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Abstract: Traumatic brain injury (TBI) remains a critical global health issue with limited
effective treatments. Traditional care of TBI patients focuses on stabilization and symptom
management without regenerating damaged brain tissue. In this review, we analyze the
current state of treatment of TBI, with focus on novel therapeutic approaches aimed at re-
ducing secondary brain injury and promoting recovery. There are few innovative strategies
that break away from the traditional, biological target-focused treatment approaches. Preci-
sion medicine includes personalized treatments based on biomarkers, genetics, advanced
imaging, and artificial intelligence tools for prognosis and monitoring. Stem cell therapies
are used to repair tissue, regulate immune responses, and support neural regeneration, with
ongoing development in gene-enhanced approaches. Nanomedicine uses nanomaterials
for targeted drug delivery, neuroprotection, and diagnostics by crossing the blood–brain
barrier. Brain–machine interfaces enable brain-device communication to restore lost motor
or neurological functions, while virtual rehabilitation and neuromodulation use virtual
and augmented reality as well as brain stimulation techniques to improve rehabilitation
outcomes. While these approaches show great potential, most are still in development and
require more clinical testing to confirm safety and effectiveness. The future of TBI therapy
looks promising, with innovative strategies likely to transform care.

Keywords: brain injuries; traumatic; brain–machine interfaces; nanomedicine; pluripotent
stem cells; precision medicine; virtual rehabilitation

1. Introduction
Traumatic brain injury (TBI) is one of the leading causes of death and disability world-

wide, with significant social and economic implications. Each year, millions of individuals
suffer from TBI, and many experience long-term impairments, including cognitive dys-
function, motor deficits, and emotional disturbances. Despite advancements in medical
care, the management of TBI remains challenging, and effective treatment options are still
limited. Current clinical approaches primarily focus on stabilizing the patient, preventing
further injury, and alleviating symptoms, but there is no definitive therapy to repair or
regenerate damaged brain tissue. This gap underscores the urgent need for innovative
treatment strategies that can address the underlying pathophysiological processes of TBI
and improve patient outcomes [1,2].

TBI is a complex condition that involves both primary and secondary injuries. The
primary injury occurs at the moment of impact, leading to direct mechanical damage to
brain tissue, blood vessels, and neuronal structures. However, it is the secondary injury pro-
cesses that contribute significantly to the long-term consequences of TBI. These processes
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include neuroinflammation, oxidative stress, excitotoxicity, and disrupted blood–brain
barrier integrity. In addition, a significant increase in the presence of “reactive astrocytes”,
which serve as key regulators in both tissue damage and potential repair, was described.
Understanding the intricate molecular interactions following a TBI, involving neurons,
glial cells, and vascular networks, is crucial for managing the injury and its consequences.
As a result, secondary injury can lead to progressive neuronal death, exacerbating func-
tional deficits. The complexity of these mechanisms makes TBI difficult to treat, and
current therapies, such as surgical interventions or pharmacological agents, are often only
partially effective [3].

In recent years, there has been an increasing focus on novel experimental approaches
aimed at mitigating secondary brain injury and promoting recovery. These strategies
target various aspects of the injury process, from protecting neurons to stimulating tissue
regeneration. Among the most promising approaches are neuroprotective agents that seek
to limit cellular damage and preserve brain function. Additionally, stem cell therapies hold
great promise, offering the potential to repair damaged tissue, regenerate neurons, and
restore lost functions. Gene therapies, another innovative strategy, aim to modify cellular
processes at the genetic level to promote healing and regeneration. Biomaterial-based
interventions, such as scaffolds and hydrogels, are also being explored to provide structural
support and guide tissue repair [4,5].

Emerging technologies are further expanding the therapeutic landscape for TBI. Nan-
otechnology, for instance, offers the ability to deliver targeted treatments at the cellular
or molecular level, improving drug delivery and reducing side effects [6]. Brain–machine
interfaces are being investigated for their potential to restore lost neurological functions
through direct interaction with the brain. Additionally, the field of precision medicine
holds great promise for tailoring treatment plans based on individual patient characteristics,
enhancing the effectiveness of interventions [1,7,8].

