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Myocardin, a potent coactivator of serum response factor
(SRF), competes with ternary complex factor (TCF) pro-
teins for SRF binding to balance opposing mitogenic and
myogenic gene programs in cardiac and smooth muscle.
Here we identify a cardiac lncRNA transcribed adjacent
to myocardin, named CARDINAL, which antagonizes
SRF-dependent mitogenic gene transcription in the heart.
CARDINAL-deficient mice show ectopic TCF/SRF-de-
pendent mitogenic gene expression and decreased cardiac
contractility in response to age and ischemic stress. CAR-
DINAL forms a nuclear complex with SRF and inhibits
TCF-mediated transactivation of the promitogenic gene
c-fos, suggesting CARDINAL functions as an RNA cofac-
tor for SRF in the heart.
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Heart development and pathological remodeling are regu-
lated by a network of transcription factors and noncoding
RNAs that coordinate expression of genes involved in car-
diomyocyte proliferation, differentiation, and contractili-
ty (Olson 2006; Miano 2010; Small and Olson 2011). SRF
is a widely expressed transcription factor that binds the
CArG-box DNA motif CC(A/T)6GG found in many mus-
cle-specific and growth factor-inducible promoters (Shore
and Sharrocks 1995; Miano 2010). In response to extracel-
lular cues, SRF associates with diverse transcriptional
coactivators to switch between opposing mitogenic and
myogenic gene programs (Wang et al. 2004; Gualdrini
et al. 2016). Contractile and cytoskeletal genes are activat-
ed when SRF associates with the cardiac- and smooth
muscle-specific coactivator myocardin (Myocd), or myo-
cardin-related transcription factor-A (MRTF-A; MKL1)

and myocardin-related transcription factor-B (MRTF-B;
MKL2) in other tissues such as mammarymyoepithelium
and skeletal muscle (Wang et al. 2001, 2002a,b, 2003; Li
et al. 2003;Wang andOlson 2004; Pipes et al. 2006). Alter-
natively, the control of mitogen-activated cell signaling is
dependent upon the association of SRF with members of
the TCF family, including ELK-1, ELK-3, and ELK-4
(Shaw et al. 1989; Janknecht et al. 1993). TCFs suppress
myogenic gene expression by displacing Myocd/MRTFs
from a common docking site on SRF; however, the mech-
anisms by which mitogenic genes are suppressed remain
poorly understood. The coexpression of TCFs and
Myocd/MRTFs in cardiomyocytes suggest that additional
cofactors are required to counterbalance SRF-dependent
gene programs in the heart.
NoncodingRNAsareanemergingclass of transcription-

al regulators of gene expression, many of which are
expressed in tissue-specific patterns. Nucleotide polymor-
phisms in noncoding regions containing lncRNAs have
long been associated with an increased risk for developing
cardiovascular disease (Helgadottir et al. 2007;McPherson
et al. 2007; Samani et al. 2007). However, only recent in-
depth functional studies have identified lncRNAs as im-
portant regulators of heart development (Grote et al.
2013;Klattenhoff et al. 2013;Anderson et al. 2016) and dis-
ease progression (Han et al. 2014; Wang et al. 2016).
LncRNAs play a variety of biological roles fundamental
to regulating gene expression, including chromatin modi-
fication, protein synthesis, RNA processing, and gene si-
lencing (Kaikkonen et al. 2011; Vance and Ponting 2014).
Given the vast number of noncoding RNAs that have
been recently discovered in mammalian genomes, of
whichmore than half are associatedwith chromatin (Wer-
ner and Ruthenburg 2015), lncRNAs represent an un-
tapped reservoir of transcriptional cofactors for fine-
tuning essential gene networks.
Here we characterize a cardiac lncRNA gene upstream

of the Myocd locus that we named the myocardin-adja-
cent long noncoding RNA (CARDINAL). The CARDI-
NAL promoter, conserved in both mouse and human
genomes, is robustly activated by the cardiac transcrip-
tion factorsMEF2 andMyocd/MRTFs. Genetic disruption
of CARDINAL in mice did not affect Myocd expression
but resulted in ectopic expression of SRF-regulated mito-
genic genes and decreased heart function with age and
in response to ischemic stress. We show that CARDINAL
localizes to chromatin in cardiomyocytes, forms a com-
plex with SRF, and is sufficient to inhibit TCF-mediated
transactivation of the SRF-target gene c-Fos. Furthermore,
CARDINAL is significantly up-regulated with Myocd
during heart failure in humans and mice, suggesting it
plays a role in controlling the SRF-dependent cardiac
gene networks required to maintain heart function and
ventricular remodeling in response to injury or stress.
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Results and Discussion

