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A B S T R A C T   

Background: The long-term prognosis for patients with osteosarcoma (OS) metastasis remains 
unfavourable, highlighting the urgent need for research that explores potential biomarkers using 
innovative methodologies. 
Methods: This study explored potential biomarkers for OS metastasis by analysing data from the 
Cancer Genome Atlas Program (TCGA) and Gene Expression Omnibus (GEO) databases. The 
synthetic minority oversampling technique (SMOTE) was employed to tackle class imbalances, 
while genes were selected using four feature selection algorithms (Monte Carlo feature selection 
[MCFS], Borota, minimum-redundancy maximum-relevance [mRMR], and light gradient- 
boosting machine [LightGBM]) based on the gene expression matrix. Four machine learning 
(ML) algorithms (support vector machine [SVM], extreme gradient boosting [XGBoost], random 
forest [RF], and k-nearest neighbours [kNN]) were utilized to determine the optimal number of 
genes for building the model. Interpretable machine learning (IML) was applied to construct 
prediction networks, revealing potential relationships among the selected genes. Additionally, 
enrichment analysis, survival analysis, and immune infiltration were performed on the featured 
genes. 
Results: In DS1, DS2, and DS3, the IML algorithm identified 53, 45, and 46 features, respectively. 
Using the merged gene set, we obtained a total of 79 interpretable prediction rules for OS 
metastasis. We subsequently conducted an in-depth investigation on 39 crucial molecules asso-
ciated with predicting OS metastasis, elucidating their roles within the tumour microenviron-
ment. Importantly, we found that certain genes act as both predictors and differentially expressed 
genes. Finally, our study unveiled statistically significant differences in survival between the high 
and low expression groups of TRIP4, S100A9, SELL and SLC11A1, and there was a certain cor-
relation between these genes and 22 various immune cells. 
Conclusions: The biomarkers discovered in this study hold significant implications for personal-
ized therapies, potentially enhancing the clinical prognosis of patients with OS.   
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1. Introduction 

The most prevalent aggressive bone tumour, osteosarcoma (OS), comprises approximately 60 % of all bone cancers [1]. It typically 
occurs in adolescents and young adults, primarily affecting long bones like the distal femur, proximal tibia, and humerus [2]. OS is 
believed to originate from the malignant differentiation of mesenchymal cells [3]. Lung metastases are among the most common and 
perilous characteristics of OS. Approximately 15–20 % of patients have lung metastases at the time of diagnosis, and around 40 % of 
cases develop metastases later in the course of the disease [4]. While localized OS patients experience significant benefits from 
definitive surgical resection and adjuvant chemotherapy, only 20–30 % of patients with drug-resistant or metastatic disease will 
survive for five years [5,6]. Hence, gaining a comprehensive understanding of the tumour microenvironment and the underlying 
molecular mechanisms in OS, and discovering new biomarkers and therapeutic targets are crucial steps toward enhancing patient 
survival. 

As a subset of artificial intelligence, machine learning (ML) allows computers to build algorithms and models without the need for 
explicit programming [7]. The ongoing advancement of multi-omics technologies has yielded more extensive biological data, 
rendering ML a potent tool for biomarker discovery [8]. For example, Zhang et al. used three ML models to identify eight prognostic 
immune genes in colorectal cancer patients and created a novel survival prediction system based on these models [9]. In another study, 
Zhou et al. utilized plasma lipidomic analysis and a support vector machine (SVM)-based ML algorithm to discover effective and 
reliable biomarkers for the metabolic detection of malignant gliomas [10]. These newly uncovered biomarkers have the potential to 
forecast disease onset, prognosis, and treatment outcomes, potentially enhancing our understanding of the biological processes that 
underlie these conditions. 

Many previous studies on the OS tumour microenvironment and biomarkers have primarily relied on traditional bioinformatics 
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OS Osteosarcoma 
TCGA The Cancer Genome Atlas Program 
GEO Gene Expression Omnibus 
SMOTE Synthetic minority oversampling technique 
MCFS Monte Carlo feature selection 
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ML, Machine learning 
SVM Support vector machine 
XGBoost Extreme Gradient Boosting 
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IML, Interpretable machine learning 
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CV Cross-validation 
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RSLHS Left rule support 
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SEER Surveillance, Epidemiology, and End Results 
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methods, such as differential expression analysis or protein interactions. These methods often resulted in the screening of highly 
redundant genes, which hindered the construction of accurate and efficient predictive models. Furthermore, conventional ML methods 
often lacked interpretability, limiting their clinical applicability. Thus, in our research, we integrated statistical tests with ML tech-
niques to enhance the reproducibility and interpretability of OS metastasis biomarker identification. Utilizing four feature ML selection 
algorithms and four ML classification methods, we effectively identified the optimal number of features. To address multiple dataset 
integration, interpretable machine learning (IML) methods were employed, enabling improved decision interpretation through visual 
"IF-THEN" rules and undirected networks. Through these comprehensive strategies, we aim to gain a better understanding of the 

Fig. 1. Workflow for identifying biomarkers associated with osteosarcoma (OS) metastasis.  
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intricate features within the tumour microenvironment of OS and uncover relevant biomarkers. Ultimately, our goal is to reduce OS 
metastasis and improve treatment. 

