis RPP13.

Discussion

We annotated NLR genes in a wild tomato species and show

proof of principle that pooled MiSeq sequence data (250 bp

reads) can be used to infer population genetics statistics to

determine variation of R-genes within one small population of

S. pennellii. Moreover, we show that even in populations with

reduced diversity, large numbers of polymorphisms are main-

tained in certain R-genes.

Identification of NLRs

We predicted 220 NLR genes in S. pennelli, which is an im-

provement over the previous annotation, in which only indi-

vidual domain occurrences had been described. This number is

smaller than in cultivated tomato S. lycopersicum (326) and

another wild relative S. pimpenellifolium (355) (Andolfo et al.

2014). Distribution among CNL and TNL classes is similar com-

pared with both tomato species. Using current data, we find

93 NLRs (43%) to be putatively full length genes. In cultivated

tomato this number is about 70%.

Aforementioned studies on tomato showed that so far only

by manual curation and comparison with RENSeq sequence

data one is able to identify all possible NLR-like regions on the

genome. Unfortunately, this manual comparison will not

allow accurate annotation of open reading frames (ORFs)

and we consider it outside the scope of this artcle to perform

and optimize such annotations. In this study, we therefore

used the ORF as annotated by the S. pennellii genome project

(Bolger, Scossa, et al. 2014). Reliance on these ORF could

mean that not all NLRs in S. pennellii have been identified.

Indeed, our results indicate that in S. pennellii fewer NLRs

are present. However, the phylogenetic reconstruction of the

NLR family shows that our set of NLR genes covers the breath

of NLR families observed in other Solanum spp. We are con-

fident that we have not missed any known NLR family. For
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example, the manual curation in potato and tomato mainly

revealed additional family members of known NLR gene clus-

ters, only very few new singleton genes were identified. This

curation mainly resulted in additional partial genes and

increases the number of complete NLRs by 17% only, up to

221 complete NLRs in S. lycopersicum (Andolfo et al. 2014).

Seeing that in S. pennellii we currently find only 93 complete

NLRs, it is unlikely that after reannotation the number would

A B

C

FIG. 4.—Site frequency spectra. Folded site frequency spectra for the SNPs detected in our NLR set. x-axis shows the number of variants per site, with ten

equals a frequency of 0.5 in our population. (A) Absolute folded SFS; y-axis shows actual number of sites. (B) Relative folded SFS, y-axis shows the fraction of

sites. (C) Absolute folded SFS per gene.
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be doubled. Therefore, we conclude that S. pennellii likely has

lower numbers of NLRs than other sequenced tomato species

and that the difference in NLR numbers could be caused by

the habitat of S. pennellii. This habitat is relatively arid and one

could assume there to be a lower pathogen pressure than for

example in the habitat of S. pimpenellifolium or S. lycopersi-

cum (Caicedo and Schaal 2004) which could cause higher rate

of R-gene evolution (loss/gain).

Successful Deep Sequencing using Few Resources

We showed that using RENSeq, we can cost and resource

effectively, get a sufficient coverage over our target region

using only 1/8th of an Illumina MiSeq lane. Kofler et al.

(2012) suggested that for accurate pooled data processing

very large numbers (>100) of individuals are needed to accu-

rately capture all polymorphisms in the data set. They assume

that in these cases on average each individual will be se-

quenced once or twice, with the high number of individuals

making up for eventual bias due to sample preparation. This

approach might be recommended for species where many

individuals can be easily obtained like Drosophila, but is less

feasible for larger species, or wild specimens, where collected

samples might not contain that many individuals. We show

that an alternative approach, using fewer samples, but assur-

ing high coverage (on average>30 per diploid individual) can

be as successful in identification of polymorphisms in a pop-

ulation. To assure the quality of the identified polymorphisms,

we extensively tested four SNP calling packages and com-

pared our data with selected genomic regions that were sub-

jected to Sanger sequencing. The software Popoolation has

been specifically designed for SNP calling in pooled samples of

many individuals. We find that on our data set Popoolation

(Kofler et al. 2011) slightly overestimates the number of SNPs

present in the data, possibly due to lack of filtering options to

remove biases in read composition introduced as an artifact of

library preparation. GATK (McKenna et al. 2010) allows for

more stringent filtering; however, no filtering thresholds could

be identified so that GATK alone had the best result. This

could be due to the nature of our data, which comes from

enrichment sequencing and thus have very unequal coverage,

big differences between introns and exons, and hence various

biases that we could not fully capture with the available filters.