Discovery of the cardiac lncRNA CARDINAL

In a bioinformatics screen for uncharacterized, cardiac-
restricted RNAs, we discovered a lncRNA transcribed up-
stream of myocardin in human (MYOCD) and mouse
(Myocd) genomes (Fig. 1A). We named this gene themyo-
cardin-adjacent long noncoding RNA (CARDINAL). The
human CARDINAL locus spans 87.4 kb and is comprised
of four exons, terminating 28.8 kb upstream of the
MYOCD transcriptional start site (Fig. 1A). CARDINAL
is transcribed in tandem with MYOCD on human chro-
mosome 17 and is 2.8 kb (also named LINC00670).

In mice, two partially overlapping transcripts are anno-
tated upstream of the Myocd locus on chromosome 11
(ENSMUST00000130362 and ENSMUST00000128453).
To determine the full-length CARDINAL sequence in
mice, we performed rapid amplification of cDNA ends
(RACE) using a primer specific to the ENSMUST
00000128453 transcript. We found that the two annotated
transcripts in mice are transcribed as a single ∼3.0-kb
RNA, encoded by six exons (Fig. 1A). The full-length
mouse CARDINAL locus spans 88.1 kb and terminates

7.6 kb upstream of the Myocd transcriptional start site
(Fig. 1A). The previously identifiedMyocd cardiac enhanc-
er lies within the first intron of the mouse CARDINAL
gene, ∼31 kb upstream of the Myocd transcriptional start
site (Fig. 1A; Creemers et al. 2006). The genomic location
of CARDINAL relative to Myocd was conserved in mice
and humans; however, the exon organizationwas distinct,
and only 57% nucleotide sequence homology was found
between the mouse and human CARDINAL transcripts
(Fig. 1A). Promoter-specific H3K4Me3 histone modifica-
tions demarcate a single promoter site for CARDINAL in
the developing and adult mouse heart (Supplemental Fig.
S1A; Shen et al. 2012). Northern blot analysis of multiple
adult mouse tissues revealed a band corresponding to the
predicted size of the full-length CARDINAL lncRNA in
the heart (Supplemental Fig. S1B). We detected no con-
served protein-coding open reading frames within the
CARDINAL transcript, and transcriptome-wide ribosome
profiling and mass spectrometry on human heart tissues
have not detected peptides originating from CARDINAL
(van Heesch et al. 2019).

To compare the expression patterns ofCARDINAL and
Myocd, we performed in situ hybridization on mouse em-
bryo sections at embryonic day (E) 15.5. CARDINAL was
detected exclusively in the heart, whereasMyocdwas de-
tected in the heart and the vascular and visceral smooth
muscles of the dorsal aorta, lung, and intestines (Fig.
1B). In adult mice, qRT-PCR detected robust CARDINAL
expression in the atria and ventricles of the heart, and in
the soleus, a slow-type skeletal muscle in which Myocd
is absent (Fig. 1C). In the developing heart, CARDINAL
and Myocd were similarly enriched in cardiomyocytes
and absent in cardiac fibroblasts (Supplemental Fig.
S1C). Among different immortalized mouse cell lines,
CARDINALwas detected inmouse HL-1 cardiomyocytes
(Supplemental Fig. S1D). Subcellular fractionation of HL-
1 cells showed enrichment of CARDINAL in the nuclear
chromatin fraction, unlike two other RNAs, 18S and
UpperHand (UPH), which were not associated with chro-
matin (Supplemental Fig. S1E). Thus, CARDINAL is a
chromatin-associated lncRNA that shares an overlapping
but distinct expression profile with the neighboring tran-
scription factor Myocd.