2. Materials and methods 

Fig. 1 illustrated the procedural flow of our investigation aimed at delineating biomolecular markers linked to OS metastasis. The 
transcriptomes of three sets of samples were analysed by ML algorithms, involving four methods of ranking based on gene importance 
and four classification algorithms. In this section, the methods utilized in each step are depicted. 

2.1. Data source 

Three study datasets (DS1, DS2 and DS3) were meticulously curated from the Cancer Genome Atlas (TCGA) and the Gene 
Expression Omnibus (GEO). DS1, aptly referred to as the TAGET-OS dataset, was obtained by accessing the GDC website (https:// 
portal.gdc.cancer.gov/). DS2 (GSE21257) and DS3 (GSE14827) were acquired using the GEOquery package [11]. 

2.2. Class imbalance correction 

To compensate for the impact of category imbalance during model training, the synthetic minority oversampling (SMOTE) was 
applied. SMOTE achieved this balance by creating synthetic samples for the underrepresented categories through interpolation, using 
randomly selected instances and their k nearest neighbours [12]. We implemented SMOTE using the DMwR package [13]. 

2.3. Feature selection 

In model training, we organized input features as lists and samples as rows. However, dimension constraints might weaken model 
performance. Feature selection algorithms aimed to extract a subset of features from the original set, reducing computational costs and 
enhancing predictive accuracy. 

Four ML feature selection algorithms were employed in this study. Monte Carlo feature selection (MCFS) used supervised decision 
trees for iterative feature selection and assessment [14]. Boruta, inspired by random forests, identified relevant feature sets using 
shaded features and binomial distributions [15]. Minimum-redundancy maximum-relevance (mRMR) enhanced the 
feature-dependent variable relationship while minimizing overlap for the optimal subset [16]. Light gradient-boosting machine 
(LightGBM), a gradient-boosting decision tree algorithm, efficiently handled large samples and multi-feature data by evaluating 
feature importance based on their tree occurrences [17]. We implemented these algorithms with the rmcfs [18], Boruta [19], mRMRe 
[20], and lightgbm [21] packages, respectively. 

2.4. Incremental feature selection 

We applied the incremental feature selection (IFS) technique to determine the optimal number of features required for constructing 
the model [22]. Using different methods for feature selection, we created four lists of features ranked in order. From these lists, we 
extracted a subset of features using IFS. The IFS method added features one by one, with consideration of the relative importance (RI) 
diminishing at each step. It began with the initial feature ranked by four selection algorithms and continued until reaching the 100th 
feature. Each feature set was trained using four ML classification algorithms (support vector machine [SVM], extreme gradient 
boosting [XGBoost], random forest [RF], and k-nearest neighbours [kNN]) and evaluated through 10-fold cross-validation (CV). 
Performance evaluation utilized the Matthews correlation coefficient (MCC), accuracy (ACC), and the area under the receiver oper-
ating characteristic (ROC) curve (AUC) as key metrics. 

The SVM algorithm optimized the distance between classification lines and data for accurate categorization [23]. The XGBoost 
algorithm efficiently trained models using decision trees, with each new tree improving on the last’s predictions [24]. The RF algo-
rithm was a composite learning algorithm that constructs a classification model using multiple tree-based classifiers [25]. The kNN 
algorithm assigned a category to a sample based on the majority vote of its k nearest neighbours, and calculated using Euclidean and 
Manhattan distances [26]. These four classification algorithms were accomplished using the e1071[27](27), XGBoost [28], ran-
domforest [29], and class [30] packages, respectively. 

2.5. Rule-based classification 

Using rough set theory, IML handled data uncertainty and identified essential predictive features. It labelled the decision table’s 
end columns as decision classes to find the minimum feature set needed. IML split continuous data into three parts using the equal 
frequency method for rule-based classification. Rule support (RS) represented the number of samples meeting the rule. The left rule 
support (RSLHS) was for the "IF" condition, and the right rule support (RSRHS) was for the "THEN" condition. The R. ROSETTA package 
built the classifier [31]. The Johnson reduction method eliminated insignificant features by iteration [32]. The function named 
recalculateRules updated statistical values after reducing features to discover new sets for making rules. The average rule accuracy 
showed the overall accuracy of the model. Also, features from three datasets were combined into a merged dataset to improve accuracy 
and feature variety. Rules were integrated across all models, adding up their RS and sets for frequently repeated rules. 
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2.6. Predictive network 

The combined IML model was shown as a rule-based network using the VisuNet package, which allowed for visualizing shared 
prediction patterns among features [33]. This package had filters to highlight important parts of the network and display gene 
expression levels in specific node colors. This visualization helped identify frequently co-predicted genes. Prediction networks revealed 
central genes, indicating frequently predicted traits, and large nodes, representing features supported by many samples. Identifying 
these features contributed to interpret the result of IML model. 

