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Multipurpose monitoring system 
for edible insect breeding based 
on machine learning
Paweł Majewski1*, Piotr Zapotoczny2, Piotr Lampa3, Robert Burduk1 & Jacek Reiner3

The Tenebrio molitor has become the first insect added to the catalogue of novel foods by the 
European Food Safety Authority due to its rich nutritional value and the low carbon footprint produced 
during its breeding. The large scale of Tenebrio molitor breeding makes automation of the process, 
which is supported by a monitoring system, essential. Present research involves the development of a 
3-module system for monitoring Tenebrio molitor breeding. The instance segmentation module (ISM) 
detected individual growth stages (larvae, pupae, beetles) of Tenebrio molitor, and also identified 
anomalies: dead larvae and pests. The semantic segmentation module (SSM) extracted feed, chitin, 
and frass from the obtained image. The larvae phenotyping module (LPM) calculated features for 
both individual larvae (length, curvature, mass, division into segments, and their classification) and 
the whole population (length distribution). The modules were developed using machine learning 
models (Mask R-CNN, U-Net, LDA), and were validated on different samples of real data. Synthetic 
image generation using a collection of labelled objects was used, which significantly reduced the 
development time of the models and reduced the problems of dense scenes and the imbalance of the 
considered classes. The obtained results (average F1 > 0.88 for ISM and average F1 > 0.95 for SSM) 
confirm the great potential of the proposed system.

The current problems of feeding an ever-increasing human population involve meeting the demand for animal 
protein without the environmental costs associated with animal husbandry. Preference is given to livestock 
systems that use less water, minimise space and reduce greenhouse gas emissions. The United Nations (UN) 
predicts that human protein consumption will reach 39 grams per day in 2030, and 57 grams in  20501. The solu-
tion to this problem may be industrial insect breeding with minimised human labour and high stocking rates 
per unit building area. This is important, because in recent years, according to the recommendations of good 
husbandry practices, there has been an aim to reduce the stocking density per 1 m2 of building area of the main 
livestock species such as cattle, pigs and poultry. Moreover, we have also observed huge problems with African 
swine fever (ASF) and Avian influenza (AI), causing many livestock buildings to close with no idea of how to then 
use them. One alternative for their reuse could be intensive breeding of insects for food and  feed2. According to 
the International Platform of Insects for Food and Feed (IPIFF), within the next 10 years the insect sector will 
become an integral part of the European agri-food chain. It is forecast that 1 in 10 fish consumed in the European 
Union (EU) will come from fish farms that use insect protein in their feed, 1 in 4 eggs consumed in Europe will 
come from insect-fed laying hens, 1 in 5 servings of chicken meat will come from insect-fed broilers, and 1 in 
100 servings of pork will come from insect-fed pigs.

Insects are the most numerous group of known animal species, and they are the most important element of 
the  ecosystem2. They are a valuable source of protein for many animal species and for people living in Africa, Asia 
or South America. Of the millions of insect species, more than 2000 are recognised as being edible. In Europe, 
there is no tradition of eating insects as a protein substitute. For now, most are bred only as protein and fat sup-
plements to feed other animals. This is possible because the EU has approved insect protein for the production 
of feed for fish, poultry and pigs. Additionally, in 2021, after many studies, the European Food Safety Authority 
showed that Tenebrio molitor larvae are a rich source of protein, fat and fiber, and included it in the catalogue 
of novel foods. Thus, whole or powdered dried larvae can be an ingredient in pasta, cookies, and other food 
products. However, for such breeding to be profitable, industrial production technologies for selected insect 
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species, such as Tenebrio molitor, must be developed in order to provide a standardised and cost-competitive 
product to the market.

Tenebrio molitor is a beetle from the Darkling beetles (Tenebrionidae) family. Adults have an elongated body 
measuring 12–18 mm in length. In the life cycle of Tenebrio molitor, the following can be distinguished: eggs, 
larvae, pupae and beetles. The larvae transform into a pupae in 45–60 days after 7–9 moult cycles, and the pupae 
transform into beetles after 5 next  days3.

Industrial livestock production technology involves fully automating almost all animal handling operations 
through robots supervised by vision systems and a set of sensors associated with a production management 
module. If industrial breeding of Tenebrio molitor is to be profitable, individual breeding processes should also 
be automated. Its breeding systems currently involve keeping a certain number of larvae in boxes that are stacked 
on racks at several or more levels. Most of the work performed is manual and labour intensive. Today, with the 
exception of a few very large operators that are capable of producing several thousand tons of insects, the vast 
majority of insect farms are startups and small or medium-sized companies with little or no automation in their 
production systems. Keeping in mind the recommendation for  breeding4, the activities in the production of 
Tenebrio molitor are: (i) feeding, (ii) wetting of larvae, (iii) sorting of larvae into size classes, (iv) harvesting of 
chitinous moult, (v) final harvesting of larvae and the separation of them from impurities. In order to control 
the ongoing effects of breeding, it is necessary to measure: (1) biomass gains, (2) the amount of chitinous moult, 
(3) the amount of dead larvae, (4) the amount of consumed feed, (5) the amount of possible pests (Alphitobius 
diaperinus), and (6) the number of individuals after transformation to pupae or beetles. In view of the require-
ments, fully automating production is not something that is easy. The basis of farm automation can be a vision 
system based on RGB cameras, or cameras outside the visible range (UV, IR). However, the problem is not with 
the hardware, but with the software. While the availability of cameras is very high, there is a lack of information 
in literature on the algorithms that can identify even the basic parameters of Tenebrio molitor breeding. This 
problem is difficult to solve because the objects to be identified overlap, and the colour or texture of each instance 
is very similar to each other.