Regulation of CARDINAL by MEF2 and Myocd/MRTFs

Previously, we reported that myocardin expression in
heart and vascular smooth muscle is controlled by an up-
stream enhancer that requires binding of myocyte en-
hancer factor 2 (MEF2), a MADS-box transcription factor
related to SRF (Creemers et al. 2006). Myocardin is capa-
ble of activating its own enhancer, but unlike most other
myocardin target genes, this activation occurs through
Mef2, independent of SRF. Interestingly, we noted that
the CARDINAL promoter contains two highly conserved
A/T-rich sequences, located 155 and 205 nucleotides up-
stream of the CARDINAL transcription initiation site,
that resemble MEF2 binding sites (Fig. 2A,B). To deter-
mine whether MEF2 regulates CARDINAL, we generated
a luciferase reporter using a 3.5-kb fragment of the CAR-
DINAL promoter and first exon (3.5-kb CARDINAL-
Luc). The 3.5-kb CARDINAL-Luc reporter was highly re-
sponsive to MEF2, which trans-activated the reporter
∼60-fold (Fig. 2C). A 500-bp fragment of the CARDINAL
promoter, retaining the two A/T-rich sequences, was

B

A

C

Figure 1. Discovery and expression of a myocardin-adjacent
lncRNA (CARDINAL). (A) Diagram depicting the CARDINAL locus
upstream ofmyocardin in mouse and human genomes. (CE)Myocar-
din cardiac enhancer. (B) Section in situ hybridization of mouse em-
bryos at E15.5 using probes specific for CARDINAL and myocardin.
Signal is pseudocolored red. (da) Diaphragm, (hrt) heart, (in) intestine,
(lu) lung. Scale bars, 1mm. (C ) Quantitative real-time PCR analysis of
CARDINAL and myocardin RNA expression across multiple adult
mouse tissues. Values are expressed relative to liver.
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equally responsive to MEF2 (Fig. 2C). Mutation of either
MEF2 site in the 3.5-kbCARDINAL-Luc reporter reduced
luciferase activity by about half, with mutation of both
sites abolishing transactivation by MEF2 (Fig. 2C). The
3.5-kbCARDINAL-Luc promoter was also robustly trans-
activated by the cardiac- and smooth muscle-specific iso-
forms of Myocd and the Myocd-related transcription
factors MRTF-A and MASTR (Supplemental Fig. S2A).
These data suggest that CARDINAL is activated by pro-
myogenic cardiac transcription factor gene programs.
To examine the regulation and expression of CARDI-

NAL in vivo, we generated a transgenic reporter vector
by fusing the 3.5-kb CARDINAL promoter sequence up-
stream of the β-galactosidase (LacZ) reporter gene (3.5-kb
CARDINAL-LacZ). CARDINAL-LacZ transgenic report-
ermice showed robust LacZ expression in the heart at em-
bryonic, fetal, and adult time points (E8.5 to 2 wk) (Fig.
2D–F; Supplemental Fig. S2B–E). In addition to the heart,

LacZ staining was observed in the soleus but was absent
from fast-type skeletal muscle, consistent with the ex-
pression of endogenous CARDINAL RNA (Fig. 2G).
LacZ staining was also detected in the developing mam-
mary gland myoepithelium, a smooth muscle-like tissue
whose development has been shown to be dependent
upon MRTF-A expression (Supplemental Fig. S2F; Li
et al. 2006). Consistent with endogenous CARDINAL ex-
pression, LacZ staining was absent from the developing
vascular and visceral smooth muscles, which abundantly
expressMyocd (Wang et al. 2001). Simultaneousmutation
of both MEF2 binding sites within the 3.5-kb CARDI-
NAL-LacZ construct significantly attenuated LacZ ex-
pression in the heart, highlighting the importance of
MEF2 as a requisite activator of theCARDINAL promoter
in vivo (Supplemental Fig. S2G).

