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A major challenge in drug development is safety and toxicity concerns due to drug side
effects. One such side effect, drug-induced liver injury (DILI), is considered a primary factor
in regulatory clearance. The Critical Assessment of Massive Data Analysis (CAMDA) 2020
CMap Drug Safety Challenge goal was to develop prediction models based on gene
perturbation of six preselected cell-lines (CMap L1000), extended structural information
(MOLD2), toxicity data (TOX21), and FDA reporting of adverse events (FAERS). Four types
of DILI classes were targeted, including two clinically relevant scores and two control
classifications, designed by the CAMDA organizers. The L1000 gene expression data had
variable drug coverage across cell lines with only 247 out of 617 drugs in the study
measured in all six cell types. We addressed this coverage issue by using Kru-Bor ranked
merging to generate a singular drug expression signature across all six cell lines. These
merged signatures were then narrowed down to the top and bottom 100, 250, 500, or
1,000 genes most perturbed by drug treatment. These signatures were subject to feature
selection using Fisher’s exact test to identify genes predictive of DILI status. Models based
solely on expression signatures had varying results for clinical DILI subtypes with an
accuracy ranging from 0.49 to 0.67 and Matthews Correlation Coefficient (MCC) values
ranging from -0.03 to 0.1. Models built using FAERS, MOLD2, and TOX21 also had similar
results in predicting clinical DILI scores with accuracy ranging from 0.56 to 0.67 with MCC
scores ranging from 0.12 to 0.36. To incorporate these various data types with expression-
based models, we utilized soft, hard, and weighted ensemble voting methods using the
top three performing models for each DILI classification. These voting models achieved a
balanced accuracy up to 0.54 and 0.60 for the clinically relevant DILI subtypes. Overall,
from our experiment, traditional machine learning approaches may not be optimal as a
classification method for the current data.
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INTRODUCTION

Adverse drug reactions (ADRs) are a common concern of novel drugs and therapeutics. One of the
more common targets of ADRs is the liver due to its role in the metabolism of compounds and
resulting liver damage is termed as Drug-Induced Liver Injury (DILI) (Daly, 2013; Atienzar et al.,
2016; Marzano et al., 2016). DILI is a unique challenge in drug development due to the inability of
animal models to translate to human clinical trials in treatment populations. Assessing DILI risk has
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been approached in multiple ways during drug development;
however, officials often rely on post-marketing surveillance to
detect possible long-term side effects such as DILI (Berlin et al.,
2008). The U.S. Food and Drug Administration (2021) has
established the DILIrank dataset, the largest reference drug list
ranked for DILI risk in humans, to facilitate the development of
predictive models by enhancing drug label DILI annotation with
weighted causal evidence (Chen et al., 2016b). This dataset
contains four classifications, including most, less, ambiguous,
and no-DILI concern, regarding 1,036 FDA-approved drugs.
Additionally, predicting DILI is difficult due to the absence of
specific and reliable biomarkers. Traditional biomarkers,
including alanine aminotransferase, total bilirubin levels,
aspartate aminotransferase, and gamma-glutamyl transferase
(among others) are not specific enough to separate DILI from
other forms of liver injury (Ozer et al., 2008). Due to this reason,
FDA in 2016 approved investigations into glutamate
dehydrogenase and microRNA-122 as potential biomarkers
(Andrade et al., 2019; López-Longarela et al., 2020). Messner
and others characterized exosomal microRNA-122 in
methotrexate and acetaminophen-induced toxicity in hepatic
stem cells, HepaRG. They confirmed that microRNA-122 can
be used as a sensitive biomarker for DILI (Messner et al., 2020).

Predictive markers of DILI, determined by compound
properties and known variables rather than preclinical studies,
would facilitate drug development in a wide variety of ways
(García-Cortés et al., 2018; Saini et al., 2018). Multiple groups
have attempted to predict DILI using drug compounds or
proposed drug properties. Chemical structures (Shin et al.,
2020), gene expression response (Liu et al., 2020), and patient
genetic data have been previously used for DILI prediction using
traditional machine learning algorithms. Xu et al. proposed a
deep learningmodel built on a “combined data set” gathered from
a variety of sources and used a molecular structural encoding
approach for the chemical structures of the drugs in their data
(Xu et al., 2015). Kohonen et al. proposed a “big data compacting
and data fusion” concept (Kohonen et al., 2017). In their
approach, the authors utilized data from the Connectivity Map
(CMap; Broad Institute) database, the Open Toxicogenomics
Project-Genomics Assisted Toxicity Evaluation Systems (TG-
GATEs; National Institutes of Biomedical Innovation, Japan),
the US National Cancer Institute 60 tumor cell line screening

(NCI-60), and the US FDA Liver Toxicity Knowledge Base
(LTKB). Using these databases, they modeled a predictive
toxicogenomics space that captured all possible well-known
hepato-pathological changes (Kohonen et al., 2017).