Despite the exciting potential of these novel therapies, they are still in the experimental
stage. The preclinical studies and experimental models, including animal models and
in vitro systems, have provided valuable insights into the mechanisms underlying TBI
and its recovery. However, clinical translation remains a significant hurdle, with many
therapies yet to demonstrate their safety and efficacy in human trials.

This review aims to explore the current experimental approaches to TBI treatment,
focusing on novel therapies that have the potential to transform clinical practice. We will
discuss the mechanisms of TBI, the strategies under investigation, and the challenges
faced in developing effective treatments. By synthesizing the latest research, we aim to
provide a comprehensive overview of the future possibilities for treating TBI and improving
outcomes for patients worldwide.

2. The Role of Precision Medicine in the Traumatic Brain
Injury Management

Despite significant advances in acute care, TBI remains a highly heterogeneous condi-
tion with unpredictable long-term outcomes. Traditional approaches to TBI management
rely on generalized treatment guidelines that fail to account for individual variability in
injury mechanisms, underlying pathophysiology, and patient-specific factors, such as ge-
netics, comorbidities, and biomarker profiles. Precision medicine seeks to address this gap
by leveraging an individualized approach that integrates molecular biomarkers, advanced
neuroimaging, and machine learning (ML) techniques to tailor diagnosis, prognosis, and
treatment to the unique characteristics of each patient [1,7].

One of the cornerstones of precision medicine in TBI management is the identification
of reliable biomarkers that provide objective measures of injury severity, guide therapeutic
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decision-making, and predict long-term outcomes. Several biomarkers have emerged as
potential candidates, including glial fibrillary acidic protein (GFAP), ubiquitin carboxyl-
terminal hydrolase L1 (UCH-L1), neurofilament light chain (NfL), S100 calcium-binding
protein B, and tau proteins [1,9]. GFAP and UCH-L1, for instance, have been shown to
correlate with the presence of intracranial injuries on computed tomography (CT) scans and
are currently included in U.S. Food and Drug Administration (FDA) approved diagnostic
assays, such as the Banyan Brain Trauma Indicator [10–12]. Similarly, elevated levels
of NfL have been associated with axonal injury and poor functional recovery, while tau
proteins serve as potential indicators of neurodegeneration, particularly in repetitive head
trauma cases [13,14]. The integration of these biomarkers into clinical practice offers a
non-invasive means of risk stratification, enabling clinicians to tailor treatment strategies
based on molecular profiles rather than relying solely on conventional imaging and clinical
assessment tools.

Beyond biomarkers, genetic polymorphisms have been identified as key determinants
of TBI susceptibility and recovery trajectories [7]. Among these, the apolipoprotein E
(APOE) ε4 allele has been extensively studied for its role in modulating neuroinflammatory
responses, blood–brain barrier integrity, and cognitive resilience following brain injury [15].
Carriers of the APOE ε4 allele have been shown to exhibit poorer recovery outcomes,
increased risk of post-traumatic neurodegeneration, and higher susceptibility to chronic
traumatic encephalopathy (CTE) compared to non-carriers [16,17]. Other genetic factors,
including polymorphisms in brain-derived neurotrophic factor (BDNF) and tau genes, have
also been implicated in differential recovery patterns following TBI [7]. These findings
underscore the need for genotype-driven therapeutic strategies, such as targeted neuro-
protective agents or individualized rehabilitation protocols, that align with the patient’s
genetic predisposition.