Image analysis methods have more and more applications in precision agriculture. They are commonly used 
to assess the quality of raw materials and food  products5. There is also research using vision systems and soil 
worms to assess drug effects. Digital fluorescence images of Caenorhabditis elegans worms were captured with a 
CCD camera, and the lymph flow through the worms’ bodies was determined based on the developed algorithms 
(Migliozzi et al., 2019)6. Tao et al.7 presented the results of identifying the sex of silkworm pupae using vision 
systems based on hyperspectral cameras. They used the successive projections algorithm (SPA) for variable 
 selection8, gray-level co-occurrence matrix (GLCM)9analysis, and support vector machines (SVM)10 and radial 
basis function neural network (RBF-NN) models to achieve more than 98% accuracy in identifying the sex of 
silkworm pupae. Similar results were obtained by Sumriddetchkajorn et al.11 except that they obtained images 
of silkworm pupae by illuminating the cocoons with light from diodes and then capturing the images with a 
CCD camera. A combination of near-infrared hyperspectral imaging, convolutional neural networks (CNN), 
and a capsule  network12 allowed for the identification of the storage pest (khapra beetle, Trogoderma granarium 
Everts) with over 90 percent accuracy (Agarwal et al.)13. A study on determining the developmental stage of 
pupals using vision systems was conducted by Sasha et al.14 for two species of blowfly (Diptera: Calliphoridae).

Unfortunately, there are only a few articles on the use of image analysis to automate Tenebrio molitor produc-
tion. Companies with solutions, such as Dilepix, offer off-the-shelf systems, but do not provide details of their 
solutions. Kröncke et al.15 presented a system for automating the production of Tenebrio molitor. They developed 
a pneumatic system for separating larvae from impurities. They also proposed a method to evaluate the health 
and developmental status of larvae using a vision system. For this purpose, they classified image fragments into 
three classes: good segments, bad segments, and artifacts with the use of a multi-layer perceptron neural network 
(MLP-NN), which achieved an accuracy of 95.4%.

Due to a lack of sufficient knowledge on the development of complex systems for the automatic production 
and industrial control of Tenebrio molitor, the authors undertook to develop such a system. Its key element is a 
vision system, the tasks of which include the automatic identification of individual instances and the calculation 
of production parameters, which are the basis for the control of the entire farm. The main achievements of our 
research are: (1) a multipurpose monitoring system for edible insect breeding based on machine learning, (2) 
a novel non-invasive method for calculating the mass of Tenebrio molitor larvae based on images, (3) a novel 
method for estimating the size distribution of objects in dense scenes, (4) an original method for developing 
models for multiclass instance and semantic segmentation based on synthetic image generation and a partially 
automated labelling process.

Methods
This chapter describes the successive steps of the iterative development of machine learning models, from defin-
ing problems and system concept to the evaluation of the proposed methods.

Problem definition and system concept. We divided the addressed problems into 3 groups: those 
requiring instance segmentation, those requiring semantic segmentation, or those related to larvae phenotyping. 
The first group involved the detection and segmentation of the growth stages of Tenebrio molitor (live larvae, 
pupae, beetles), and also anomalies in the form of dead larvae and pests (Alphitobius diaperinus). The instance 
segmentation module (ISM) determined the number of objects belonging to each class, their location, and an 
extracted binary mask for further phenotyping of individual instances. The second semantic segmentation mod-
ule (SSM) extracted areas that represent the densities of the feed, chitin and frass from the image, and then 
calculated the percentage of these areas in the whole image. The third module was related to larvae phenotyping 
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(LPM) at the level of both individual larvae (calculation of length, curvature, mass, division into segments, and 
their classification) and the whole population (determination of length distribution). The defined object classes 
used in the study (a) and the concept of the proposed 3-module DeepTenebrio system (b) are shown in Fig. 1.

Figure 1 also shows the next steps in developing the machine learning models for the proposed modules (c), 
which are characterised in the following sections.

Data acquisition. The place for breeding Tenebrio molitor were boxes placed on the shelves of racks. 
Selected boxes with Tenebrio molitor were taken off the shelves and put into the data acquisition station. Its 
schematic diagram, with a real photo, is shown in Fig. 2.

The station allowed high-resolution RGB images in manual and automatic modes to be collected. The Phoe-
nix PHX120S-CC camera (LUCID Vision Labs, Canada) with a resolution of 4096 x 3000 pixels was selected 
for image acquisition. The boxes with Tenebrio molitor were illuminated with a neutral white light (colour 
temperature 4000K) that was scattered in a diffuse tunnel. To reduce insect stress, the illuminators were only 
triggered for a short time for the duration of camera exposure. The covers isolated the image acquisition area 
from external factors. In total, 120 raw images of boxes with Tenebrio Molitor under breeding conditions were 
collected as a basis for labeling and developing the proposed modules. The selected populations in boxes differed 

Figure 1.  Presentation of the addressed problem: (a) the defined object classes used in the study, (b) the 
concept of the proposed 3-module DeepTenebrio system, (c) the next steps in developing the machine learning 
models for the proposed modules.

Figure 2.  Data acquisition station.
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in the growth stage of individuals, presence of anomalies, amount of uneaten food and chitin. Data were collected 
at Tenebria (Lubawa, Poland).

Labelling. Labelling is an integral part of developing machine learning models, and allows the transfer of 
annotator knowledge to the model through its supervised training. This section describes the adopted data label-
ling strategy for training the models for the following modules: ISM, SSM, and LPM, as shown in Fig. 1.

First stage of labelling. The first stage of labelling consisted of manual annotation of the images. For each pro-
posed module: ISM, SSM, and LPM, the forms of annotation were different, and are shown in Fig. 3.

In the case of the ISM (a in Fig. 3), the labelling consisted of delineating the boundaries of consecutive objects 
with a polygon-type label in order to obtain an object mask, to extract the object from the image, and then to add 
it to the object pool. For the SSM (b in Fig. 3), areas representing only one class, e.g. chitin, were marked, and a 
polygon-type label was also obtained. These areas were then divided into smaller fragments using the Watershed 
algorithm, which were then added to the pools associated with the classes for semantic segmentation. Samples for 
larval segment classification for the LPM (c in Fig. 3) were obtained as follows. On an extracted live larva mask, 
two point labels were placed at the two ends in order to denote the head and abdomen end. The end segments 
were assigned to the head or abdomen end class depending on the annotator label, and the rest of the segments 
obtained the “normal” label (normal abdomen segments). The algorithm for dividing the larvae into segments 
was unsupervised, and is described in "Larvae Phenotyping" section.