2.7. Protein–protein interaction analysis 

The protein-protein interaction (PPI) network was created using the STRING database (http://stringdb.org) to collect data on gene 
interactions from the combined decision table [34]. 

2.8. Differentially expressed genes 

The limma package was used to obtain differentially expressed genes (DEGs) with the p-values <0.05 and |log2 (fold-change) | >
0 in all three datasets. 

2.9. Enrichment analysis 

Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were utilized to investigate OS biological 
functions and pathways in genes obtained from metastatic models in the merged decision table. 

2.10. Evaluation of infiltrating immune cells 

CIBERSORT (https://cibersort.stanford.edu/) was a tool used to analyse immune cell composition based on the matrix of leukocyte 
gene markers [35]. 

2.11. Statistical analysis 

All statistical analyses were performed using R software 4.3.1. The Kaplan-Meier survival analysis was conducted utilizing the log- 
rank test. The correlation analysis was explored using Spearman’s correlation. For all statistical analyses, p-value <0.05 was 
considered statistically significant. 

3. Results 

3.1. Overview of datasets 

Table 1 provided a comprehensive outline of the dataset. DS1, DS2, and DS3 contained 87, 53, and 27 specimens, respectively, 
encompassing both metastatic and non-metastatic OS samples. 

3.2. Class balancing 

The proportions of metastatic OS samples in relation to their non-metastatic counterparts within DS1, DS2, and DS3 exhibited ratios 
of 22:65, 34:19, and 9:18, respectively. All three datasets were characterized by unbalanced class distributions, and DS3 had a sample 
size that was too small. We used SMOTE to address these issues. Table 1 presented the adjusted class distribution ratios for the three 
datasets: DS1, DS2, and DS3 yielded ratios of 66:65, 34:34, and 36:36, respectively. 

Table 1 
Overview of the datasets.  

Overview Before Class Balancing After Class Balancing No. 
(Genes) 

Dataset Source Series No. 
(Metastasis) 

No. (Non- 
metastasis) 

No. 
(Metastasis) 

No. (Non- 
metastasis) 

DS1 https://portal.gdc.cancer. 
gov/ 

TARGET- 
OS 

22 65 66 65 19,545 

DS2 Buddingh et al., 2011 GSE21257 34 19 34 34 13,605 
DS3 Kobayashi et al., 2010 GSE14827 9 18 36 36 16,782 

DS, dataset; OS, osteosarcoma. 
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3.3. Feature selection 

Four different ML methods were employed for feature selection. To prevent overfitting, we conducted a 10-fold CV of the features 
selected by the MCFS algorithm. When compared to the other RI threshold selection methods, the critical angle method exhibited a 
larger minimum effective RI and a smaller number of selected features, potentially introducing noise (Fig. 2A). The outcomes of the 
other three methods were similar. Consequently, within the MCFS algorithm, we opted for the default permutations method. The 
results of the 10-fold CV illustrated the accuracy of these three datasets (Fig. 2B). 

Fig. 2. Specific details of machine learning (ML) to select features. (A) Threshold selection for feature selection using four methods in Monte Carlo 
Feature Selection (MCFS) algorithm. The minimum relative importance (minRI) cutoff was used to select features. Four methods were evaluated: 
mean, k-means, critical angle, and permutations. The size of the selected features was defined as the number of features to be included. (B) Cross- 
validation (CV) results of MCFS algorithm. Histograms showing the 10-fold CV results of MCFS for the DS1, DS2, and DS3 datasets, respectively. The 
x-axis represents the number of top-ranked features, while the y-axis represents the accuracy. Each colored bar represents a different ML algorithm. 
(C) Feature types in the three datasets as identified by Boruta algorithm. The "Confirmed" column shows the number of features confirmed as 
important by Boruta, while the "Tentative column indicates the number of features that were not confirmed as important. The "Rejected" column 
displays the number of features that were discarded by Boruta. The "Recalculated" column is the sum of the number of features redefined as 
"Confirmed" by the TentativeRoughFix function and the original “Confirmed” features. 
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Fig. 2C presented an overview of the Boruta algorithm results. The TentativeRoughFix function within the Boruta package 
recalculated the features initially labelled as "Tentative" and some of them were reclassified as "Confirmed". The Boruta algorithm 
chose 215, 137, and 223 features for DS1, DS2, and DS3, respectively. For the mRMR and LightGBM results, we utilized the default 
parameters for feature selection. Tables S1–S3 displayed the top 20 feature genes for the four algorithms. 