Building upon these previous efforts to accurately predict
DILI, the Critical Assessment of Massive Data Analysis
(CAMDA) in collaboration with the Intelligent Systems for
Molecular Biology (ISMB) has proposed the CMap Drug
Safety Challenge for their annual conferences in 2018, 2019,
and 2020 (Table 1). The previous challenges in 2018 and
2019, while sharing a similar goal to predict potential liver
toxicity, also had distinct parameters. The prediction DILI
classification in 2018 was a binary positive or negative DILI
status, while in 2019 the challenge was more focused on the
potential DILI risk ranging from no concern to most concern
with four classifications reflecting the DILIrank dataset (Chen
et al., 2016b). The data, used for predicting the DILI classification
of drugs in the 2018 challenge, were limited to microarray data
from MCF7 and PC3 cell lines. Chierici et al., in 2018 employed
deep learning techniques for the microarray data from 276
compounds but only achieved Matthews Correlation
Coefficient (MCC) values of <0.2 (Chierici et al., 2020).
Sumsion et al. in the same challenge year utilized more
traditional classification algorithms along with soft voting but
reached a maximumMCC of 0.2 and maximum accuracy of 70%,
while the voting model never performed the best when compared
to individual models (Sumsion et al., 2020). Both studies cite
struggles with the small sample size and imbalanced datasets;
however, resampling, in this case, led to overfitting rather than
improved testing accuracy.

The CMap Drug Safety Challenge expanded in 2019 by
including not only expression data from L1000 CMap but also
by allowing a wide variety of external data sources that were
incorporated into each study. Lesinski et al. achieved their best
predictive results by incorporatingmolecular drug properties along
with the most informative variables from five of 13 cell line
expression models via a super learner method (Lesiński et al.,
2021). Including molecular property information improved their
cell line models’ accuracy up to 73% utilizing a random forest
algorithm, which originally ranged from 55 to 61%. Liu et al. built
support vector machine and random forest models using chemical
descriptions from DILIrank annotation along with expression

TABLE 1 | Previous CAMDADrug Safety Challenge Summary. The CMapDrug Safety Challenge has been a repeated effort by CAMDA to develop predictive models for DILI.
Previous studies are cited by their year of publication and leading author while also describing the year in which the challenge was administered by CAMDA and relevant
data sources and DILI classifications for prediction.

Authors CAMDA
drug safety
challenge

Data sources DILI conditions

Current: Adeluwa
et al.

2020 CMap L1000, MOLD2, FAERS, TOX21 DILI1, DILI3, DILI5, DILI6

2021: Liu et al. 2019 CMap L1000, SMILES strings, SIDER 4.1 Most-DILI concern, Less-DILI concern, ambiguous DILI concern,
No-DILI concern2021: Aguirre-Plans

et al.
2019 CMap L1000, DisGeNET, GUILDify, SMILES, DGldb,

HitPick, SEA
2021: Lesinski et al. 2019 CMap L1000, SMILES, annotated images
2020: Chierici et al. 2018 Affymetrix GeneChip (MCF7, PC3) DILI-1, DILI-0
2020: Sumsion et al. 2018 Affymetrix GeneChip (MCF7, PC3)
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values from predicted protein targets (Liu et al., 2021). This
approach produced models with an accuracy of 75.9% that were
also able to correctly identify targets associated with the
mechanism of action and toxicity of nonsteroidal anti-
inflammatory drugs, a class of drugs commonly associated with
DILI. Aguirre et al. utilized the widest array of predictive data,
including L1000 CMap expression, drug-target associations,
structural data, phenotype-associated gene signatures, protein-
protein interactions, and drug targets data (Aguirre-Plans et al.,
2021). Their models’ accuracy remained comparable to other study
results at 70%, but they also identified structural dissimilarities
within the DILI risk labels used. All three published studies from
the 2019 CMap drug safety challenge cited data limitations within
their study, including complex dosage-related toxicity, a small
sample size, and a small number of compounds with
hepatoxicity annotation.

The current CAMDA 2020 challenge was structured in a way to
address the previous limitations, while also redefining the relevant
DILI classifications. The challenge aimed to predict or classify
positive and negative classes within each of four DILI
designations, namely DILI1, DILI3, DILI5, and DILI6. DILI1 and
DILI3 were clinical classifications based on specific severity scores or
established FDA warnings and precautions, while DILI5 and DILI6
served as a negative and positive control class, respectively (Table 2).
Drug class labels were assigned by the CAMDA 2020 challenge
organizers. DILI1 was described as a severity score ≥, six which is
associated with high risk based on the DILIrank dataset and LTKB
(Chen et al., 2016a). DILI3 was described as drugs withdrawn, given
boxed warnings, or warnings and precautions from the FDA due to
either known risk factors or adverse event reporting. DILI5 served as
a randomly assigned negative control, while DILI6 was constructed
as a positive control based on molecular weight with positive
compounds weighing >320 g/mol. The drug list for the study was
expanded to 617 drug compounds to improve on the sample size

limitations of previous studies; however, these datasets remained
highly imbalanced.