Second stage of labelling. Obtaining an efficient and robust machine learning model requires iterative model 
development. This is not only related to retraining the models on enlarged datasets, but also to using previous 
models (so-called weak models) in order to achieve improved labelling. This makes it possible to quickly find 
the most difficult samples for inference, as well as to annotate them manually, which is the assumption of active 
 learning16. Labelling samples for the instance segmentation model was very time-consuming. For this reason, 
an improved labelling process based on LabelTenebrioApp (d in Fig. 3) was proposed. At first, the annotator 
selected an image, together with previously obtained predictions, using the model with the best results so far. 
The annotation process itself involves a quick evaluation of the received predictions in terms of mask quality, 
and then predicted object class using a point-click technique. Objects with masks of good/acceptable quality 
and a true class label were added to the object pools without the need, as is the case with classical labelling, to 
draw a polygon. The most difficult cases that were not identified by the model were then manually labelled by 
the annotator.

Figure 3.  Methods and tools used for the labelling: (a) object labelling for the ISM, (b) area labelling for the 
SSM, (c) larva segment labelling for the LPM, (d) LabelTenebrioApp for improving the instance labelling 
process.
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Pool-based 2D synthetic image generation. Developing machine learning models in the classical way, 
i.e., based on the completely manual annotation of random samples, is inefficient. This is especially noticeable for 
segmentation problems, when the label is a pixel annotation that requires a lot of effort from the annotator. For 
the undertaken issues, another problem is the high density of objects, their overlap, and their similarity, which 
increases uncertainty during labelling.

Considering these limitations, a semi-automatic method for generating 2D synthetic samples was proposed, 
which significantly reduced labelling time and uncertainty, and increased flexibility for iterative model develop-
ment. The method is based on randomly placing elements in the form of images from the pools on the back-
ground  image17. The extraction of items for the pools is described in "Labelling" section. In order to obtain a 
high similarity between the synthetic and real data, the elements were placed in a specific order. The first were 
fragments of feed, chitin, and frass, which are often found at the bottom of the box. Next, images of objects such 
as live larvae, pupae, beetles, dead larvae, and pests were placed in the image. Feed and chitin fragments were 
placed in the foreground, which is due to the fact that there could be possible feed residues after feeding, as well 
as moulting during larval growth. After the item placement procedure, a label was automatically generated in 
order to train the instance and semantic segmentation models without additional user supervision. A diagram 
of the proposed pool-based synthetic data generation method is shown in Fig. 4.

Dataset. The labelling strategy described in "Labelling" section  was applied to create the training datasets. A 
summary of the number of samples collected in this way is shown in Table 1.

The numbers shown in Table 1 represent the number of objects for the ISM, the number of polygons for the 
SSM, and the number of segments for the LPM, respectively. The test datasets were prepared completely inde-
pendently. In this case, the samples were labelled manually by an expert on varied images of boxes with Tenebrio 
molitor. The labelling process was performed similarly to the first labelling stage described in "Labelling" section 
except that the steps of preparing and adding items to the group of objects were omitted, e.g. areas were not 
divided into smaller fragments in the case of semantic segmentation. A summary of the number of test samples 
is given in Table 1. The numbers have analogous meanings to the training datasets.

Instance segmentation with mask R-CNN. The Mask R-CNN18 model was used for the instance seg-
mentation of objects from the classes: live larvae, pupae, beetles, dead larvae, pests. The Mask R-CNN comple-
ments the Faster R-CNN19, and has a part that is responsible for generating a mask for each detected object. The 
functioning of both the Mask R-CNN and Faster R-CNN is based on the determination of the region of interest 

Figure 4.  Pool-based 2D synthetic image generation method.

Table 1.  Number of objects in the training and test datasets.

Dataset type

No. of objects (ISM) No. of polygons (SSM) No. of segments (LPM)

Live larvae Pupae Beetles Dead larvae Pests Feed Chitin Frass Head Normal Abdomen end

Training 1026 1550 242 809 133 22 6 11 222 1879 225

Test 346 199 68 140 61 42 85 13 36 287 36
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by the Region Proposal Network (RPN) that is based on the feature map, which is the output of the convolu-
tional neural network with the selected architecture. Once the region of interest sizes are unified, classification 
and boundary box regression using Fully Connected Layers is performed. The Mask R-CNN model additionally 
makes a mask prediction at this point. The loss minimised during training takes into account the accuracy of the 
described three model predictions, namely classification, bounding box regression, and mask extraction. In this 
study, ResNet-10120 was used as the feature map extractor, which is a common choice of researchers for similar 
 problems21. The following hyperparameters were adopted for Mask-RCNN training: optimizer SGD, learning 
rate 2.5 ∗ 10−4 , iterations 10,000, weights mask_rcnn_R_101_FPN_3x. The research used the Mask R-CNN 
implementation from the Python library  detectron222.

Semantic segmentation with U-net. The U-Net  model23 was used for the semantic segmentation of 
the feed, chitin and frass areas from the images. U-Net has an autoencoder structure that consists of three main 
parts: an encoder, and a decoder with an identical structure and a bottleneck. The autoencoders encode informa-
tion in the bottleneck and then decode it, resulting in the extraction of only the most important patterns from 
the data, as well as the reduction of noise. The dice loss minimised during training the model is based on com-
paring the model output with the ground truth. The values in the model output are scaled to the probabilities 
for the given classes using the softmax activation function. The final performance of the model is influenced by 
the choice of encoder and decoder architecture. For the issues undertaken, the EfficientNet-B024 backbone pre-
trained on  ImageNet25 was chosen due to its efficiency and relatively small size. The following hyperparameters 
were adopted for U-Net training: optimizer Adam, learning rate 10−4 , epochs 40. The study used the U-Net 
implementation from the Python library  segmentation_models26.