3.4. Incremental feature selection 

To determine the optimal number of features required for building the model, we employed the IFS method. This method involved 
adding the ranked features from the Boruta algorithm based on the results of the function TentativeRoughFix. Regardless of the ML 
algorithm used (SVM, XGBoost, RF, or kNN), adding the first feature resulted in an average ACC ranging from 0.95 to 1.00, an average 
MCC ranging from 0.91 to 1.00, and an average AUC ranging from 0.94 to 1.00. Moreover, when the 20th feature was included, the 
average ACC ranged from 0.97 to 1.00, the average MCC ranged from 0.95 to 1.00, and the average AUC ranged from 0.95 to 1.00. 
These results indicated that the selected features in these datasets were of high quality. Therefore, the combination of the top 20 
features from the four feature selection algorithms could be identified as the best feature set for the three datasets. All the IFS results 
were presented in Tables S4–S15. 

3.5. Classification rules 

In DS1, DS2 and DS3, 53, 45 and 46 genes were selected for the best feature set, respectively (Fig. 3A–C). Additionally, we noticed 
that the four algorithms shared one common feature gene (GULP1) in DS1, four common feature genes (SIGLEC9, MSR1, SYTL3, 
VMO1) in DS2, and one common feature gene (ZNF157) in DS3. 

Combining the features from DS1, DS2, and DS3 resulted in 143, 112, and 135 genes, respectively. We observed that the VMO1 
gene was common in DS2 and DS3, but there were no shared genes between DS1 and DS2 or between DS1 and DS3. We used the 
merged gene set to create classification rules for IML analysis. We conducted a comparison between the performance of models derived 
from the original gene set and the merged gene set (Table 2). Our findings showed that models based on the original gene set had an 
average AUC of 0.980 and an average ACC of 91.2 %. In contrast, models built on the merged gene set achieved an average AUC of 
1.000 and an average ACC of 91.8 %. Furthermore, we noted that the variance in the average number of rules between the original and 
merged gene sets was not statistically significant. 

We employed the Johnson reduction method to evaluate the rule model and the equal frequency method to categorize the data into 
three groups: low, medium, and high. After applying the function recalculateRules to recompute the rule set, the number of rules 
remained unchanged. However, both the average LHS and the average RHS increased (Table 3). Moreover, from the Johnson reduction 
model, we selected a total of 79 rules with Bonferroni-adjusted p-values less than 0.05 (Table 4). These selected rules can serve as 
interpretable predictive models for OS metastasis. 

3.6. Interpretable predictive network 

We analysed the predictive network using the VisuNet framework, enabling us to explore the relationships between genes in 

Fig. 3. Venn diagram showing the essential gene sets of the three datasets. The three circles represent the optimal feature sets of (A) DS1, (B) DS2, 
and (C) DS3, respectively. The number inside each oval denotes the number of genes in the corresponding feature set. The overlap between two 
ovals represents the common genes between the two datasets, while the intersection of all three ovals represents the shared genes in all 
three datasets. 
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metastatic OS (Fig. 4A). The co-predictive network revealed JAK3 as a co-predictor with KCNC and BSFP2, implying that these genes 
might be associated with similar biological processes related to OS metastasis. Moreover, numerous genes, including TRIP4, could act 
as independent predictors of OS metastasis. 

Fig. 4B illustrated a PPI network of predictors associated with OS metastasis. Enrichment analysis conducted on these genes 
revealed potential biological functions linked to OS metastasis, such as the regulation of T-helper 1-type immune response and kinase 
regulatory activity, among others (Fig. 4C). 

3.7. Further exploration of the tumour microenvironment and biomarkers 

We verified the inclusion of 39 signature genes in the OS metastasis prediction model and further explored their roles in the tumour 
microenvironment, facilitating the search for better biomarkers. Fig. 5A demonstrates the DEGs between metastatic and non- 
metastatic OS in the three datasets. By combining the results of the differential expression analysis and the ML prediction model, 
we identified some genes, like OAF and FAF1, that may serve as both predictors and DEGs (Fig. 5B). Finally, when genes were divided 
into high and low-expression groups based on mean or median values, and the survival differences between these groups were 
compared. We observed statistically significant overall survival differences for TRIP4, S100A9, SELL, and SLC11A1 (Fig. 5C). We 
depicted the correlation between the expression levels of the 39 characterized genes and the abundance of the 22 immune cells in the 
three datasets (Fig. 6A–C). 