The imbalance within the clinically relevant DILI data is
expected considering that many approved drugs do not have a
significant hepatoxicity risk; however, the control classes of DILI5
and DILI6 were structured in a balanced manner (Table 3). For
this challenge, L1000 drug expression signatures from primary
human hepatocytes (PHH), liver carcinoma (HepG2),
immortalized kidney cells (HA1E), human skin melanoma (A-
375), breast cancer (MCF7), and adenocarcinoma (PC-3) were
used as inferred from landmark genes defined by Connectivity
Map (Subramanian et al., 2017). These expression responses were
simplified to one specific dose at one specific treatment time in
order to yield the largest available dataset for training and testing
while also addressing previous dosage toxicity concerns. Other
non-gene expression data provided included molecular descriptors
encoding two-dimensional chemical structure information from
MOLD2 (Hong et al., 2008), post-marketing drug adverse event
information from FAERS (FDA adverse event reporting system
(FAERS), 2015), and high-throughput liver toxicity screening
results from TOX21 (Huang et al., 2016). While previous
studies also utilized external data sources to improve model
performance, the current study focuses on the various types of
data processed and provided from the CMap drug safety challenge.

We constructed models to predict each drug’s DILI class
(positive or negative) within the four DILI classifications
(DILI1, DILI3, DILI5, and DILI6) by first evaluating the
performance of each dataset in predicting DILI and also by
employing ensemble voting with the top three performing
models across data types. The gene expression data presented a
unique challenge in that not all drugs were tested in each cell line or
even in liver-relevant cell lines. To address this, we utilized a Kru-
Bor merging method to merge the expression signatures across cell
lines into one representative drug signature (Iorio et al., 2010; Lin,
2010). These expression signatures were narrowed down to the top
and bottom 100, 250, 500, and 1,000 ranked genes and subjected to
feature selection via a Fisher’s exact test based on their involvement
in DILI positive/negative assigned drugs for each DILI class.
FAERS, MOLD2, and TOX21 datasets were also used to
construct DILI predictive models, and to address the imbalance
of these data we tested resampling techniques. Various traditional
classifier algorithms were used to build models on these datasets,
and the models were evaluated on a blinded test set by the
CAMDA committee. Based on the training area under the
curve (AUC) values of these models, the top three algorithms

TABLE 2 | Drug-Induced Liver Injury Classifications. Four binary classes of DILI were provided by the CAMDA organizers. DILI1 positive compounds were based on the
clinical severity score associated with liver necrosis. DILI3 positive compounds were based on drugs already associated with warnings and precautions or that have been
withdrawn due to liver toxicity. DILI5 was a random assignment from the organizers as a negative control group while the DILI6 classification was based on molecular weight
(>320 g/mol) to serve as a positive control.

Targets Positive group Negative group

DILI1 DILI severity score ≥6 (N � 141) DILI severity score <6 (N � 476)
DILI3 Withdrawn, box warning, warning and precaution (N � 227) Adverse events and no match (N � 390)
DILI5 Assigned DILI endpoint 1 (N � 308 positive) (N � 309 negative)
DILI6 Assigned DILI endpoint 2 (N � 318 positive) (N � 299 negative)

Note1: DILI5/DILI6 are controls; DILI5 is randomly split; DILI6 is the positive control, dividing compounds based on their molecular weight > 320 g/mol.

TABLE 3 | Training Data Imbalance. The data used for the clinical DILI classes of
DILI1 and DILI3 were imbalanced which negatively influenced the models built
to predict these classes.

DILI class Negative Positive

DILI1 326 96
DILI3 262 160
DILI5 218 204
DILI6 197 225
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for each datatype (cell expression, FAERS, MOLD2, and
TOX21) for each DILI class were included in our ensemble
voting model. We tested hard, soft, and weighted voting across
these datasets to see if the varying dimensions of data can
improve predictive performance.

MATERIALS AND METHODS

Data Processing
The overall workflow of our study is shown in Figure 1. Initially,
the overlap of drugs, included in each of the gene expression cell

data sets, was investigated using VennDetail (Guo andMcGregor,
2020) to create a Venn pie chart showing the various drug testing
subsets across the six cell lines (Figure 2). Each of the non-gene
expression datasets (FAERS, MOLD2, and TOX21) were treated
as individual datasets, while the gene expression data were
merged across cell lines to build classifier models. In general,
we used standard preprocessing techniques, including removing
zero variance features and missing values. DILI1 and DILI3
suffered from class imbalance (Table 3). For all non-gene
expression data, to mitigate this issue, we attempted three
oversampling techniques, including synthetic minority
oversampling technique (SMOTE) (Chawla et al., 2002),

FIGURE 1 | Study Workflow. Data were separated into expression-based datasets and non-expression-based (FAERS, MOLD2, TOX21) for testing. Non-
expression data was evaluated with resampling methods ROSE and SMOTE as well as an unbalanced dataset. Expression-based datasets were merged across cell
lines into one representative expression signature per drug. These signatures were tested as the top and bottom 100, 250, 500, and 1,000 ranked genes for each drug.
Following signature formation, feature selection using a fisher’s exact test was used to determine significant predictors of DILI classification. Machine learning was
used on predictors for both expression-based and non-expression models, which were evaluated based on training AUC curve values as well as testing performance.
The top three performing models for each DILI type were utilized in ensemble voting models in an effort to incorporate both expression and non-expression datasets.
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random oversampling examples (ROSE) (Menardi and Torelli,
2014), and a random upsampling of the minority classes. SMOTE
balances data by randomly creating artificial samples between two
nearest-neighbor samples, while ROSE uses a smoothed
bootstrap technique to resampled the data (Chawla et al.,
2002; Menardi and Torelli, 2014). For comparison, models
were built using imbalanced data as well. Before training non-
gene expression datasets, they were standardized to have a mean
of zero and a standard deviation of one. Preprocessing details
specific to each dataset as well as some characteristics of the data
are discussed below.