Larvae phenotyping. The LPM allows the determination of the basic characteristics of individual larvae 
(length, curvature, mass, division into segments, and their classification ), and also the distribution of larval 
length for the whole population. This section describes the methods used in the LPM. The phenotyping scheme 
for single larvae is shown in Fig. 5.

Length calculation. Determining the length of larvae is not an obvious task due to the need to strictly define this 
dimension. In this research, the larval length was assumed to be the length of a curve going through the center 
of the larva along their largest dimension. To determine the described curve, the skeletonisation  algorithm27 was 
used, along with a correction for boundary conditions, which involved drawing additional pixels at the ends of 
the curve while taking into account the local orientation of the skeleton and mask boundaries. The skeleton for 
an example larva is shown in image b in Fig. 5. By having the skeleton coordinates, the length was calculated 
from the following formula:

Figure 5.  Larvae phenotyping schema: (a) raw image of the larva, (b) skeleton of the larva after skeletonisation, 
(c) orthogonal sections to the skeleton for calculating the volume of the larva, (d) segment boundary points 
marked on the skeleton, (e) segment classification.
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where l(Si+1, Si) - the Euclidean distance between consecutive points of the skeleton Si+1(xi+1, yi+1) and Si(xi , yi) , 
k - the constant enabling the conversion from pixels to millimetres, n - the number of points in the skeleton.

Volume and mass calculation. When calculating the volume of larvae, it was assumed that it can be approxi-
mated by the total volume of a finite number of cylinders, the height li of which is equal to the length of the 
defined skeleton section, and the diameter di is equal to the length of the orthogonal section to the defined skel-
eton section that is contained within the binary mask, as shown in image c in Fig. 5. Once these quantities are 
determined, the value of the larvae volume can be calculated from the formula:

where li - the Euclidean distance between consecutive points of the skeleton, di - the length of the section orthogo-
nal to the considered section on the skeleton, k - the constant enabling the conversion from pixels to millimetres, 
n - the number of points in skeleton, c - the correction coefficient.

The use of correction factor c in the estimation of larval volume is due to the differences occurring between 
the real shape of the larvae and the ideal shape assumed in the study, which is especially affected by the flattening 
of the thorax near the head, and the lack of volume at the joints of the larval segments. Empirically, the value of 
the correction factor was determined to be c = 0.58 . The value of the constant k should always be determined 
individually during calibration using the length calibration standard (the value of the constant k depends on 
the resolution of the camera and the dimensions of the area of interest, e.g. box). A constant k equal to 0.153 
[mm/pixel] was used in this study. For larvae mass calculations, the empirically determined density of mature 
Tenebrio molitor larvae equal to ρ = 1.31± 0.25

g

cm3 was used. The density was measured using a HumiPyc gas 
pycnometer.

Curvature calculation. Another calculated parameter was curvature. By knowing the coordinates of the skel-
eton, the value of curvature at a certain point S(x, y) can be calculated from the formula:

where x and y are coordinates of the skeleton points S(x, y), and x′, y′, x′′, y′′ are 1. and 2. order derivatives for 
a given coordinate.

The curvature of the larvae was calculated for the averaged coordinates of the skeleton points in the defined 
intervals with specific lengths. The final referenced curvature value is equal to the average curvature value at 
the specified points.

Division into segments and their classification. The larvae of Tenebrio molitor were composed of segments. The 
segments contained in the middle were similar and were characterised by a segment ending in the form of a dark 
band orthogonal to the skeleton. This pattern was used in the unsupervised division of the larva into segments.

First, the larvae images were converted from RGB to Lab colour space in order to use the L (lightness) chan-
nel. Afterwards, for each skeleton point, the average pixel intensity value was determined from the L-channel 
based on the closest larvae-forming points and a 255-L pixel intensity chart was generated along the determined 
skeleton. Peaks representing the boundary points of the segments were looked for in the prepared chart. Exam-
ples of boundary points representing peaks in the chart are shown in image d in Fig. 5. Based on the boundary 
points, segments were extracted and classified into head/normal/abdomen end.

To characterise the segments, 25 features were proposed: 12 intensity-related features (mean, skewness, 
kurtosis, entropy for each histogram R, G, B), 6 texture features (Haralick  features9: contrast, dissimilarity, 
homogeneity. energy, correlation, ASM) and 7 shape features (Hu  moments28). The synthetic minority over-
sampling technique (SMOTE)29 was applied before classification due to unbalanced training data. Selection of 
the classification model was done by k-fold cross-validation using a training dataset. Finally, the best model was 
evaluated on an independent test dataset.

A summary of the number of samples in the training and test datasets for the segment classification problem is 
shown in Table 1. The models examined were logistic regression (LogReg), linear discriminant analysis (LDA)30, 
k nearest neighbours (KNN)31, and support vector machines (SVM)10. For the KNN and SVM models, hyperpa-
rameter optimisation was also performed by checking the number of neighbours for the KNN, and the type of 
kernel for the SVM. An example of segment classification is shown in image e in Fig. 5. For feature calculation 
and segment classification, the following Python libraries were used:  Scipy32(intensity-related features), scikit-
image33(Haralick features),  OpenCV34(Hu moments) and scikit-learn35(ML models).

Length distribution estimation. The overlapping of larvae in the box results in the fact that only parts of some 
larvae can be seen in the image. If a larva is occluded, it should not be used to estimate the larval length distribu-
tion. To obtain a reliable histogram of larvae length in the box, only whole larvae from their head to abdomen 
end should be extracted from the image. For this purpose, the results of the segment classification described in 

(1)L = k

n−1
∑

i=1

l(Si+1, Si) = k

n−1
∑

i=1

√

(xi+1 − xi)2 + (yi+1 − yi)2

(2)V = k3c

n−1
∑

i=1

π

4
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"Larvae Phenotyping" section were used. A larva was accepted as proper if the last segments along its skeleton 
represented the head and abdomen end, respectively. Classification of the last segments as “normal” indicated 
overlapping.