Genome-wide association studies continue to refine genetic risk profiling by iden-
tifying loci linked to differential recovery trajectories, though challenges remain in stan-
dardizing phenotype definitions and controlling for the heterogeneity of injury mecha-
nisms. Epigenomic alterations, including DNA methylation, histone modifications, and
microRNA regulation, play a crucial role in modulating gene expression after TBI, influenc-
ing neuroplasticity, neuroinflammation, and secondary injury cascades. These dynamic,
environment-sensitive modifications highlight the potential for epigenetic therapies but
also introduce complexities in identifying stable biomarkers for clinical translation. Tran-
scriptomic analyses provide further insight into injury-induced shifts in RNA expression,
revealing dysregulated inflammatory and metabolic pathways that may serve as ther-
apeutic targets. Notably, gene expression changes in peripheral leukocytes (OR11H1
and OR4M1) have shown promise as surrogate markers of brain injury severity and
prognosis, offering a minimally invasive alternative to direct brain tissue analysis [18].
Standardizing data collection across multi-center studies and integrating multi-omics ap-
proaches will be critical for translating these findings into precision medicine strategies for
TBI management [1].

Another key aspect of precision medicine in TBI management is the advancement of
neuroimaging modalities that allow for a more refined assessment of brain injury. Conven-
tional imaging techniques, such as CT and standard magnetic resonance imaging (MRI),
have limitations in detecting subtle structural and functional changes, particularly in cases
of mild TBI (mTBI) [1]. Emerging imaging techniques, including diffusion tensor imaging
(DTI), susceptibility-weighted imaging, and functional MRI (fMRI), have demonstrated
superior sensitivity in identifying microstructural abnormalities, axonal injury, and altered
brain connectivity patterns that are often missed by traditional scans [19]. DTI, for example,
provides insights into white matter integrity by measuring fractional anisotropy, which is
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crucial in detecting diffuse axonal injury—a hallmark of TBI that strongly correlates with
long-term cognitive impairment. Similarly, fMRI has been used to assess functional connec-
tivity disruptions in TBI patients, providing a potential tool for predicting neurocognitive
outcomes and guiding rehabilitation strategies [19,20].

The integration of ML and artificial intelligence (AI) into TBI management has further
enhanced the potential of precision medicine [20]. ML algorithms have been applied to
neuroimaging data to automate lesion segmentation, quantify hematoma volumes, and
predict long-term outcomes based on imaging-derived biomarkers [20,21]. AI-powered
models have also been developed to analyze multimodal clinical data, including patient
demographics, lab results, neurophysiological parameters, and imaging findings, to gener-
ate individualized prognostic predictions [22]. For instance, convolutional neural networks
have shown promising results in detecting intracranial hemorrhages on CT scans with
accuracy comparable to expert radiologists [23]. Moreover, predictive analytics using artifi-
cial intelligence (AI) has been employed to assess risk factors for secondary brain injury,
enabling early intervention strategies to mitigate long-term complications.

Multimodal neuromonitoring represents another critical advancement in precision TBI
management. Traditional approaches to intracranial pressure (ICP) monitoring have been
supplemented by real-time assessments of cerebral autoregulation, brain tissue oxygena-
tion (PbtO2), and metabolic changes using micro-dialysis [24]. These techniques provide
a more comprehensive understanding of the pathophysiological mechanisms underlying
secondary injury processes, allowing for individualized therapeutic adjustments. For exam-
ple, personalized ICP thresholds based on pressure reactivity index monitoring have been
proposed to optimize cerebral perfusion pressure management and improve outcomes in
severe TBI patients [25]. Additionally, micro-dialysis-based monitoring of lactate/pyruvate
ratios and glucose metabolism has been explored as a means of guiding neuroprotective
strategies [26].

Despite these promising advancements, several challenges remain in translating preci-
sion medicine into routine clinical practice. One of the primary barriers is the standardiza-
tion and validation of biomarker assays, neuroimaging protocols, and AI-based predictive
models across diverse patient populations. Large-scale multicenter studies are needed to
establish clinically relevant thresholds for biomarker interpretation and to refine ML algo-
rithms for real-world applicability. Ethical considerations related to genetic testing, data
privacy, and AI-driven decision-making also warrant careful attention to ensure equitable
and responsible implementation.

3. Cell-Based Therapies for the Treatment of Traumatic Brain Injury:
Neuroprotective and Regenerative Potential of Stem and
Progenitor Cells

Cell transplantation therapies using various stem cell types have garnered significant
attention as a promising treatment for TBI, offering potential benefits, such as neural
repair, reduced inflammation, and improved functional recovery (Table 1). In addition to
their therapeutic potential, stem cells can also be employed to investigate fundamental
pathological processes, advancing our understanding of the mechanisms underlying TBI.