Loss of CARDINAL results in ectopic SRF/TCF
gene activation and decreased cardiac contractility
in response to age and ischemic injury

To characterize the function of CARDINAL in vivo, we
inserted a Cre-ERT2 reporter followed by two poly-
adenylation cassettes into the first exon of the mouse
CARDINAL locus. This strategy preserves enhancer or
promoter sequences that may be required forCARDINAL
or Myocd transcription, while prematurely terminating
the CARDINAL RNA to generate a knockout (KO) allele
(Fig. 3A). The CARDINAL locus was modified using ho-
mologous recombination inmurine embryonic stem cells.
Blastocyst injection of targeted ES cells yielded chimeric
founder mice, which were bred to C57BL/6 WT mice and
genotyped using a PCR-based strategy (Supplemental Fig.
S3A). CARDINAL-Cre-ERT2 heterozygous mice, when
crossed to a ROSA26-LacZ reporter line, showed tamoxi-
fen-inducible LacZ expression in the heart, indicating
the faithful expression of the modified locus (Supplemen-
tal Fig. 3B).
Homozygous CARDINAL mice showed no major mor-

phological abnormalities or functional impairment
through young adulthood (Fig. 3B,C). However, echocardi-
ography revealed a significant decline in left ventricular
pumping efficiency in CARDINAL KO mice by 20 wk
(Fig. 3C). Quantitative PCR revealed the absence of CAR-
DINAL in the heart and soleus of CARDINAL KO mice
(Fig. 3D). Surprisingly, the loss ofCARDINAL and the ter-
mination of transcription through the CARDINAL locus
had no significant impact on the expression of Myocd
(Fig. 3E,F).
Chromatin-associated lncRNAs can function as regula-

tors of gene transcription (Rinn and Chang 2012); there-
fore, we profiled gene expression changes using RNA
sequencing of the heart and soleus of CARDINAL KO
and WT littermates at 8 wk of age. Consistent with our
quantitative PCR data, CARDINAL was significantly
down-regulated in both tissues, while the expression of
Myocd was unchanged. Similarly regulated genes were
found in the heart and soleus muscle of CARDINAL KO
mice (Supplemental Fig. S3C,D; Supplemental Table S1).
The prototypical SRF-dependent immediate early (IE)
genes c-Fos (Fos), Atf3, and Nr4a1 were significantly up-
regulated in CARDINAL KO soleus and heart, with addi-
tional IE genes up-regulated within each tissue type (Sup-
plemental Table S1). The muscle-specific SRF targets, α-
actin cytoskeletal genesActc1 andActa1 (Balza andMisra
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Figure 2. Regulation of CARDINAL by MEF2 in the heart. (A) Dia-
gram showing conservation of the CARDINAL promoter and exon
1, with the two MEF2 binding sites (pink boxes). (B) Sequence align-
ment of the twoMEF2 sites in theCARDINAL promoter, highlighted
in pink. (C ) Luciferase reporter assay showing activation of CARDI-
NAL promoter constructs by addition of MEF2 in transfected COS-
7 cells. (Pink X) MEF2 site mutations. Data are represented as mean
±SEM. (D–G) β-Galactosidase staining of CARDINAL-LacZ transgen-
ic (TG) and wild-type (WT) E10.5 embryos (D), E15.5 fetus (E), and
adult heart (F ) and soleus (so) skeletal muscle (G). (hrt) Heart, (lu)
lung, (GPS) gastrocnemius–plantaris–soleus.
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2006), were among the significantly down-regulated genes
in both tissues (Supplemental Table S1). These findings
reveal that SRF-dependent genes are altered in CARDI-
NAL KO tissues, independent of changes in myocardin
expression.