Evaluation. Evaluation was performed for the different tasks included in the monitoring system, namely: 
object detection (live larvae, pupae, beetles, dead larvae, pests), semantic segmentation (uneaten feed, chitin, 
frass), the estimation of larval length distribution, and the estimation of larval mass.

Object detection model evaluation. For object detection, the predictions and ground truths are in the form of 
rectangles called bounding boxes, which are described by 4 corner coordinates. Each prediction is also described 
by a confidence score value, which indicates the percentage of confidence in the prediction. Let us assume that 
for a given inference, a set of predictions P = {P1, P2, ..., Pn} with confidence score values C = {C1,C2, ...,Cn} 
were obtained and that the corresponding set of ground truths is G = {G1,G2, ...,Gm} . Moreover, each element 
from set P and G has the same label depending on the class under consideration. For each bounding box Gi , let 
us assign one bounding box Pj for which: (1) the intersection over union IoU

(

Pj ,Gi

)

>= 0.5 , and (2) Pj has the 
highest Cj among the predictions, which satisfies the 1st condition. The number of assignments between G and 
P is the number of True Positive (TP) predictions. Let us call the number of unassigned predictions from set P 
as False Positive (FP), and the number of unassigned ground truths from set G as False Negative (FN). From the 
determined TP, FP, and FN values, the precision and recall metrics can be calculated. Precision PPV (positive 
predictive value) defines the probability that a given prediction is correct, while recall TPR (true positive rate) 
defines the probability that a given ground truth object is detected. The formulas for precision and recall are as 
follows:

In order to characterise a model by a single value, a metric F1 is often used, which is the harmonic mean of 
precision and recall. The F1 metric can be calculated using the formula:

Since most of the predictions with a low confidence score are the source of FP errors, some of them that have a 
value below a certain threshold value Cthresh are removed. On the other hand, too high a value of Cthresh results 
in more FN errors. The optimal value of Ctresh in such a case may be the value that maximises F1. The value of 
F1opt , based on the optimal operating point (threshold value Copt ), and the related metrics PPVopt , TPRopt were 
used to evaluate object detection by the proposed models ( F1obj , PPVobj , TPRobj ). To compare object detection 
models, it is also good practice to use metrics independent of Cthresh . The most commonly used metric that meets 
the threshold independence condition is average precision AP. AP is defined as the area under curve (AUC) 
precision x recall, as represented by the following  formula36:

where pinterp(ri+1) = max p(r̃) , and r̃ : r̃ >= ri+1 , and n - the number of predictions.
The precision-recall chart is formed by the precision and recall values at different values of Cthresh . Before 

calculating the AUC, interpolation of the precision values for the chart points is performed, due to the lack of 
monotonicity (zigzag shape), with the raw precision x recall chart. For each recall value, the interpolated preci-
sion value must be greater than or equal to the precision value for the points with the greater recall value (all 
points to the right of the considered point), as described in the condition under formula 7. Due to the fact that a 
bounding box overlap threshold of 50% ( IoU = 50% ) was assumed, the average precision for detecting objects 
will be designated as AP50.

Semantic segmentation model evaluation. Semantic segmentation is based on determining a label value for 
each pixel. Similar to object detection, the metrics F1opt , PPVopt , TPRopt for the optimal operating point can be 
used. The only difference is that individual pixels ( F1pix , PPVpix , TPRpix ) are considered instead of objects. These 
three metrics were used in the study to evaluate the semantic segmentation models.

Larval segment classification model evaluation. The classification of larval segments was based on the predic-
tion of the head/normal/abdomen end class for each detected segment. Similar to object detection and semantic 
segmentation, the metrics F1seg , PPVseg , TPRseg were used, with each incorrect or correct prediction being asso-
ciated with one segment.

Larval length distribution estimation method evaluation. To validate the methods for estimating larval length 
distribution, independent test datasets were developed for three populations. Approximately 100 live larvae were 

(4)precision = PPV =
TP

TP + FP

(5)recall = TPR =
TP

TP + FN

(6)F1 =
2 ∗ PPV ∗ TPR

PPV + TPR

(7)AP =

n−1
∑

i=1

(ri+1 − ri)pinterp(ri+1)
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selected from each population, and their images were registered. The length of the larvae was determined based 
on the collected images. A normalised histogram htrue was then determined using the true larval lengths. The 
estimated normalised histogram hest was determined from the calculated larval lengths according to the method 
described in "Larvae Phenotyping" section and by using the filtering of occluded larvae, which was described 
in "Larvae Phenotyping" section The formula for the intersection of the histograms was used to determine the 
similarity of the histograms:

where D(htrue , hest) - the intersection between two normalised histograms htrue and hest ( 
∑

htruei = 1 and 
∑

hesti = 1 ), and n - the number of bins.
Additionally, the means ( xtrue , xest ) and standard deviations ( σtrue , σest ) of the obtained distributions were 

compared.

Mass estimation method evaluation. Evaluation of the method for mass estimation consisted of comparing the 
true and estimated mass of the larvae in the box. For this purpose, the following experiment was conducted for 
three different populations. 10 grams of live larvae were added to the box. The total mass of the larvae in the box 
then ranged from 0 to 100 grams. After each procedure of putting larvae into the box, an image was registered. 
Each such image was then input to the developed model for instance segmentation to determine the masks for 
the live larvae. The mass of all the larvae in the box was estimated based on the procedure described in “Volume 
and mass calculation” section.