4. Discussion 

Previous research has utilized techniques such as bioinformatics and experiments to confirm the involvement of several crucial 
genes in OS metastasis. For example, Guan et al. identified essential modules using weighted gene co-expression network analysis 
(WGCNA) in relation to OS metastasis, leading to the discovery of four genes—ALOX5AP, HLA-DMB, HLA-DRA, and SPINT2—as 
potential indicators for OS metastasis [36]. Furthermore, Ma et al. conducted investigations using Transwell and Matrigel assays, 
which demonstrated that the inhibition of FAT10 significantly reduced the invasive and migratory capabilities of OS cells. At the same 
time, in vivo metastasis experiments indicated a reduced number of mice with distant metastases when FAT10 was silenced [37]. 
Nevertheless, most bioinformatics methodologies have primarily sought out significant molecules through singular and limited ap-
proaches. These methods involved the identification of crucial genes from PPI networks, the examination of prognosis-associated genes 
through COX regression, and the discovery of key modules and genes using WGCNA[38–40]. Significantly, models composed of genes 
selected through these methodologies demonstrated poor predictive efficacy for OS metastasis, thus constraining their practical utility 
in clinical practice [36,41]. 

The advancement in omics technology has led to an exponential increase in data. Artificial intelligence-based ML methods could 
utilize sophisticated statistical techniques to streamline repetitive and redundant data. This process contributed to the development of 
concise and finely-tuned prediction models. He et al. employed the SVM algorithm to pinpoint a classifier consisting of 64 crucial genes 
in OS. Their work showcased a remarkable prediction accuracy ranging from 92.6 % to 100 % for OS metastasis across multiple 
datasets. However, despite its impressive predictive capabilities, the ML algorithm lacked interpretability, which limited its practi-
cality in clinical settings. Remarkably, in a study that integrated the Surveillance, Epidemiology, and End Results (SEER) database, Bai 

Table 2 
Results of interpretable machine learning (IML) models built on the original and merged feature lists.   

Characteristic DS1 DS2 DS3 

Original No. features 53 45 46 
No. rules (p < 0.05) 38 25 16 
ACC 86.3 % 90.0 % 97.5 % 
AUC 0.939 1.000 1.000 

Merged No. features 143 112 135 
No. rules (p < 0.05) 37 26 16 
ACC 87.9 % 90.0 % 97.5 % 
AUC 1.000 1.000 1.000 

DS, dataset; ACC, accuracy; AUC, area under the curve. 

Table 3 
Performance evaluation of rules using the Johnson reduction method.   

Metastasis Non-metastasis 

Rule statistics Basic Recalculated Basic Recalculated 
Number of rules (p < 0.05) 50 50 29 29 
LHS support 40 45 37 44 
RHS support 35 40 39 42 
Top predictors TRIP4 TRIP4 LASP1 LASP1 

LHS, left-hand side support; RHS, right-hand side support. 
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Table 4 
Set of rules and their statistics from the Metastasis and Non-metastasis model.  