Food and Drug Administration Adverse
Event Reporting System
The CAMDA organizers provided us with FAERS data for all 617
drug compounds. Of these, 422 were grouped as “training data”.
This dataset contains 20 features corresponding to information
on the percentage of reported adverse events for each drug
compound by gender and age group demographic. After
removing highly correlated features, we upsampled the data to
cater to the class imbalance by randomly sampling with
replacement from the minority class to balance the majority
class. An additional preprocessing step was to create two new
variables, namely “male ratio” and “female ratio”, taking into
account all reported events irrespective of the gender, all reported
DILI events irrespective of gender, and the percentage of reported
DILI events by gender.

Toxicology in the 21st Century
In addition to the FAERS dataset, we were provided with
concentration-response information of 600 drugs. Of these,
412 were designated as “training data”. Thirty-two features
corresponded to concentration-response curve ranks. Out of

all 412 drugs for training, 57 drugs were removed for missing
values. In addition, we removed highly correlated features using
an arbitrary cutoff of 0.82 and catered to the class imbalance by
using SMOTE.

Molecular Descriptors from 2D Structures
Alongside the FAERS and TOX21 data provided, we had access to
the 2D molecular descriptors or structural information of these 617
drug compounds. 422 of these drugs were designated for training.
There were 777 features for each drug compound with each feature
corresponding to MOLD2 descriptors. To cater to class imbalance,
we upsampled minority classes, as well as ROSE, and SMOTE.

Connectivity Map L1000 Gene Expression
Data
The L1000 assay data used in this study is a high-throughput gene
expression assay thatmeasuresmRNA transcript abundance of 978
landmark genes based on an inference algorithm to infer the
expression of 11,450 additional genes in the transcriptome
(Subramanian et al., 2017). Utilizing simulation, it has been
observed that this reduced representation of the transcriptome
can recapitulate around 80% of the relationships of measuring the
entire transcriptome directly. In this study, 12,328 deidentified
predictors genes were provided by the CAMDA organizers with Z
scores to indicate transcript abundance. The treatment time and
dosage of each drug were selected by the CAMDA committee to
produce the largest available dataset for both test and training data.

Kruskal-Borda Merging
Since not all drugs were tested in each cell line data made available,
we utilized the Kruskal-Borda (Kru-Bor) merging algorithm in the
GeneExpressionSignature R package (Li et al., 2013). This
approach allowed us to generate a unified drug-induced

FIGURE 2 | Drug Testing Cell Distribution. The Venn-Pie diagram depicts the overlap of drugs tested between each of the six cell lines used in this study. Each bar
within the Venn-Pie represents an individual dataset while the color of the bars indicates the overlapping group of compounds across datasets. While 247 of the 617
drugs included in the training and test data were tested in all six cell lines, some compounds were only tested in a singular cell line and others did not have any expression
information provided.
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expression signature across cell types since many drugs were not
tested in the PHH or HepG2 liver cell lines. The Kruskal algorithm
(Kruskal, 1956) finds a minimum spanning forest of an undirected
edge-weighted graph while the Borda merging method (Saari,
2000b; 2000a) uses ranked options in order of preference to
determine the outcome. Thus each closest neighbor in rank
merges one by one until a unified signature is formed.
Following merging, the top and bottom 100, 250, 500, and
1,000 ranked genes were selected as drug signatures for feature
selection.

Feature Selection
A method of feature selection utilized across the merged signatures
produced via our Kru-Bor merging was based on a gene’s significance
(p-value < 0.01) in predicting the DILI score via a Fisher’s exact test. If
a gene is included in the top or bottom 100, 250, 500, or 1,000 ranked
list, depending on the model data, for any drug it would be assigned a
one (True), or if it fell outside of that range it would be assigned a zero
(False). The classifier for each type ofDILIwas also one (DILI positive)

or zero (DILI negative). We used these classifiers to identify if these
highly influenced genes were predictive of a drug being DILI positive
or DILI negative with a p-value cutoff of 0.01.

Machine Learning
The prediction of DILI was treated as a binary classification
problem for each DILI type. That is, for each of DILI1, DILI3,
DILI5, and DILI6, outcomes were split between “positive” and
“negative”. We used a 5-folds cross validation repeated 100 times,
and a random search strategy to search for the best parameters for
each model. The data was made available such that training and
test sets had been pre-identified. Importantly, we did not have
access to the correct labels for the test data. Models were built
using traditional machine learning algorithms within the caret
(Kuhn, 2008) package in R version 4.0.0 (R Core Team (2020),
2020).