Two other SNP callers significantly underperformed on our

data, possibly because these were not optimized for pooled

or mutliploid samples. In the end, we obtained the best results

by merging the results and accepting only those SNPs that

were called by both GATK and Popoolation. This strongly re-

duced the number of false positive calls, but might mean that

in some low coverage regions minor alleles will not be

counted. Validation using Sanger sequencing on selected re-

gions showed however that in those regions 93.6% of all

SNPs have been positively identified and also that only 3.6%

of the SNPs were not identified in cases where they should

have been. Overall, this shows that by combining callers, we

are able to get both high sensitivity and high accuracy.

Identification of SNPs in Samples with Reduced Diversity

Overall, we identified very low numbers of SNPs. This might be

partly due to the stringency of the SNP calling; however,

Sanger resequencing of a number of genes did not yield any

additional polymorphisms. Many genes do not contain SNPs

and no pattern can be observed in those that do. For example,

SNPs are not predominantly found in either singletons or clus-

tered genes. The likely explanation for this is the composition

of the population. The sequenced plants come from a facul-

tative selfing population collected in 1958 (Atico, Peru) and

has been propagated during 5–10 rounds at the TGRC and

Wageningen University as small populations of 8–12 plants

(by pollen mixing and crossing). It is possible that the original

population consisted of very few closely related specimens

(maybe even one single plant) and that diversity has therefore

been lost in the sampling and propagation processes. Our

calculations show that the original proportion of genes with

heterozygosity in the population could have been 10% or

Table 2

Characteristics of Polymorphic NLR in Solanum pennellii LA0716

Gene SNPs Pi (SNPGenie) Non_syn Syn PiN PiS PiN/PiS Annotated Homology SNPs in

Sopen05g032480 2 0.00018 2 0 0.00023 0.00000 NaN Complete Unknown NBARC

Sopen05g032510 4 0.00010 3 1 0.00011 0.00006 1.91586 Complete Unknown NBARC

Sopen06g023160 5 0.00091 5 0 0.00117 0.00000 NaN Partial R1A NBARC

Sopen07g017170 6 0.00085 6 0 0.00109 0.00000 NaN Partial Unknown All

Sopen10g024970 5 0.00062 4 1 0.00065 0.00053 1.20837 Partial Unknown Cterm

Sopen11g028330 14 0.00025 10 4 0.00022 0.00034 0.66187 Complete RPP13-like Nterm-Cterm

Sopen11g028360 15 0.00018 11 4 0.00016 0.00025 0.63918 Complete RPP13-like Nterm-Cterm

Sopen11g028610 21 0.00107 12 9 0.00093 0.00153 0.61044 Complete RPP13-like Nterm-Cterm

Sopen12g022450 83 0.00586 64 19 0.00538 0.00755 0.71278 Partial Unknown Cterm

Sopen12g032710 10 0.00370 5 5 0.00238 0.00852 0.27884 Partial Unknown Nterm-Cterm

Sopen12g032720 9 0.00338 6 3 0.00284 0.00536 0.53088 Partial Unknown Nterm-Cterm

Sopen12g032730 10 0.00149 3 7 0.00057 0.00475 0.11988 Complete RPP8 NBARC-Ctem

Sopen12g032810 1 0.00051 0 1 0.00000 0.00241 0.00000 Partial Unknown Cterm
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lower. With the current diversity found at 6%, this shows that

even though the multiplication and initial sampling have de-

creased heterozygosity in our NLR genes, the initial population

exhibited very low genetic diversity to start with. This is con-

sistent with the diversity of self-compatible species to be much

lower than that of self-incompatible species. This is exempli-

fied by the fact that using AFLP markers more diversity (75%

polymorphic sites) was observed within one accession of self-

incompatible S. peruvianum, than between multiple acces-

sions of self-compatible Solanum spp. like S. pimpenellifolium

(7%) (Miller and Tanksley 1990). Recent studies confirm such

high levels of polymorphisms to occur only in self-incompati-

ble species (Städler et al. 2008).