No Featuresa Decision accuracyRHS supportRHS coverageRHS pValue 

1 LASP1 = 3 Non-metastasis 0.954545 42 0.64615 1.24E-13 
2 RD3 = 1 Non-metastasis 0.931818 41 0.63077 4.69E-12 
3 TRIP4 = 2 Metastasis 0.888889 40 0.60606 1.87E-09 
4 KCNC1 = 1 Non-metastasis 0.869565 40 0.61538 4.38E-09 
5 TCTEX1D4 = 1 Non-metastasis 0.833333 40 0.61538 8.95E-08 
6 TRIP4 = 3 Non-metastasis 0.904762 38 0.58462 1.14E-09 
7 ASTL = 1 Non-metastasis 0.883721 38 0.58462 6.88E-09 
8 BFSP2 = 1 Non-metastasis 0.883721 38 0.58462 6.88E-09 
9 FAF1 = 1 Non-metastasis 0.883721 38 0.58462 6.88E-09 
10 MAGED2 = 3 Non-metastasis 0.863636 38 0.58462 3.54E-08 
11 KCNC1 = 3 Metastasis 0.826087 38 0.57576 1.33E-06 
12 BBS4 = 3 Non-metastasis 0.880952 37 0.56923 1.94E-08 
13 OAF = 1 Metastasis 0.880952 37 0.56061 4.10E-08 
14 MPZL3 = 1 Metastasis 0.860465 37 0.56061 2.01E-07 
15 TRAM1L1 = 3 Non-metastasis 0.840909 37 0.56923 4.20E-07 
16 SELL = 3 Non-metastasis 0.840909 37 0.56923 4.20E-07 
17 FAF1 = 3 Metastasis 0.840909 37 0.56061 8.59E-07 
18 BFSP2 = 3 Metastasis 0.837209 36 0.54545 2.13E-06 
19 LYZL1 = 3 Metastasis 0.941176 32 0.48485 1.92E-08 
20 PRAMEF14 = 2 Metastasis 0.964286 27 0.40909 2.20E-07 
21 ZNF705G = 2 Metastasis 0.964286 27 0.40909 2.20E-07 
22 CCNG1 = 1 Non-metastasis 1 26 0.72222 1.47E-10 
23 IQCF6 = 1 Metastasis 1 25 0.69444 6.30E-10 
24 ZNF157 = 1 Non-metastasis 1 24 0.66667 2.52E-09 
25 CDH3 = 3 Metastasis 1 24 0.66667 2.52E-09 
26 TNNC2 = 3 Metastasis 0.96 24 0.66667 4.79E-08 
27 FAM126A = 3 Metastasis 0.96 24 0.66667 4.79E-08 
28 ZNF492 = 3 Metastasis 0.96 24 0.66667 4.79E-08 
29 OR4K15 = 2 Metastasis 0.92 23 0.34848 6.11E-05 
30 S100A9 = 1 Metastasis 1 23 0.67647 9.28E-09 
31 BATF = 1 Metastasis 1 23 0.67647 9.28E-09 
32 PKIB = 3 Non-metastasis 1 23 0.67647 9.28E-09 
33 VMO1 = 3 Non-metastasis 1 23 0.67647 9.28E-09 
34 KCTD1 = 3 Metastasis 1 23 0.67647 9.28E-09 
35 CCNG1 = 2 Metastasis 1 23 0.63889 9.49E-09 
36 PANX1 = 3 Metastasis 1 23 0.63889 9.49E-09 
37 OR4A16 = 3 Metastasis 0.956522 22 0.33333 1.87E-05 
38 OR4A16 = 2 Metastasis 0.916667 22 0.33333 0.000137 
39 PRAMEF14 = 3 Metastasis 0.814815 22 0.33333 0.008905 
40 MSR1 = 1 Metastasis 1 22 0.64706 3.56E-08 
41 SELL = 1 Metastasis 0.956522 22 0.64706 6.14E-07 
42 LRRC25 = 3 Non-metastasis 0.956522 22 0.64706 6.14E-07 
43 SIGLEC9 = 3 Non-metastasis 0.956522 22 0.64706 6.14E-07 
44 KCNJ5 = 3 Non-metastasis 0.956522 22 0.64706 6.14E-07 
45 SLC11A1 = 3 Non-metastasis 0.956522 22 0.64706 6.14E-07 
46 OR4K15 = 1 Metastasis 0.916667 22 0.64706 5.49E-06 
47 SLC2A9 = 1 Metastasis 0.916667 22 0.64706 5.49E-06 
48 NSUN5 = 1 Non-metastasis 0.88 22 0.64706 3.39E-05 
49 CDH3 = 1 Non-metastasis 1 22 0.61111 3.39E-08 
50 HSPH1 = 3 Metastasis 1 22 0.61111 3.39E-08 
51 LIPA = 3 Metastasis 1 22 0.61111 3.39E-08 
52 ZNF157 = 3 Metastasis 0.956522 22 0.61111 5.71E-07 
53 H2AB3 = 2 Metastasis 0.913043 21 0.31818 0.000303 
54 H2AB3 = 3 Metastasis 0.913043 21 0.31818 0.000303 
55 ZNF705G = 3 Metastasis 0.777778 21 0.31818 0.045913 
56 IRF5 = 3 Non-metastasis 1 21 0.61765 1.29E-07 
57 PILRA = 3 Non-metastasis 1 21 0.61765 1.29E-07 
58 TYROBP = 3 Non-metastasis 0.954545 21 0.61765 2.08E-06 
59 CDH11 = 1 Non-metastasis 0.954545 21 0.61765 2.08E-06 
60 MIOX = 3 Non-metastasis 1 21 0.58333 1.15E-07 
61 FAF1 = 2 Metastasis 1 21 0.58333 1.15E-07 
62 CCDC174 = 2 Metastasis 0.954545 21 0.58333 1.82E-06 
63 IQCF6 = 2 Metastasis 0.909091 20 0.30303 0.000659 
64 SIGLEC9 = 1 Metastasis 1 20 0.58824 4.41E-07 
65 CD86 = 3 Non-metastasis 0.952381 20 0.58824 6.68E-06 
66 ENPEP = 3 Metastasis 0.952381 20 0.58824 6.68E-06 
67 PEX19 = 1 Metastasis 0.909091 20 0.58824 5.27E-05 
68 IRF5 = 1 Metastasis 0.909091 20 0.58824 5.27E-05 

(continued on next page) 
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et al. achieved prediction accuracies ranging from 0.661 to 0.781 for forecasting distant metastases. The researchers obtained these 
results by utilizing six different machine learning algorithms, with the RF model exhibiting the most outstanding performance (71.8 % 
accuracy and 0.781 precision). Moreover, the integration of Shapley additive explanations (SHAP) analysis provided an interpretation 
that was independent of the model [42]. While this study employed IML models to predict OS metastasis, their accuracy was 
considerably lower than ML models constructed using genes. This difference might be attributed to the inclusion of primarily clinical 
variables, which were fewer in number compared to molecular variables obtained through high-throughput screening. 