The machine learning algorithms we used are suitable for
classification tasks. They include a Logistic Regression (LR) (Cox,
1958), Linear Discriminant Analysis (LDA) (Li and Jain, 2009),

FIGURE 3 | FAERS Model Performance. Performance evaluation of the DILI predictive models built using the FAERS reporting data was conducted on both the
original unbalanced and the resampled/balanced datasets. The best performing algorithm determined by AUC between GLM, IDA, NB, NNET, RF, RPART, and
SVMPoly were selected. For DILI1 and DILI3, the highest accuracy was 0.62 with MCC values of 0.21 and 0.24, respectively.
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Decision Trees (DT) (Quinlan, 1986), Support Vector Machines
(SVM) (Cortes and Vapnik, 1995), Naïve Bayes (NB) (Hand and
Yu, 2001), a One-layer Neural Network (Nnet), and a Random
Forest (RF) algorithm. LR and LDA are generally categorized as
linear classification models, with an assumption that the data
follows a normal distribution. Given a set of predictors, LR aims
to build a linear model of these predictors by minimizing the sum
of squared residuals. LDA uses the prior probability of belonging
to a class to estimate posterior probabilities by using Bayes’
Theorem. DT and RF are often classified as trees and rules-based
algorithms. Given a set of predictors, a decision tree works by using
if-else conditions to build a definitive set of rules using splits. The
challenge usually lies in determining optimal situations to apply a
“then”-clause (or a split). In RF, similar conditional statements are
used. However, instead of using the entire sample of data for tree-
building, RF uses many independent subsamples from the training
data to build small decision trees. Each small decision tree classifies
an observation by voting. Neural networks and SVMs are generally
grouped as non-linear algorithms. Neural networks (in our case, a
multilayer perceptron i.e. a neural network with one hidden layer),
are modeled after how neurons in the human brain work. The

outcome or prediction is a linear combination of the hidden layer(s)
transformed by a non-linear activation function. There are several
activation functions used, depending on whether the problem is a
regression or classification problem. In our case, we used a sigmoidal
or logistic function, since we were dealing with a classification
problem. SVM aims to find support vectors or data points that
separate the different classes as much as possible. Intuitively, these
data points are the most difficult to separate (the reasoning is that
they lie very close to one another and to the hyperplane or decision
boundary), and are thought of to be important in separating classes.
There are different flavors of SVMs depending on the kernel used
(kernels are similar to non-linear activation functions used in neural
networks). In the current study, we used polynomial, linear, and a
radial basis function kernels.

Model Evaluation
To evaluate the performance of our models, we focused on the
area under the ROC curve (AUC) value as well as the specificity,
sensitivity, accuracy, and MCC of the models on the test set. The
AUC value is a widely-used metric in binary classification
problems. An AUC value of one indicates a perfect classifier,

FIGURE 4 | TOX21 Model Performance. The performance of DILI predictive models built using the toxicology information provided from TOX21. The three best-
performing algorithms, based on training AUC and based on whether resampling was used or not, are presented in the bar plots.
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i.e. a model that is perfectly able to separate both classes, while an
AUC value of 0.5 indicates a model that predicts at random.
Depending on the application domain, AUC values of 0.7 and
above are usually acceptable. Specificity measures the ratio of
negative classes that were correctly identified by the model out
of all negative classes, while sensitivity measures the ratio of
positive classes that were correctly identified by the model out
of all positive classes. These metrics are affected by how the
target labels are structured and passed to the algorithm, and
they range from 0 to 1. Additionally, we evaluated the
performance of our models on the test set by calculating the
balanced accuracy of prediction. Balanced accuracy is the
average of the sensitivity and specificity or the average of
the fraction of correct labels that are predicted correctly (by
the model) within each class. We used this metric because we
observed that there was class imbalance within our datasets
regardless of DILI type.

MCC is particularly useful in datasets of different class
distributions (or imbalanced data) because it considers all of

the false and true positives and negatives. It is calculated from the
confusion matrix of a model and its values range from +1 to −1,
with +1 indicating a perfect classification, 0 indicating random
classifications, and −1 indicating no relationships between the
observed and predicted classes.

Ensemble Voting Machine Learning
In an attempt to improve the classification accuracy of our
models, we used three ensemble voting approaches, namely
soft voting, hard voting, and a weighted voting approach.
These ensemble methods work best when there are varying
algorithms of different strengths i.e. algorithms having varying
underlying assumptions about the data, and when each one has
reasonable predictive power (Kuncheva, 2002; Van Erp et al.,
2002). Using the gene expression data provided by CAMDA 2018
organizers, Sumsion and others (Sumsion et al., 2020) used hard
and soft voting ensemble methods in an attempt to improve
prediction accuracy on DILI risk. As an extension of their work,
we hypothesized that since we have access to larger and more

FIGURE5 |MOLD2Model Performance. The chemical structural information fromMOLD2was imbalanced between DILI positive and negative samples. Predictive
models were evaluated on both the unbalanced and resampled/balanced datasets. The three best-performingmodels for each DILI type, based on AUC and resampling
methods, are depicted in the bar graphs.
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diverse datasets, we could capture different aspects of predicting
DILI types and use these ensemble methods to improve
prediction.

Hard voting, also known as majority voting, takes into account
the predicted class labels of each classifier (or voter) (Ruta and
Gabrys, 2005). Voting is done by counting how many class labels
(for each class) were predicted among all classes. The class label
with the highest count is taken to be the predicted class label
for that observation. On the other hand, soft voting considers
the probabilities of each class label by each classifier (Lin et al.,
2003). In other words, it considers how certain each classifier
is about the class labels. For each class label, the probabilities
are averaged, and the label with the highest average
probability is taken as the predicted class label for the
observation.