Stem cells are distinctive cells capable of self-renewal and differentiating into various
specialized cell types, highlighting their multipotent nature. Initially, these cells can modu-
late the neural microenvironment, deposit extracellular matrix and release neurotrophic
factors (BDNF, glial cell line-derived neurotrophic factor, insulin-like growth factor 1)
that support the repair of damaged neurons [27]. Moreover, it has been shown that the
stem cell-derived secretome, encompassing both diffusible molecules and extracellular
vesicles, modulates the inflammatory response following TBI, thereby contributing to a
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more favorable immune environment that supports tissue repair [28]. Over time, they can
promote nerve tissue regeneration by differentiating or transdifferentiating into mature
neural cells [29,30]. Several cell types have been explored for post-TBI therapy, including
neural stem cells (NSCs) from both adult and embryonic sources, induced pluripotent
stem cells (iPSCs), and mesenchymal stem cells (MSCs) derived from adipose tissue, bone
marrow, and umbilical cord [31].

Table 1. Selected recent preclinical studies on stem cells used to improve and investigate traumatic
brain injury outcomes.

Type of Stem Cells Main Results Reference

Amnion-derived neural stem-like
cells (AM-NSCs)

AM-NSC transplantation significantly improved
neurological function and brain tissue morphology in a
rat TBI model compared to AMSC and Matrigel controls.
Effect was associated with enhanced expression of
neurotrophic factors, despite low graft survival and
minimal differentiation into neural-like cells.

[30]

Embryonic stem cell (ESC)-derived NSCs

Transplantation of human ESC-derived NSCs into
immunodeficient TBI rats led to long-term cognitive
improvement (≥2 months), particularly in
hippocampal-dependent spatial memory, despite no
change in lesion volume. Surviving NSCs (9–25%)
differentiated into neurons, astrocytes, and
oligodendrocytes, and cognitive recovery correlated with
increased host hippocampal neuron survival.

[32]

Induced pluripotent stem cells
(iPSC)-derived neurons

Mild stretch injury modeling mild TBI in human
iPSC-derived neurons triggered amyloidogenic
processing of APP, disrupting axonal transport and
leading to accumulation of amyloid-related components
associated with Alzheimer’s disease. Pharmacological
inhibition of APP cleavage, as well as expression of the
Alzheimer’s disease-protective A673T variant, prevented
these stretch-induced transport defects, suggesting a
potential strategy to reduce Alzheimer’s disease risk
following mTBI.

[33]

Neural stem cells (NSCs)

Intracranial transplantation of clinical-grade fetal human
NSCs in athymic rats with penetrating TBI showed no
evidence of tumorigenicity or oncogenic tissue necrosis
after six months, supporting the safety of human NSC
therapy. Despite robust human NSC engraftment and
predominantly neuronal differentiation of human NSCs
into immature neurons, lesion size remained unchanged
in athymic rats, highlighting a potential role of
thymus-derived immune cells in modulating
post-traumatic inflammation and tissue repair.

[34]

ESC-derived cerebral organoids

Transplantation of 8-week-old human embryonic stem
cell-derived cerebral organoids (hCOs) in a mild TBI
mouse model reduced neuronal death, enhanced
neurogenesis and angiogenesis, and promoted repair of
damaged cortical and hippocampal regions. hCO
treatment improved cognitive function post-injury,
supporting its therapeutic potential for neuronal
dysfunction through cortical reconstruction and
hippocampal neurogenesis.

[35]
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Table 1. Cont.

Type of Stem Cells Main Results Reference

iPSC-derived neural stem/progenitor
cells (NS/PCs)

Genome-edited human iPSC-derived NS/PCs expressing
yCD–UPRT enhanced motor recovery and reduced
secondary brain injury, atrophy, and ventricle
enlargement in a TBI mouse model. The
yCD–UPRT/5-FC system enabled selective ablation of
undifferentiated cells, preventing tumorigenesis while
preserving surrounding neuronal tissue, improving the
safety of iPSC-based therapy.