Taking into account the limitations of previous studies, we proposed an IML approach based on molecular data to investigate the 
tumour microenvironment of OS metastasis, discovered more reliable biomarkers, and developed practical predictive models. First, we 
addressed category imbalance by applying SMOTE to three OS datasets. We then conducted feature selection using four different ML 
descending dimension methods: MCFS, Boruta, mRMR, and LightGBM. Subsequently, to determine the optimal number of features for 
model construction, we performed IFS by combining four ML classification algorithms (SVM, XGBoost, RF, and kNN). In DS1, DS2, and 
DS3, we identified 53, 45, and 46 features, respectively. Next, we generated interpretable prediction networks using the merged set of 
genes. With the Johnson reduction method, we obtained 79 interpretable prediction rules that can be employed as a prediction model 
for OS metastasis. Finally, the role of 39 important molecules capable of predicting OS metastasis in the OS tumour microenvironment 
was further explored. Our findings revealed that certain genes serve as both predictors and DEGs. Furthermore, we observed the 
statistically significant survival difference between the high- and low-expression groups of TRIP4, S100A9, SELL, and SLC11A1. 

Within the potential biomarkers identified in this study, several predictors were extracted, including TRIP4, KCNC1, JAK3, and 
BFSP2. Among them, JAK3 and KCNC1, as well as JAK and BFSP3, formed two pairs of co-predictive molecules for OS metastasis. 
TRIP4, a subunit of the tetrameric nuclear ASC-1 complex, plays a pro-tumorigenic role in various cancer types, such as cervical cancer 
and melanoma [43,44]. KCNC1 belongs to the family of membrane proteins that encode channel proteins, which regulate intracellular 
potassium ion permeability. Abnormalities in potassium channels within cancer cells can contribute to tumour progression, metastasis, 
and drug resistance [45]. The JAK family kinases are non-receptor tyrosine kinases that control the migration and invasion of oste-
osarcoma cells via the JAK/STAT signalling pathway [46]. While BFSP2 has not been previously investigated as a potential biomarker 
for OS metastasis, this study suggested its potential as such. Furthermore, survival analysis of these proteins indicated significant 
associations with OS prognosis for four genes: TRIP4, S100A9, SELL, and SLC11A1. S100A9, a calcium- and zinc-binding molecule of 
the S100 family, inhibits the growth of osteosarcoma cells by deactivating the MAPK and NF-κB signalling pathways [47]. SELL en-
codes Selectin-L, a molecule primarily involved in immune cell migration and inflammatory responses. It has been found to promote 
the progression of human papillomavirus (HPV)-positive head and neck squamous cell carcinoma [48]. SLC11A1, also known as 
natural resistance-associated macrophage protein-1, is a member of the lysosomal carrier family. It has been reported to be associated 
with a poor prognosis in various gastrointestinal tumours [49]. These potential biomarkers can enhance our understanding of mo-
lecular mechanisms and show promise as targets for future therapeutic interventions. The conducted comparative analyses validate the 
potential clinical significance of the genetic markers we have identified, strengthening their value as valuable indicators for both 
predicting OS metastasis and assessing prognosis. Nevertheless, it is crucial to further validate these biomarkers in larger cohorts and 
clinical settings to confirm their clinical significance and practical applicability. 

Intersection of the DEGs and predictive factors revealed some DEGs that have the potential to serve as markers for distinguishing OS 
patients with and without metastasis according to expression patterns. Importantly, the expression of specific genes exhibited minimal 
variation across the three datasets, implying that the ML approach could reveal biomarkers not detected via differential expression 
analysis. In summary, these findings underscore the potential of ML algorithms for identifying novel biomarkers with implications for 
metastasis and prognosis in OS patients. Additionally, our study highlights the advantages of ML methods over conventional bioin-
formatics approaches for the identification of cancer-related features. Previous studies primarily conducted differential expression 
analysis. However, DEGs are not necessarily ideal biomarkers due to their abundance and high redundancy, which limits their suit-
ability as biomarkers. Our ML approach, particularly the feature selection algorithm, has been demonstrated to identify the minimal 
number of biomarkers with the highest predictive capability, enhancing the precision and effectiveness of biomarker selection for 
clinical applications. The integration of ML and bioinformatics methodologies could contribute to a deeper understanding of the 

Table 4 (continued ) 