The third approach to voting involves using a weight to skew
predictions towards the most certain models. In our approach,
we used the AUC of each classifier as a weighting parameter for
the output probabilities. This was done to take into account that
some classifiers might have better predictive power and should
be given preference in determining the outcome of the voting.
To weigh each probability, we multiplied the probabilities of
each predicted class by the AUC and divided this by one
subtracted from the weight, that is, the AUC of that model.
Afterward, weighted probabilities were treated just as in soft
voting: by taking the average of all resulting weighted
probabilities belonging to each class. The class label with the
higher average was taken as the predicted class for that

observation. Therefore, the predicted class, ŷ, of observation,
given an output set of class membership probabilities across
many models, P, is given by:

C(ŷ∣∣∣∣P) � argmax
1
m

∑m
i�1,2...m

(wm
i pp

c
i

wm
i − 1

)
Where m is a model, wm

i is the weighting parameter for a model,
pci is the probability of class membership.

RESULTS

Food and Drug Administration Adverse
Event Reporting System Modeling
The performance of FAERS data in predicting each of the DILI
types can be seen in the bar plots in Figure 3. While we built
many models, we compared and picked the best three models
based on the AUC values to predict DILI class on the test set. We
noticed that using the raw data (without resampling), models
achieved classification accuracy between 0.51 and 0.55 and MCC
between 0.04 and 0.14 on the training set and did not do
noticeably better on the test set (accuracy: 0.49 to 0.59, MCC:
−0.03–0.22). On the other hand, using resampled datasets
improved the accuracy of the models on the training set to a
range of 0.61–0.94 (MCC: 0.47–0.89). Using these models to
predict the DILI class of the test set showed a slight improvement
in the accuracy (0.52–0.62). The MCC, however, was between
0.04 and 0.24.

TABLE 4 | Training Performance on Independent Cell Line based Models. Each of the six cell lines with L1000 expression data were used to build predictive models of the
four DILI classes. Training performance results for the best performing model for each cell type and DILI class are shown as well as the number of predictors following
feature selection as described in the methods section.

DILI class Cell type
tested

ML algorithm Predictors AUC-ROC Sensitivity Specificity

DILI 1 PHH SVM 60 0.969 0.912 0.945
Hep G2 SVM 72 0.922 0.924 0.693
HA1E GLM 40 0.781 0.903 0.389
A-375 GLM 178 0.627 0.826 0.17
MCF7 GLM 65 0.722 0.898 0.222
PC3 RF 315 0.589 1.000 0

DILI 3 PHH NB 50 0.931 0.547 0.957
Hep G2 RF 75 0.913 0.942 0.625
HA1E SVM 176 0.922 0.953 0.788
A-375 SVM 3,610 0.833 0.869 0.607
MCF7 SVM 74 0.861 0.872 0.742
PC3 SVM 345 0.844 0.863 0.606

DILI 5 PHH GLM 8 0.723 0.484 0.761
Hep G2 RF 17 0.719 0.984 0.229
HA1E GLM 20 0.711 0.693 0.513
A-375 GLM 24 0.724 0.786 0.561
MCF7 RF 38 0.679 0.803 0.355
PC3 GLM 14 0.661 0.255 0.961

DILI 6 PHH GLM 2 0.574 0.087 0.990
Hep G2 RF 31 0.686 0.000 1.000
HA1E RF 27 0.688 0.247 0.949
A-375 GLM 16 0.619 0.181 0.945
MCF7 RF 24 0.689 0.186 0.975
PC3 RF 53 0.724 0.159 0.986
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TOX21 Modeling
The top three models built using TOX21 data (using the AUC as
the criterion) were evaluated on the test set (Figure 4). Using the
data as is, without resampling, the accuracy of the training data
was between 0.50 and 0.57 (MCC: −0.02–0.17). As expected, the
models failed to generalize to the test set (accuracy: 0.50 to 0.59,
MCC: −0.04–0.19). Again, we observed that resampling slightly
improved the accuracies of these models on the training set
(accuracy: 0.62–0.76, MCC: 0.25–0.54). Yet, there was no
major improvement on the test set (accuracy: 0.50 to 0.58,
MCC: −0.01–0.20).

MOLD2 Modeling
Similarly to how the FAERS data was handled, we selected the top
three performing models built using MOLD2 data in each
category (resampled or non-resampled) to predict the DILI
class of the test data (Figure 5). Models built using the non-
resampled MOLD2 dataset gave accuracies of 0.50–0.54, showing
that the models were randomly predicting the classes (MCC:
0.00–0.17). This performance was similar on the test set

(accuracy: 0.50 to 0.66, MCC: −.01–0.36) with a slight
improvement. Similarly to what we observed using FAERS
data, resampling the dataset improved both the accuracy and
the MCC of the training set (accuracy: 0.71–0.78, MCC:
0.56–0.76) but could not generalize better than non-resampled
MOLD2 data to the test set (accuracy: 0.51 to 0.67, MCC:
0.14–0.36).