In response to cardiac stress, Myocd and MRTF-A are
up-regulated and required for hypertrophic growth and
ventricular remodeling (Xing et al. 2006; Liao et al.
2011; Trembley et al. 2018). Similarly, CARDINAL was
significantly up-regulated in mice and patients with heart
failure following acutemyocardial infarction (MI) (Supple-

mental Fig. S3E,F; Molina-Navarro et al. 2013). We sub-
jected 8-wk-old CARDINAL KO and WT littermates to
MI and measured cardiac function 1 d and 1 mo post-MI.
In sham-operated mice, no differences in heart function
or morphology were observed (Supplemental Fig. S3G).
However, while cardiac function was similar between
CARDINAL KO and WT mice prior to and 1 d after MI,
CARDINAL KOmice had significantly reduced fractional
shortening, increased scar formation, and increased LV in-
ternal diameter 1 mo post-MI compared with WT litter-
mates (Fig. 3G,H; Supplemental Fig. S3H). These
findings support a role for CARDINAL as an RNA cofac-
tor that is required for normal heart function.

CARDINAL interacts with SRF and regulates
SRF-dependent gene transcription

To test whether CARDINAL regulates SRF-dependent
gene transcription, wemeasured the effect of CARDINAL
on the expression of SRF/CArG-dependent promoters of
the muscle-specific gene SM22 (TAGLN) and IE gene c-
FOS in heterologous cell-based luciferase assays in COS-
7 cells (Fig. 4A,B; Supplemental Fig S4A,B). Consistent
with previous reports (Wang et al. 2004), robust activation
of the SM22 promoter by Myocd was repressed by coex-
pression of ELK-1 (Fig. 4A). In contrast, ELK-1 activation
of the c-FOS promoter was not inhibited by coexpression

BA
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Figure 4. CARDINAL antagonizes SRF/TCF gene transcription.
Regulation of the CArG-dependent promoters SM22 (A) and c-FOS
(B) by SRF, the SRF cofactors ELK-1, Myocd, and CARDINAL in het-
erologous COS-7 cells transfected with SM22 or c-FOS promoters
fused to a luciferase reporter cassette. (C ) qRT-PCRdetection ofCAR-
DINAL following RNA immunoprecipitation (RIP) of FLAG-epitope
tagged SRF, ELK-1, orMyocd coexpressed with CARDINAL in heter-
ologous COS-7 cells. (D) Model depicting a promyogenic role for
CARDINAL as an SRF cofactor required to counter-balance SRF-de-
pendent gene programs in the heart by antagonizing ELK-1/SRFmito-
genic gene expression.
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Figure 3. Disruption of CARDINAL in mice leads to contractile de-
fects in response to age and ischemic injury. (A) Diagram of theCAR-
DINAL KO targeting strategy. (B) Four-chamber histological section
of hearts isolated from CARDINAL KO and WT littermates at 8 wk
of age. (C ) Percentage of fractional shortening of the left ventricle
measured by echocardiography. (D,E) Real-time PCR using primers
for CARDINAL (D), cardiac and smooth muscle myocardin isoforms
(E,F ) in the hearts ofCARDINAL KO andWT littermates at 8 wk. (G)
Measurement of cardiac function by fractional shortening using echo-
cardiography in CARDINAL KO and WT littermates subjected to
acute MI. n = 8 WT, n = 7 KO. (H) Transverse histological series
stained with Masson’s trichrome, evaluated at four levels below liga-
tion, showingmuscle and fibrotic scar from two independentWT and
CARDINAL KO mice at 1 mo post-MI.
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ofMyocd, demonstrating the dominance of ELK1 on SRF-
regulated promoters (Fig. 4B). While CARDINAL did not
alter Myocd or ELK1-mediated changes to the SM22 pro-
moter activation, coexpression of CARDINAL was suffi-
cient to repress ELK1-mediated activation of the c-FOS
promoter (Fig. 4A,B). These data demonstrate that unlike
Myocd, CARDINAL can antagonize SRF/TCF-mediated
gene expression.
To determine whether CARDINAL could mediate

this repressive activity directly, we performed RNA im-
munoprecipitation (RIP) using FLAG-epitope tagged fu-
sion proteins of SRF, Myocd, or ELK1 coexpressed with
CARDINAL in COS-7 cells. CARDINAL formed a strong
interaction with FLAG-SRF, weakly interacted with
FLAG-ELK1, and did not interact with FLAG-Myocd
(Fig. 4C). SRF lacks a typical RNA binding domain; there-
fore, the interaction with CARDINAL may be through a
multiprotein complex. SRF interacts with >70 cofactors,
many of which associate with RNA (Castello et al.
2012). As depicted in our model (Fig. 4D), we propose
that CARDINAL promotes myogenic differentiation di-
rected byMyocd andMRTFs in the heart by antagonizing
TCF/SRF-mediated mitogenic gene transcription. Future
studies on the biochemical nature of this interaction
will shed light on the mechanistic role of CARDINAL as
a novel RNA coregulator of cardiac gene transcription
and contractility.