The squared Pearson correlation coefficient R2 between the true mass mtrue values and the estimated mass 
mest values was used as a quantitative indicator of the estimation quality:

where σmtrue , σmest - standard deviations of mtrue and mest , and cov(mtrue ,mest) - the covariance of mtrue and mest.
Due to significant overlapping of larvae when there are high numbers of larvae in the box, the R2 ratio was 

determined for the initial values of the true larval mass in the box (from 0 to 40 grams). The slope of the line 
a0−40 in the considered interval was used as an additional parameter of the quality of the mass estimation.

Results and discussion
This section contains the evaluation results of the different machine learning models, and also the methods 
used in the proposed modules: ISM, SSM and LPM. The evaluation was performed on test datasets that are 
independent of the training datasets. Samples for the test datasets were labelled on real images of the boxes with 
Tenebrio molitor. A summary of the number of samples in the training and test datasets is presented in Table 1. 
An explanation of the metrics used can be found in "Evaluation" section.

The detection results of the Tenebrio molitor growth stages (live larvae, pupae, beetles) and anomalies (dead 
larvae, pests) for the Mask R-CNN model with the ResNet-101 backbone are presented in Table 2 and in Fig. 6.

The proposed instance segmentation model detected growth stages ( F1obj > 0.89 ) and anomalies 
( F1obj > 0.83 ) very efficiently. The density of objects, and their overlapping with each other, did not destruc-
tively affect the model’s performance—both whole objects and their fragments were detected well (samples 2–4 
in Fig. 6 for a high density of live larvae, dead larvae, and pupae, respectively). The robustness of the model to 
dense scenes is due to the proposed 2D synthetic data generation method described in "Pool-based 2D synthetic 
image generation" section, where dense scenes with different types of objects that overlap with accurate pixel 
annotation were simulated. Based on the values of the metrics in Table 2, it can be seen that PPVobj > TPRobj for 
all the considered classes. This results in a fewer number of committed FP errors, which comes at the expense of 
more undetected objects. This choice of operating point is appropriate for anomaly detection, as it reduces the 
number of possible interventions by the farmer. However, anomalies will mostly be detected anyway due to the 
presence of more than one object from the anomaly class in the box (samples 3 and 5 in Fig. 6 for dead larvae 
and pests). Some problems, due to the high cost of non-detection, e.g., detecting the first beetle in the context 
of breeding interruption, require the operating point to be moved to higher recall values. The few errors made 

(8)D(htrue , hest) =

n
∑

i=1

min(htruei , hesti )

(9)R2 = r2mtrue ,mest
=

cov2(mtrue ,mest)

σ 2
mtrue

σ 2
mest

Table 2.  Results of the detection growth stages of Tenebrio molitor (live larvae, pupae, beetles) and anomalies 
(dead larvae, pests) for the Mask R-CNN with the ResNet-101 backbone.

Type AP50 F1obj PPVobj TPRobj

Live larvae (Tenebrio molitor)

Growth-stage

0.915 0.905 0.927 0.884

Pupae (Tenebrio molitor) 0.900 0.893 0.929 0.859

Beetles (Tenebrio molitor) 0.934 0.930 0.984 0.882

Dead larvae (Tenebrio molitor)
Anomaly

0.814 0.858 0.898 0.821

Pests (Alphitobius diaperinus) 0.777 0.835 0.889 0.787
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during inference were mainly: (1) misclassification of object fragments between the live larvae and pupae classes 
(samples 2–3 in Fig. 6), (2) misclassification of object fragments between the dead larvae and beetles classes (sam-
ple 4 in Fig. 6), and (3) undetected object fragments in dense scenes (samples 2–4 in Fig. 6 for the live larvae, dead 
larvae, and pupae classes, respectively). However, these errors do not affect the usefulness of the proposed ISM.

Mask R-CNN, as a representative of an instance segmentation model for detecting different Tenebrio molitor 
growth stages and anomalies, was chosen for this study due to: (1) the ability to further phenotype the detected 
objects based on their binary masks, (2) the need to extract the instances pixel-wise in order to add them to the 
object pool (described in "Pool-based 2D synthetic image generation" section), and (3) the simplicity to analyse 
the prediction and to draw conclusions to further improve the models. Although Mask R-CNN works well in 
the model development stage, the rationale for its use in the final model should be considered by taking into 
account the required functionality of the system. If only counting objects from defined classes is required, an 
object detection model such as  YOLO37 (with significantly less inference time than Mask R-CNN) may be a bet-
ter solution. As part of the study, the Mask R-CNN with the backbone ResNet-101 model and the  YOLOv5x38 
model were also compared in terms of AP50 and inference time for the tile, as shown in Table 3. The GeForce 
RTX 2060 SUPER 8GB (GPU) and AMD Ryzen 7 1700 3GHz (CPU) were used to measure the inference time 
for the Mask R-CNN and YOLO models.

The AP50 values in Table 3 for all the considered classes (except the dead larvae), when comparing the Mask 
R-CNN (ResNet-101) and YOLOv5x models, decreased slightly. Moreover, the inference time decreased about 
three times. Taking into account that the RGB image of the whole box (example shown in Fig. 1) was split into 

Figure 6.  Results of the instance segmentation for live larvae, pupae, beetles, dead larvae, and pests for the 
sample data.

Table 3.  Comparison of object detection AP50 and inference time for the Mask R-CNN and YOLO models.

Model

AP50

Inference time/tileLive larvae Pupae Beetles Dead larvae Pests

Mask R-CNN (ResNet-101) 0.915 0.900 0.934 0.814 0.777 120 ms

YOLOv5x 0.894 0.893 0.921 0.700 0.738 40 ms
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192 standard size tiles before inference, and the fact that the total inference time is notable, use of the YOLOv5x 
model in the final monitoring system can be seen to be appropriate.

The semantic segmentation results for the U-Net model with the EfficientNet-B0 backbone are presented in 
Table 4 and in Fig. 7.