Connectivity Map L1000 Cell Expression
Modeling
Cellular RNA expression levels in the form of microarray data
have been previously investigated for their ability to predict DILI
with limited predictive power (Chierici et al., 2020). In the current
study, the L1000 data from the Connectivity Map was used
including both the measured landmark genes as well as the
inferred transcriptome. We built models using each expression
data to investigate which cell lines were most successful in
predicting DILI. Table 4 summarizes the model results based
on our training data. However, due to the limitation of each cell

FIGURE 6 |Cell Expression Model Performance. A single cell expression signature for each drug was generated using Kru-Bor merging across all cell lines in which
the drug was tested as described in the methods. Following merging, feature selection using a fisher’s exact test was performed on expression signatures of the top and
bottom 100, 250, 500, and 1,000 ranked genes. Models built on these predictors were evaluated and the top-performing ones, based on AUC, are shown in the training
set bar graph.
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only providing expression response data from a subset of drugs
(Figure 2) involved in the training and test data, accuracy based
on test data was not meaningful. Additional processing steps for
this data involved merging across the six cell lines to generate a
representative signature, testing different cutoffs for the amount
of highest- and lowest-ranked genes to utilize, as well as a feature
selection for determining predictor genes.

The models built using the merged expression signatures with
the highest AUC from the training data were evaluated on the test
set. The training and test results are summarized in the bar plots
in Figure 6. None of the cell expression signatures performed well
when predicting DILI3, DILI5, or DILI6 with an accuracy ranging
from 0.39 to 0.64 and MCC values ranging from −0.03 to 0.1.
These models did have some limited success predicting DILI1
with the merged SVM 1000 model performing the best, reaching
an accuracy of 0.67 but an MCC of 0.10 (Supplementary
Table 1). The poor predictability of DILI3 status by these
models was unexpected with the accuracy of the best model
being 0.49 with 0.33 sensitivity and 0.66 specificity. The limited
success in predicting DILI5 and DILI6 was expected based on the
positive and negative control construction of these DILI classes,
which are not reflected in the gene expression data.

Ensemble Voting Models Performance
Since the top three individual models did not perform well on the
test set (Supplementary Table 1), we asked if aggregating the top
three models in an ensemble approach could improve the
accuracy. To test this, we applied three ensemble voting
methods namely soft voting, hard voting, and weighted voting.
Hard voting gave accuracies of 0.39 and 0.37 on DILI1 and DILI3,
respectively, while soft voting gave an accuracy of 0.44 and 0.40
for DILI1 andDILI3, respectively (Figure 7). Soft voting slightly
improved the accuracy of these models most likely because it
considers membership probabilities rather than predicted class
labels. We observed that weighted voting slightly improved the
accuracy: 0.54 for DILI1 and 0.60 for DILI3. Our weighted
approach considers both the probabilities and the AUC of the
models and emphasizes the contribution of models with higher
AUCs. Sumsion and others used similar approaches (soft and
hard voting) with gene expression data resulting in decreased
accuracies (Sumsion et al., 2020). Compared to their study, our
approach improved the accuracies of the models. However, our
method(s) does not report MCCs because we do not have access
to the true positives, true negatives, false positives, and false
negatives in the test data.

FIGURE 7 | Ensemble Voting Method Performance. To incorporate the various types of data provided ensemble methods including hard, soft, and weighted voting
were tested using the top three performing models for each DILI type.
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DISCUSSION

CAMDA 2020 was a collaborative challenge to establish predictive
models of DILI using gene expression data as well as a combination
of data from clinically reported events, drug structure, and
toxicology. In our study, we evaluated the predictability of these
datasets on four DILI types, namely, DILI1 (severity score ≥6),
DILI3 (withdrawn, box warning, warning, and precaution), DILI5
(negative control), and DILI6 (positive control). These datasets
included gene expression/perturbation data on six cell lines (PHH,
HEPG2, HA1E, A375, MCF7, and PC3), concentration-response
or toxicology information, 2D molecular descriptors of the drug
structure, and reported adverse events. To assess the predictive
abilities of these datasets, we used various traditional machine
learning algorithms. For non-gene expression datasets, we
corrected the imbalance issue using well-known techniques like
SMOTE, ROSE, and upsampling the minority class.

While CAMDA previously approached predicting DILI, there
have been significant improvements in the data provided and
scopes of the challenge each year. In 2018 the challenge data
only included microarray expression data from non-liver relevant
cell lines on 276 compounds with a binary DILI classification.
Published results from the 2018 challenge indicate limited success
from both deep learning and soft voting approaches which
achieved a maximum accuracy of 0.7 and MCC values < 0.2
(Chierici et al., 2020; Sumsion et al., 2020). When the CMap
drug safety challenge was readministered in 2019, the data
expanded to L1000 transcriptomic data on 13 cell lines and
allowed participants to use external data sources such as
protein-protein interactions, drug-protein targets, and chemical
descriptors. The DILI classifications for this challenge also changed
from binary to a most, less, ambiguous, and no-DILI concern
which is in line with the FDA DILIrank dataset. Predictive model
rates from multiple distinct approaches to this challenge in 2019

often yielded similar accuracy results around 0.70 (Aguirre-Plans
et al., 2021; Lesiński et al., 2021; Liu et al., 2021).While it is difficult
to make a direct comparison across the years of these challenges
considering how the fundamental elements of predictive modeling,
such as the data sources and classifications, have changed, the goal
of the challenge has remained the same in modeling the risk of a
drug to lead to liver injury in patients. The data structure of the
challenge has also improved in each iteration attempting to expand
the predictive data power as well as the data sample size to allow for
more robust modeling. However, as in previous years, the highest
accuracy we were able to achieve in the current study was 0.67 for
DILI1 and DILI3 with the highestMCC value of 0.36. This suggests
that there is still room for improvement in both model
construction and developing robust predictive data, which
captures the scope of DILI.