Materials and methods

Study approval

Animal work described was approved and conducted under the oversight
of the University of Texas Southwestern Institutional Animal Care and
Use Committee and by the University of RochesterMedical Center’s Uni-
versity Committee on Animal Resources.

Generation of CARDINAL KO mice

A targeting vector containing a CreERT2-2xpA-Frt-Neo-Frt expression
cassette was targeted to exon 1 of the CARDINAL locus in mice. The tar-
geting vector was linearized and electroporated into 129SvEv-derived em-
bryonic stem cells. One clone with a correctly targeted CARDINAL locus
was expanded and injected into 3.5-d C57BL/6 blastocysts. Chimeric male
micewere crossed toC57BL/6 females to achieve germline transmission of
the targeted allele and genotyped using PCR. Genotyping primer sequenc-
es are in Supplemental Table S2.

Mouse model of myocardial infarction

C57BL/6 (WT) and CARDINAL KO mice at 10–12 wk of age underwent
permanent ligation of the left anterior descending artery, as previously de-
scribed (van Rooij et al. 2008). Cardiac function and heart dimensions were
evaluated by two-dimensional echocardiography on conscious mice using
a VisualSonics Vevo 2100 system equipped with a 35-MHz transducer.

Generation of CARDINAL-LacZ transgenic mice

The 3.5-kb fragment of the upstream CARDINAL promoter and first exon
(−3401 to +116) was cloned upstream of the β-galactosidase (LacZ) reporter
gene in the vector BASIC-LacZ. Linearized LacZ reporter transgenes were
injected into the pronuclei of fertilized oocytes using standard techniques.

Radiolabeled in situ hybridization

Radioisotopic in situ hybridization studies on sections were performed as
previously described (Shelton et al. 2000). Antisense RNA probe templates

for CARDINAL or Myocd were generated using mouse heart cDNA and
subcloned into pCRII TOPO (Life Technologies). Primer sequences are list-
ed in Supplemental Table S2.

RNA immunoprecipitation

RNA–protein complexes from formaldehyde cross-linkedHL-1 cell lysates
were immunoprecipitated using anti-FLAG M2 conjugated agarose beads
(Sigma Aldrich). RNA purification and expression analysis was performed
as previously described (Anderson et al. 2016).

Cellular and subcellular fractionations

Neonatal cardiomyocytes were isolated from ∼50 postnatal day 1 (P3)
C57BL/6 mice using the Neomyt kit (Cellutron nc-6031) and fractionated
as previously described (Anderson et al. 2016).

Northern blot analysis

Northern blots were performed using a commercially prepared adult
mouse multitissue RNA blot (ZyagenMN-MT-1) hybridized with a radio-
labeled DNA probe specific to CARDINAL. Radiolabeled DNA probes for
Northern and Southern blots were generated using a RadPrime kit (Life
Technologies) (Supplemental Table S2).

Rapid amplification of cDNA ends (RACE)

The 5′ end of the mouse CARDINAL transcript in the heart was deter-
mined using Marathon RACE-ready adult mouse cDNA (Clontech).
RACE-PCR was performed according to manufacturer’s recommended
protocol, using primers specific to the 3′ CARDINAL fragment and the
Marathon adapter primer 1 (AP1). The gene-specific primer used to ampli-
fy the 5′ sequence of CARDINAL is listed in Supplemental Table S2.

Statistical analysis

Results are expressed as mean± SEM. Unpaired two-tailed Student t-test
with Welch correction was performed to determine statistical signifi-
cance. P-values of <0.05 were considered significant.
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