In the case of the semantic segmentation, the achieved values of F1pix > 0.94 for the feed, chitin and frass 
classes demonstrate the ability of the model to efficiently segment the regions that represent the defined classes. 
The SSM was able to cope with both the segmentation of the larger regions of a class, as well as smaller regions, 
e.g., one feed flake, one chitin moult, as can be observed on samples 1–5 in Fig. 7. The most common inference 
errors for the SSM were: (1) mistakes between the feed and frass classes (samples 1 and 5 in Fig. 7) for areas 
without cereal grains, (2) chitin segmentation at the end segments (head, abdomen end) of the live larvae (sample 
5 in Fig. 7), and (3) mistakes in the small areas between objects e.g. larvae (samples 3 and 4 in Fig. 7). For the 
SSM, it is important to note the very fast development process of the model. The proposed labelling method 

Table 4.  Results of the semantic segmentation for the feed, chitin and frass for the U-Net with the 
EfficientNet-B0 backbone.

F1pix PPVpix TPRpix

Feed 0.971 0.969 0.973

Chitin 0.947 0.918 0.977

Frass 0.953 0.963 0.943

Figure 7.  Results of the semantic segmentation of the feed, chitin and frass for the sample data.
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described in "Labelling" section (splitting a larger annotated area into smaller ones and adding them to a pool), 
together with the generation of synthetic samples described in "Pool-based 2D synthetic image generation" 
section, enabled a significant reduction in the model’s development time. Moreover, the model maintained a 
comparable diversity of the samples and an increase in label veracity when compared to the classical labelling of 
the samples for the semantic segmentation.

The classification of larval segments was one of the components of the LPM. Evaluation results on the test 
dataset for larval segment classification for the top three models (LDA, SVM, LogReg) were shown in Table 5. In 
Fig. 8, selected errors made by the classifiers can be analysed. Most of the incorrect predictions are related to the 
classification of segments located before the end segments. By analyzing the characteristics of these mistakes, it is 
easy to eliminate them by treating duplicate head or abdomen end predictions of neighbouring segments as one 
prediction. In Table 5, it can be seen that the proposed prediction processing method taking segment location 
into account significantly increased the examined metrics for all shown models. Considering the averaged metrics 

Table 5.  Results of the classification of the segments of the live larvae into head, normal and abdomen end.

Segment type Model

TPRseg PPVseg F1seg

Raw predictions
Processed 
predictions Raw predictions

Processed 
predictions Raw predictions

Processed 
predictions

Normal

LDA 0.895 0.983 0.988 0.989 0.939 0.986

LogReg 0.930 0.990 0.996 0.996 0.962 0.993

SVM 0.920 0.986 1.000 1.000 0.958 0.993

Head

LDA 0.833 0.833 0.600 0.769 0.698 0.800

LogReg 0.750 0.750 0.692 0.794 0.720 0.771

SVM 0.750 0.750 0.692 0.794 0.720 0.771

Abdomen end

LDA 0.750 0.750 0.551 0.771 0.635 0.760

LogReg 0.806 0.806 0.558 0.725 0.659 0.763

SVM 0.833 0.833 0.536 0.714 0.652 0.769

All (average 
metrics)

LDA 0.826 0.855 0.713 0.843 0.757 0.849

LogReg 0.829 0.849 0.749 0.838 0.780 0.842

SVM 0.834 0.856 0.743 0.836 0.777 0.844

Figure 8.  Charts related to larval phenotyping: (a) comparison of true and estimated larval length distribution 
for a selected population, (b) estimation of larvae mass based on averaged samples, (c) chart of the normalised 
intersection of histograms as a function of the number of non-overlapping larvae used to estimate the larval 
length distribution, (d) segment classification for example larvae using the best proposed model, (e) examples of 
larvae for specific ranges of curvature values, (f) comparison of curvature for live and dead larvae.
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after prediction processing, the best model for segment classification was LDA, which was characterized by 
F1score > 0.75 for each considered class: head/normal/abdomen end. Its usefulness in filtering whole larvae from 
fragments was confirmed by the high intersection values of the larval length histograms ( D(htrue , hest) > 0.8).

The results obtained for the estimation of the larvae length distribution (Table 6 and Chart a in Fig. 8) prove 
that the developed method for determining these quantities is efficient. The high histogram similarity values 
obtained ( D(htrue , hest) > 0.8 ) exceed the requirements for a monitoring system. Taking into account that the 
number of visible larvae in a box can reach 1000, it is necessary to consider the validity of phenotyping all visible 
larvae, which is computationally expensive. To this purpose, a chart was prepared of the normalised intersec-
tion of histograms (relative to the maximum intersection value obtained when using all larvae for estimation) 
as a function of the number of non-overlapping larvae used to estimate the larval length distribution, which is 
shown in Chart c in Fig. 8. This chart shows that adding more larvae (above 45 individuals) to the estimation 
no longer contributes significantly to the histogram intersection, while 45 individuals allows a value of about 
0.9 of the maximum histogram intersection to be achieved, which is definitely an acceptable compromise. From 
Chart a in Fig. 8, it can be observed that histogram mismatches occur mainly in the tails of the distributions: 
(1) the underestimation of the number of longer larvae (right tail) results from the higher probability of such 
larvae being occluded under breeding conditions, while (2) the overestimation of the number of shorter larvae 
(left tail) results from the few errors during segment classification and the fact that occluded larvae are taken for 
estimation. The occurrence of the mentioned problems does not negate the usefulness of the proposed method 
for estimating the larval length distribution for larval growth monitoring during breeding.

The results for the larvae mass estimation problem in Table 6, and Chart b in Fig. 8, confirm that the pro-
posed method for estimating the volume and mass of larvae is appropriate, as indicated by the values of the 
metrics for the range from 0 to 40 grams ( R2

0−40 > 0.99 and |1− a0−40| < 6% ). However, its applicability under 
breeding conditions with high larval overlap is limited. This method can mainly be seen to have potential in 
experiments with relatively small numbers of larvae, e.g. testing new types of feed in laboratory breeding studies, 
when it allows for the non-invasive determination of larval weight gains. A solution for an effective vision-based 
determination of larval weight in the box under real breeding conditions may be a hybrid approach. Using the 
knowledge of the larval length distribution, larval growth stage, and approximate number of individuals per box 
(at the beginning of breeding it is similar for all boxes), a model can be developed to also estimate the mass of 
unseen larvae. Verification of this idea is the next direction of our research.