We must note that the SFS will be strongly affected by

genetic drift occurring during the multiplication process. This

was seen in our global and per gene SFS with an excess of

intermediate frequency variants. However, the genes we

found to be polymorphic in our sample will have been diverse

in the initial population due to possible past selective events

and provide an insight in the number and location of poly-

morphisms in different genes.

Maintained Polymorphism in C14 and NLR Genes

We can identify polymorphisms in our control gene, C14. C14

is a tomato protease targeted by multiple effectors from P.

infestans. It has been shown to be under diversifying selection

in wild potato (Kaschani et al. 2010). This does not seem to be

the case in several wild tomato species (Shabab et al. 2008),

which are thought not to be a natural host for P. infestans.

Also in our population, C14 polymorphisms are predominantly

synonymous and we detect no sign of diversifying selection.

Interestingly, we did not identify any SNPs in another protease,

Rcr3, which is under balancing selection in S. peruvianum

(Hörger et al. 2012). Also, Pto, Fen, Rin4, Prf, and Pfi do not

show polymorphism either, although they have been shown

to be under selective pressure in S. peruvianum (Rose et al.

2007, 2011).

We identify after filtering 13 NLRs with one or more poly-

morphisms. Based on our above computations, we expect

that heterozygosity at these genes reflects ancestral polymor-

phism in the initial population. These genes may thus show

adaptation to different selective pressures which could be

caused by the absence of or presence of certain pathogens

on this specific population. Previous data from Arabidopsis

suggests that when comparing different NLRs within a given

genome, heterozygosity is larger in LRR regions (Mondragón-

Palomino et al. 2002). However, we find no evidence that

within one NLR polymorphisms between individuals are re-

stricted to a certain region of the gene. This may be partly

due to our current data set containing too few SNPs in too few

genes to identify trends and link selection pressures on the

genes to the place or domains where the selection occurs.

Five NLRs in our data set show a higher pN than ps, indi-

cating possible positive selection. Due to the low diversity of

our sampled population, we acknowledge that a high pN/ps

ratio, however, does not necessarily suggest high positive se-

lection pressure. As such, within-gene diversity could be a

better indicator for evolutionary pressure in this population,

because this could be a sign of balancing selection (Tellier et al.

2014). In terms of polymorphisms, certain individual genes

indeed stand out. One of the genes that has maintained the

highest number of polymorphisms within our population

(Sopen11g028610) is an ortholog of Arabidopsis RPP13.

RPP13 is known to maintain extreme high numbers of poly-

morphisms in wild populations (Rose et al. 2004), which is

congruent with the highly polymorphic nature of its recog-

nized effector Atr13 (Sohn et al. 2007; Rentel et al. 2008;

Leonelli et al. 2011) and likely loss of fitness in the wild

when one or multiple allelic variants disappear from the pop-

ulation. The highest number of polymorphisms can be found

in Sopen12g022450. It has 83 putative SNPs, all in the LRR of

the gene. It must be noted that this gene has been annotated

as “partial” gene and might not be functional. As with the

previous example, it would be interesting to know if

Sopen12g022450 has a function in resistance and if its vari-

ants are maintained within different populations.

Unraveling Short-Term NLR Evolution

A next step would be to test whether detected NLR variants

show (partial) redundancies in terms of recognition. In grasses,

a number of resistance genes from fast-evolving classes and

classes with orthologs in 4 species have been cloned in rice

and tested if they conferred resistance to 12 rice blast patho-

gen Magnaporthe oryzae strains. Fifteen out of 60 genes

appear functional and no correlation was found between re-

sistance and class or conservation between species (Yang et al.