No Featuresa Decision accuracyRHS supportRHS coverageRHS pValue 

69 SLC11A1 = 1 Metastasis 0.909091 20 0.58824 5.27E-05 
70 C5AR1 = 3 Non-metastasis 0.909091 20 0.58824 5.27E-05 
71 KRTAP4.5 = 2 Metastasis 0.95 19 0.28788 0.000224 
72 TAAR9 = 2 Metastasis 0.95 19 0.28788 0.000224 
73 PKIB = 1 Metastasis 0.904762 19 0.55882 0.000151 
74 TAAR9 = 3 Metastasis 0.947368 18 0.27273 0.000498 
75 KRTAP4.5 = 3 Metastasis 0.947368 18 0.27273 0.000498 
76 OR2W1 = 2 Metastasis 1 16 0.24242 0.000235 
77 JAK3 = 1, KCNC1 = 3 Metastasis 0.941176 16 0.24242 0.002359 
78 OR2W1 = 3 Metastasis 1 14 0.21212 0.001202 
79 JAK3 = 1, BFSP2 = 3 Metastasis 1 14 0.21212 0.001202 

RHS, right-hand side support. 
a Rules were selected based on a Bonferroni-adjusted p-value<0.05 using the recalculatedRules function. Genes were divided into three bins using 

the equal frequency method: 1 = low, 2 = medium, and 3 = high. 
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metastatic mechanisms underlying tumours. Notably, according to our analysis, TRIP4 and BFSP2 emerged as notable predictors of OS 
metastasis, despite not being recognized as DEGs in the three datasets. The IML algorithm used in this study represents a potent 
modelling approach capable of identifying crucial predictive mechanisms and elucidating disparities between patient subgroups. 

Furthermore, it is important to recognize the limitations of this study. One inherent limitation is that the continuous expression 
data were grouped into three intervals within the IML process, potentially resulting in the loss of certain information. Nonetheless, this 
step is imperative for modelling rooted in rough set theory. Another constraint lies in the limited number of genes that overlapped 
among the three datasets after feature selection, which could stem from the sampling of OS as well as the heterogeneity of patient 
lesions. Enhancing the generalizability of our findings would require the inclusion of additional datasets and larger sample sizes. 
Furthermore, this study exclusively concentrates on the classification of OS as positive or negative for metastasis. Subsequent studies 
could aim to apply ML classification for purposes such as tumour diagnosis and staging. The limitations of this study can guide future 
research in this domain. 

Finally, the future implications of this study extend to significantly improving the diagnosis and treatment of OS through ML 

Fig. 4. Predictive networks constructed in accordance with osteosarcoma (OS) metastasis classification rules. (A) VisuNet predictive network of OS 
metastasis and non-metastasis samples. Each circle represents a node, where the size of the circle corresponds to the size of the support sets. The 
edge and node connections represent the strength of the co-prediction. (B) PPI network of genes based on OS metastasis model. Each node represents 
a protein, and the edge represents the interaction between two proteins. (C) Gene Ontology (GO) enrichment of genes in OS metastasis model. The 
top of the split side is biological processes (BP) and the bottom is molecular functions (MF). 
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methodologies. By identifying precise biomarkers, ML can offer a roadmap for personalized medicine, enabling treatments tailored to 
individual patient profiles. To maximize these advancements, it is crucial to educate physicians on ML techniques. This involves 
integrating ML training into medical education, focusing on its application in oncology, to ensure physicians are adept at interpreting 
ML-derived insights for clinical decision-making, ultimately enhancing patient outcomes in OS care. 

Fig. 5. Differential expression analysis and survival analysis of biomarkers based on OS metastasis model. (A) Volcano plots of differential 
expression genes (DEGs) in three datasets. Red dots represent upregulated DEGs in metastatic OS samples; green dots represent downregulated 
DEGs; grey dots represent non-differentially expressed genes. (B) Summary of predictors associated with OS metastasis. The heatmap displays the 
predictors identified by the ML algorithm, along with their corresponding expression changes in the three datasets. Red squares represent upre-
gulated DEGs in metastatic OS samples; blue squares represent downregulated DEGs; white squares represent non-differentially expressed genes; 
grey squares indicate missing data. (C) Kaplan-Meier survival analysis of genes associated with OS metastasis patient. The x-axis represents time in 
years, and the y-axis represents the percentage of surviving patients. The blue line represents patients with high gene expression, while the red line 
represents patients with low gene expression. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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5. Conclusions 

In this study, the IML algorithm was used to explore the characteristics of the tumour microenvironment in OS metastasis, to 
identify potential biomarkers, and to construct a practical model with strong predictive efficacy. This study demonstrated the power of 
ML algorithms in cancer research and provided a completely new direction for medical and biological research. We recommend that 
omics data other than transcriptomics data be analysed in the future, even in combination with clinical data, to provide a strong 
theoretical basis for the diagnosis and treatment of OS. 

Fig. 6. Correlation of gene expression levels of OS metastasis model with 22 immune-infiltrating cell abundances in (A) DS1, (B) DS2 and (C) DS3. 
The correlation coefficients between the two are indicated using gradient colors, where darker red indicates a positive correlation and darker blue 
indicates a negative correlation. p-values indicate that the correlation is statistically significant, and asterisks are used to denote p < 0.05. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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