[36]

NSCs genetically modified to express
human L-myc gene

Intranasally delivered L-myc-expressing human NSC
(LMNSC008) migrated along white matter tracts to both
primary and secondary injury sites in a rat TBI model.
LMNSC008 treatment modulated gene expression by
downregulating inflammatory pathways and microglial
activation, supporting neuroprotection and
tissue regeneration.

[37]

Abbreviations: ADSCs, adipose derived mesenchymal stem cells; AMSC, amnion derived mesenchymal stem
cells; AM-NSC, amnion derived neural stem-like cells; APP, amyloid precursor protein; ESC, embryonic stem
cell; iPCS, induced pluripotent stem cells; MSC, mesenchymal stem cells; mTBI, mild traumatic brain injury;
NSC, neural stem cells; NS/PC, neural stem/progenitor cells; yCD–UPRT, yeast cytosine deaminase-uracil
phosphoribosyl transferase.

MSCs play a crucial role in repairing damaged brain tissue through trophic support
and immune regulation, activating pro-survival signaling pathways, inhibiting apoptosis,
and enhancing neuroplasticity by promoting neurite outgrowth and synaptogenesis, ul-
timately leading to improved structural integrity and behavioral outcomes [38]. Recent
studies indicate that MSCs derived from bone marrow effectively enhance motor recovery
following TBI [39]. Additionally, they have been reported to attenuate injury-induced
excitotoxicity by downregulating the membrane expression of glutamate receptors and
modulating their downstream signaling pathways, a mechanism that may also play a criti-
cal role in mitigating secondary injury processes following TBI [40]. A major limitation of
MSCs is their limited ability to differentiate into stable neural tissue. As a result, functional
recovery relies largely on the secretion of neurotrophic factors during the acute phase
of treatment [41].

In contrast, NSCs have the ability to differentiate into neurons and glial cells, promot-
ing long-term functional recovery by restoring neural structures after brain injury [42,43].
Preclinical studies in TBI animal models have demonstrated that human NSCs can engraft,
survive, and differentiate into neurons, capable of integrating into neural networks. In
addition, they can secrete trophic factors, remyelinate damaged axons, and deposit extra-
cellular matrix scaffolds, all of which contribute to improved neurological recovery and
enhanced cognitive and motor functions [32,44,45]. Clinical trials have examined the poten-
tial of human NSCs derived from fetal cortical brain tissue or the spinal cord for ischemic
stroke treatment [46]. However, their clinical application remains constrained by ethical
considerations surrounding the use of human embryonic tissue, challenges associated with
their procurement, and safety concerns related to the potential for tumorigenesis [31,34].

As a promising alternative, iPSCs potentially overcome ethical and logistical barri-
ers [47]. They are generated in vitro from adult human cells, such as skin fibroblasts or bone
marrow, through reprogramming with specific transcription factors or nuclear transfer [48].
To date, the therapeutic efficacy of these cells in experimental models of brain injury has
been limited. iPSCs often retain epigenetic and transcriptomic signatures from their cell
of origin, which may hinder their full differentiation into the desired cell type [49]. These
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limitations also raise concerns about tumorigenicity, posing significant safety challenges for
iPSC-based regenerative medicine [50,51]. Gene-directed enzyme prodrug therapy offers a
promising strategy to mitigate the risk of tumorigenesis [51]. In a study by Imai et al. [36],
a novel gene therapy for TBI was developed using NS/PCs designed with a safeguard,
i.e., a suicide gene, to eliminate undifferentiated cells after transplantation while preserv-
ing the adjacent neuronal structures. Furthermore, the study demonstrated that NS/PCs
transplantation significantly improved motor function and prevented brain atrophy in a
mouse model of TBI.