2013). Resistances also appeared to be redundant between

different pathogens, as observed in a larger study testing 132

NLR genes from cultivated rice. In the latter study, 43% of the

R-genes confer resistance against on average 2.4 of the 12

isolates tested (Yang et al. 2013; Zhang et al. 2015). Recent

studies have shown how several NLRs are required to work in

pairs or networks, with closely related proteins sometimes

conferring different functions (Eitas and Dangl 2010).

Moreover, many NLRs seem to be highly expressed also in

susceptible interactions and NLRs can even be contributed

to quantitative resistance effects (Corwin et al. 2016). Thus,

analysis of long-term evolutionary history using phylogeny

would reveal only little about the recent selective pressures,

state, and activity of the NLRs.

As plants and pathogens are thought to adapt to one an-

other within and between populations, our method can be

used to identify NLRs that are under acute evolutionary pres-

sure (see also Rose et al. 2007; and theory in Tellier et al.

2014). This is illustrated here as the identification of S. pennellii
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genes that maintained polymorphisms in our low-diversity

population, including an RPP13 homolog.

Another aspect of R-gene and resistance diversity could be

found in potential CNVs for R-genes combined with rapid

birth and death of new gene variants (Michelmore and

Meyers 1998). The variation of binding affinity and kinetic

properties of the RENSeq reaction do however make that

the data could be biased toward certain sequences and

hence do not allow to detect CNV within one population.

However, when multiple populations would be sequenced

simultaneously, the method could allow for copy number es-

timations and the identification of whole-gene presence/ab-

sence polymorphisms.

Follow-up work could thus include sequencing of multiple

diverse populations, to help to identify functional R-genes

from wild species, for example, NLRs under selective pressure

or with CNV. This will help identify potentially important R-

genes that can be used in disease-resistance breeding pro-

grams. These methods can in addition be compared with poly-

morphism data from wild pathogens, which will provide tests

for current coevolutionary models (Tellier and Brown 2007;

Tellier et al. 2014). To understand R-gene variation within and

between populations of the same species, correlations with

pathogen occurrence might help understand disease resis-

tance ranges in crops and could solve questions on the mo-

lecular basis on nonhost resistance (Stam et al. 2014). It will

help define the durability of certain resistance genes and will

hence be beneficial for future resistance breeding programs.

Supplementary Material

Supplementary figures S1–S3 and file S1–S6 are available at

Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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Ferretti L, Ramos-Onsins SE, Pérez-Enciso M. 2013. Population genomics

from pool sequencing. Mol Ecol. 22:5561–5576.

Flor HH. 1971. Current status of the gene-for-gene concept. Annu Rev

Phytopathol. 9:275–296.

Fracassetti M, Griffin PC, Willi Y. 2015. Validation of pooled whole-

genome re-sequencing in Arabidopsis lyrata. PLoS One

10:e0140462.

Gabriels SH, et al. 2007. An NB-LRR protein required for HR signalling

mediated by both extra- and intracellular resistance proteins. Plant J.

50:14–28.

Gharib WH, Robinson-Rechavi M. 2013. The branch-site test of positive

selection is surprisingly robust but lacks power under synonymous

substitution saturation and variation in GC. Mol Biol Evol.

30:1675–1686.

Guindon S, et al. 2010. New algorithms and methods to estimate maxi-

mum-likelihood phylogenies: assessing the performance of PhyML

3.0. Syst Biol. 59:307–321.

Guo YL, et al. 2011. Genome-wide comparison of nucleotide-binding site-

leucine-rich repeat-encoding genes in Arabidopsis. Plant Physiol.

157:757–769.

Gur A, Zamir D. 2004. Unused natural variation can lift yield barriers in

plant breeding. PLoS Biol. 2:e245.

Hofberger JA, Zhou B, Tang H, Jones JD, Schranz ME. 2014. A novel

approach for multi-domain and multi-gene family identification pro-

vides insights into evolutionary dynamics of disease resistance genes in

core eudicot plants. BMC Genomics 15:966.