The proposed curvature parameter may be one of the indicators of larvae health, so it was included in the 
LPM. Images of larvae with different curvature values are shown in Chart e in Fig. 8. The stiffening phenomenon 
(reduction in the value of the curvature parameter) was observed when the larvae die, as shown in Box chart f 
in Fig. 8, which compares the curvature distribution for live and dead larvae. The stiffening phenomenon could 
also be observed in the case of larvae/pupae transformation. Preliminary studies show the potential of the cur-
vature parameter for larval phenotyping, but investigating its usefulness is a topic for further studies based on 
long-term observations.

The obtained evaluation results of the developed modules give attitudes to believe that the proposed system 
can be used in a real scenario. The study proposed four versions of the system usage depending on the needs of 
the user (researcher or breeder), as shown in Table 7. The first (full version) of the system assumes accurate image 
analysis of the entire box (192 tiles in total, which includes additional tiles for reducing edge effect related to the 
difficulty of detecting objects on the edges of a tile) using Mask-RCNN for ISM and U-Net for SSM. Phenotyping 
in the first version includes computation of all proposed features for selected 50 larvae from the box. The second 
version of the system includes the analysis of 25 percent of the box area (without reducing edge effects) using the 
same models as in the first version. Phenotyping in the second version includes computation of the proposed 
geometric features, i.e. length, volume, and curvature, without division into segments, and their classification. The 

Table 6.  Results of estimating the larval length distribution and mass for the three study populations.

Population id xest [mm] σest [mm] xtrue[mm] σtrue[mm] D(htrue , hest ) R2
0−40 a0−40

1 27.4 3.1 27.8 3.3 0.806 0.998 1.02

2 24.6 3.3 25.5 2.6 0.842 0.999 0.95

3 26.5 2.3 26.2 1.9 0.874 0.999 1.04

Table 7.  Computational burden analysis for four versions of the proposed system.

x % of box area

ISM SSM LPM

Total time per box No. of boxes per dayModel Time per box Model Time per box Parameters Time per box

1 100 (192 tiles) Mask R-CNN 30.6 s U-Net 8.7 s Proposed all 186.4 s 225.7 s 380

2 25 (12 tiles) Mask R-CNN 2.0 s U-Net 0.5 s Proposed geometric (length, 
volume, curvature) 52.4 s 54.9 s 1570

3 25 (12 tiles) Mask R-CNN 2.0 s U-Net 0.5 s Basic (area of binary mask) 0.4 s 2.9 s 30,000

4 25 (12 tiles) YOLOv5x 1.1 s U-Net 0.5 s – – 1.6 s 54,000
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third version limits the phenotyping of larvae only to the basic parameter of the binary mask area and the rest of 
the assumptions are the same as in the second version. In the fourth version, larval phenotyping is dispensed with, 
allowing the model to be changed from Mask R-CNN to YOLOv5x in the ISM module. The presented versions 
of the system represent a trade-off between the amount of population information obtained and the inference 
time (the number of boxes that can be analyzed per day) and the rationale of their use depends on the needs of 
the user. Undoubtedly, options 3 and 4 can be considered for use in monitoring large-scale edible insect breeding 
(30,000 and 54,000 analyzed boxes per day). The use of options 1 and 2 should be seen in monitoring smaller 
farms and for laboratory breeding studies. It should also be noted that larval phenotyping is the bottleneck of 
the whole system and future work should focus on increasing the efficiency of the LPM module.

The application of our system in a breeding environment requires the preparation of appropriate hardware 
and software architecture. Potential users of the system should pay attention to the following recommendations: 
(1) computer with GPU (or external server with GPU) enabling fast prediction by proposed ML models, (2) 
periodic automated boxes inspection (frequency depending on requirements, initially once every day or two 
days may be assumed), (3) database containing calculated features for each analyzed box, (4) identification of 
individual boxes with edible insects (e.g. RFID), (5) application (Web, mobile) for the farmer, including reporting 
of anomalies and with the possibility to view historical data (changes of characteristics over time for a specific 
box), (6) additional system to control and optimize the breeding process based on current data.

Conclusions
The developed multipurpose monitoring system for the breeding of Tenebrio molitor based on three modules 
(ISM, SSM and LPM) has great potential for the observation of edible insects in both laboratory breeding studies 
and real breeding conditions. The proposed method for developing multiclass instance and semantic segmenta-
tion models based on synthetic image generation and object pools significantly reduced the time of the iterative 
improvement of machine learning models, while also increasing the robustness of the models to problems such 
as dense scenes and the detection of minority class objects. The described method for estimating the length dis-
tribution of larvae in a box enables effective supervision of larval growth during breeding, even when most larvae 
are invisible. The developed larval mass estimation methods can be successfully applied to feeding experiments 
for the non-invasive assessment of mass gains. Future work will include: (1) the improvement of the synthetic 
image generation process and the quality of generated images, (2) the improvement in efficiency (inference time 
reduction) for the larvae phenotyping module, (3) the extension of the larvae phenotyping module to include 
more features for the growth stages of Tenebrio molitor (also for pupae and beetles), (4) the development of a 
module to determine larval activity using temporal data based on optical flow, (5) the long-term observation of 
Tenebrio molitor in order to characterise the change in states (live larvae to dead larvae, live larvae to pupae) 
and behavioural patterns, (6) the association of larval features with symptoms of disease or poor condition, and 
(7) re-identification for individual larvae and beetles.

Data availability
The samples used to develop the ISM, SSM and LPM modules and the generated sample synthetic data are avail-
able from the corresponding author on reasonable request.
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