In our study, we developed models with gene expression data
using individual cell lines, as well as a merging of these datasets.
Each cell line dataset did not include all the drugs thereby
reducing the size of the training data and making it difficult to
evaluate each of them on the test set. Therefore, we merged these
datasets into one expression signature across cell types. Further,
we selected the 100, 250, 500, and 1,000 most upregulated and
downregulated genes as an arbitrarily signature cutoff of the most
perturbed genes by drug treatment. However, our approach failed
to capture predictive differences between the positive and
negative classes in each DILI type. Although we achieved an
accuracy of 0.67 for DILI1 (on the test set), a sensitivity of 0.38
showed that our models were not learning the positive classes well
enough. Usually, this problem is due to not having sufficient
training examples for a particular class. In contrast, we could
obtain specificity as high as 0.95, showing that the model could
learn the negative classes well since there were more DILI
negative drugs in the training set. Table 5 summarizes the
best performances on the test set. We observed that many of

TABLE 5 | Testing Performance of Top Models. The testing result metrics from the best model built using each dataset as well as the ensemble voting model.

Dataset DILI class Algorithm Test sensitivity Test specificity Test MCC Test balanced
accuracy

Merged expression DILI1 SVM 0.38 0.95 0.1 0.67
DILI3 SVM 0.33 0.66 -0.03 0.49
DILI5 SVM 0.58 0.7 0.06 0.64
DILI6 SVM 0.48 0.53 0 0.51

FAERS DILI1 NNET 0.51 0.73 0.21 0.62
DILI3 RF 0.54 0.71 0.24 0.62
DILI5 RPART 0.51 0.57 0.08 0.54
DILI6 RF 0.72 0.47 0.2 0.6

MOLD2 DILI1 SVMPoly 0.33 0.88 0.24 0.61
DILI3 SVMPoly 0.55 0.8 0.36 0.67
DILI5 SVMPoly 0.38 0.64 0.01 0.51
DILI6 SVMPoly 0.95 0.99 0.94 0.97

TOX21 DILI1 NNET 0.3 0.82 0.12 0.56
DILI3 GLM 0.43 0.76 0.19 0.59
DILI5 GLM 0.3 0.75 0.06 0.53
DILI6 QDA 0.63 0.62 0.26 0.63

Ensemble voting DILI1 Weighted voting 0.16 0.92 0.11 0.54
DILI3 Weighted voting 0.3 0.89 0.24 0.6
DILI5 Weighted voting 0.28 0.71 -0.01 0.5
DILI6 Weighted voting 0.96 0.97 0.93 0.96
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these models failed to generalize to the test set i.e. they showed
poor predictability on the test set (see Supplementary Table 1 for
all models). Since the individual models did not perform well on
the test set, we attempted ensemble (voting) methods to improve
prediction accuracy. We used soft voting, hard voting, and
weighted voting approaches. In weighted-voting methods, there
are diverse ways throughwhich importance can be attached to each
model. Weight-based ensemble methods tend to outperform single
models, and even soft voting, because in addition to the posterior
probabilities churned out by the models, they take into
consideration some importance or weighting factor (Mu et al.,
2009). Although these methods could not improve test accuracy
beyond individual models, weighted voting performed better than
soft and hard voting because weighs the predicted probabilities of
the test examples by the performance of each model.

One challenge we had was that the training set was perhaps too
small to be further split into a training and validation set.
However, machine learning algorithms benefit most from
having sufficient examples. For some datasets such as the gene
expression datasets, we did not have access to information on all
617 drugs, which reduced the size of the training data. Besides, the
training data were largely unbalanced (Table 3). For instance, for
DILI1, there were 96 positive examples and 326 negative
examples. This problem resulted in many of our models
having low sensitivities since the positive examples were
insufficient. In an attempt to address this problem, we
employed resampling techniques (SMOTE, ROSE, and
upsampling minority classes) to balance the datasets. However,
it was clear that models built using balanced (resampled) data
were overfitting the training set. A possible reason for this was
that due to our resampling approach, some training examples
were also used in the validation stage during cross-validation. In
addition, due to having blinded datasets, we could not explore
how the features were influencing the models.

In summary, our study suggests that currently available data,
including mRNA quantification, molecular descriptors, clinically
reported events, and toxicology profiles, may be inadequate to

capture important information enough to separate DILI classes in
real-world scenarios. Also, larger datasetsmay be needed to encourage
the application of deep learning algorithms which typically do better
with bigger data. We also suggest an additional focus or challenge to
predict biomarkers specific for DILI using various–omics data, for
instance, single-cell data and metabolomics signatures.
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