Diversity and Evolution in R-genes GBE

Genome Biol. Evol. 8(5):1501–1515. doi:10.1093/gbe/evw094 Advance Access publication April 27, 2016 1513

Deleted Text: copy number variations (
Deleted Text: )
Deleted Text:  
Deleted Text: e.g
Deleted Text:  
Deleted Text: me
Deleted Text: and 
Deleted Text: ,
Deleted Text: -
Deleted Text: me
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw094/-/DC1
http://www.gbe.oxfordjournals.org/
http://www.gbe.oxfordjournals.org/


Hörger AC, et al. 2012. Balancing selection at the tomato RCR3 Guardee

gene family maintains variation in strength of pathogen defense. PLoS

Genet. 8:e1002813.

Huang S, et al. 2004. The R3 resistance to Phytophthora infestans in potato

is conferred by two closely linked R genes with distinct specificities.

Mol Plant Microbe Interact. 17:428–435.

Jacob F, Vernaldi S, Maekawa T. 2013. Evolution and conservation of plant

NLR functions. Front Immunol. 4:297.

Jupe F, et al. 2012. Identification and localisation of the NB-LRR gene

family within the potato genome. BMC Genomics 13:75.

Jupe F, et al. 2013. Resistance gene enrichment sequencing (RenSeq) en-

ables reannotation of the NB-LRR gene family from sequenced plant

genomes and rapid mapping of resistance loci in segregating popula-

tions. Plant J. 76:530–544.

Kaschani F, et al. 2010. An effector-targeted protease contributes to de-

fense against Phytophthora infestans and is under diversifying selec-

tion in natural hosts. Plant Physiol. 154:1794–1804.

Koboldt DC, et al. 2012. VarScan 2: somatic mutation and copy number

alteration discovery in cancer by exome sequencing. Genome Res.

22:568–576.

Kofler R, Betancourt AJ, Schlötterer C. 2012. Sequencing of pooled DNA

samples (Pool-Seq) uncovers complex dynamics of transposable

element insertions in Drosophila melanogaster. PLoS Genet.

8:e1002487.

Kofler R, et al. 2011. PoPoolation: a toolbox for population genetic analysis

of next generation sequencing data from pooled individuals. PloS One

6:e15925.

Kryazhimskiy S, Plotkin JB. 2008. The population genetics of dN/dS. PLoS

Genet. 4:e1000304.

Leonelli L, et al. 2011. Structural elucidation and functional characteriza-

tion of the Hyaloperonospora arabidopsidis effector protein ATR13.

PLoS Pathog. 7:e1002428.

Li H, Durbin R. 2009. Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics 25:1754–1760.

Li J, et al. 2010. Unique evolutionary pattern of numbers of gramineous

NBS-LRR genes. Mol Genet Genomics. 283:427–438.

Lin T, et al. 2014. Genomic analyses provide insights into the history of

tomato breeding. Nat Genet. 46:1220–1226.

Loutre C, et al. 2009. Two different CC-NBS-LRR genes are required for

Lr10-mediated leaf rust resistance in tetraploid and hexaploid wheat.

Plant J. 60:1043–1054.

Lunter G, Goodson M. 2011. Stampy: a statistical algorithm for sensitive

and fast mapping of Illumina sequence reads. Genome Res.

21:936–939.

Lynch M, Bost D, Wilson S, Maruki T, Harrison S. 2014. Population-genetic

inference from pooled-sequencing data. Genome Biol Evol.

6:1210–1218.

Maekawa T, Kufer TA, Schulze-Lefert P. 2011. NLR functions in plant and

animal immune systems: so far and yet so close. Nat Immunol.

12:817–826.

McHale L, Tan X, Koehl P, Michelmore RW. 2006. Plant NBS-LRR proteins:

adaptable guards. Genome Biol. 7:212.

McKenna A, et al. 2010. The Genome Analysis Toolkit: a MapReduce

framework for analyzing next-generation DNA sequencing data.

Genome Res. 20:1297–1303.

Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW. 2003. Genome-

wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell

15:809–834.

Michelmore RW, Meyers BC. 1998. Clusters of resistance genes in plants

evolve by divergent selection and a birth-and-death process. Genome

Res. 8:1113–1130.

Miller JC, Tanksley SD. 1990. RFLP analysis of phylogenetic relationships

and genetic variation in the genus Lycopersicon. Theor Appl Genet.

80:437–448.

Moffett P, Farnham G, Peart J, Baulcombe DC. 2002. Interaction between

domains of a plant NBS-LRR protein in disease resistance-related cell

death. EMBO J. 21:4511–4519.

Mondragón-Palomino M, Meyers BC, Michelmore RW, Gaut BS. 2002.

Patterns of positive selection in the complete NBS-LRR gene family of

Arabidopsis thaliana. Genome Res. 12:1305–1315.

Morel JB, Dangl JL. 1997. The hypersensitive response and the induction of

cell death in plants. Cell Death Differ. 4:671–683.

Mun JH, Yu HJ, Park S, Park BS. 2009. Genome-wide identification of NBS-

encoding resistance genes in Brassica rapa. Mol Genet Genomics.

282:617–631.

Nei M, Gojobori T. 1986. Simple methods for estimating the numbers of

synonymous and nonsynonymous nucleotide substitutions. Mol Biol

Evol. 3:418–426.

Nelson CW, Moncla LH, Hughes AL. 2015. SNPGenie: estimating evolu-

tionary parameters to detect natural selection using pooled next-

generation sequencing data. Bioinformatics 31:3709–3711.

Rentel MC, Leonelli L, Dahlbeck D, Zhao B, Staskawicz BJ. 2008.

Recognition of the Hyaloperonospora parasitica effector ATR13 trig-

gers resistance against oomycete, bacterial, and viral pathogens. Proc

Natl Acad Sci U S A. 105:1091–1096.

Rose LE, Grzeskowiak L, Hörger AC, Groth M, Stephan W. 2011. Targets

of selection in a disease resistance network in wild tomatoes. Mol Plant

Pathol. 12:921–927.

Rose LE, Michelmore RW, Langley CH. 2007. Natural variation in the Pto

disease resistance gene within species of wild tomato (Lycopersicon). II.

Population genetics of Pto. Genetics 175:1307–1319.

Rose LE, et al. 2004. The maintenance of extreme amino acid diversity at

the disease resistance gene, RPP13, in Arabidopsis thaliana. Genetics

166:1517–1527.

Rossi M, et al. 1998. The nematode resistance gene Mi of tomato confers

resistance against the potato aphid. Proc Natl Acad Sci U S A.

95:9750–9754.

Sarfatti M, Abu-Abied M, Katan J, Zamir D. 1991. RFLP mapping of I1, a

new locus in tomato conferring resistance against Fusarium oxy-

sporum f. sp. lycopersici race 1. Theor Appl Genet. 82:22–26.

Schlötterer C, Tobler R, Kofler R, Nolte V. 2014. Sequencing pools of

individuals—mining genome-wide polymorphism data without big

funding. Nat Rev Genet. 15:749–763.

Scott JW, Agrama HA, Jones JP. 2004. RFLP-based analysis of recombina-

tion among resistance genes to fusarium wilt races 1, 2, and 3 in

tomato. J Am Soc Hortic Sci. 129:394–400.

Shabab M, et al. 2008. Fungal effector protein AVR2 targets

diversifying defense-related cys proteases of tomato. Plant Cell

20:1169–1183.

Sharlach M, et al. 2012. Fine genetic mapping of RXopJ4, a bacterial spot

disease resistance locus from Solanum pennellii LA716. Theor Appl

Genet. 126:601–609.

Smart CD, Tanksley SD, Mayton H, Fry WE. 2007. Resistance to

Phytophthora infestans in Lycopersicon pennellii. Plant Dis.

91:1045–1049.

Sohn KH, Lei R, Nemri A, Jones JD. 2007. The downy mildew effector

proteins ATR1 and ATR13 promote disease susceptibility in

Arabidopsis thaliana. Plant Cell 19:4077–4090.
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