Chaves et al. [33] utilized neurons derived from human iPSCs and used a custom-
microfabricated device to replicate the mild stretch which neurons experience during mTBI.
Their findings revealed that mechanical stress induces amyloid precursor protein (APP)
cleavage, triggering amyloid β peptide generation and subsequently disrupting APP axonal
transport. Notably, preventing APP cleavage preserved axonal transport integrity and
prevented aberrant APP accumulation in axons. These findings provide valuable insights
into the mechanisms linking mTBI to Alzheimer’s disease and may contribute to strategies
for mitigating the associated risks.

Clinical translation remains elusive due to the complexities of iPSC generation, high
production costs, and unresolved technical limitations. Moreover, ethical concerns persist
regarding donor consent, the potential misuse of iPSCs in human cloning or germline
modification, and the unknown long-term consequences associated with somatic cell
reprogramming. Most clinical trials investigating stem cell therapies for TBI remain in
early phases, with only a few reporting short-term safety and feasibility. Key challenges
include limited long-term follow-up, lack of data on implantation efficiency and cell
survival, and the need for more sensitive outcome measures to detect meaningful functional
improvements [52].

4. Nanomedicine in Traumatic Brain Injury: The Use of Nanomaterials
for Targeted Drug Delivery, Neuro-Regeneration, and
Tissue Engineering

The complexity and heterogenicity of post-TBI pathological processes have posed
significant challenges to developing effective disease-modifying therapies. In recent years,
nanotechnology has been placed in the focus as an innovative neuroprotective TBI treat-
ment [6,53]. There are various modalities of the use of nanomaterials after TBI (Table 2),
as these materials can be used as carriers for small [54,55] and large molecules [56–61],
chemicals [62–65], coding and non-coding nucleic acid molecules [66–70], gasses [71],
drugs [72–77] and stem cells [70]. Furthermore, nanomaterials can be used as scaffolds
to improve CNS regeneration [78,79], or as sealants to avoid tissue constriction [80]. Cer-
tain nanomaterials, i.e., exosomes, have experimentally showed intrinsic effect [66,81–86].
Nanomaterials can also be used in diagnostics as detectors of serum markers [87,88], or to
facilitate imaging [86,89–92].

Table 2. Nanomaterials in traumatic brain injury models and their functions.

Function/Use Type References

Carriers

Small molecules [54,55]
Large molecules [56–61]

Chemicals [62–65]
Coding and non-coding [66–70]
Nucleic acid molecules [71]

Gasses data [72–77]
Drugs [70]

Stem cells [78,79]
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Table 2. Cont.

Function/Use Type References

Scaffold [80]

Sealant [66,81–86]

Intrinsic effect [87,88]

Diagnostics Serum markers’ detection [86,89–92]
Imaging [54,55]

4.1. Use of Nanomaterials for Targeted Drug Delivery

Nanomaterial morphology plays a critical role in pharmacokinetic behavior and
blood–brain barrier penetration and it is identified as a key parameter in the design of CNS-
targeted drug delivery systems [93]. Comparing to ordinary drugs, nanomaterial absorp-
tion varies significantly [6] and highly depends on the administration route, as intravenous
delivery allows direct entry into systemic circulation, while subcutaneous or intramuscular
routes involve lymphatic transit before bloodstream entry. A critical requirement for a
nanomedicine targeting brain after TBI is the ability to cross the blood–brain barrier (BBB),
which is generally more permeable following injuries of varying severity [94]. For instance,
numerous proteins have demonstrated a significant therapeutic potential for the treatment
of complex neurological disorders such as TBI. A study by Waggoner et al. [69], showed
that BDNF loaded onto biodegradable porous silicon nanoparticles enhances BBB penetra-
tion and significantly reduces lesion volume. Tailoring nanomaterial properties offers a
promising strategy to overcome the pharmacokinetic limitations of traditional drugs and
offers improvement in targeted drug delivery to injured brain regions. Before nanomate-
rial application, studies on size-dependent biodistribution, BBB penetration stability and
microenvironment responsiveness should be examined. Nevertheless, critical challenges
remain in optimizing biocompatibility, systemic clearance, and long-term safety profiles [6].

4.2. Nanoparticles: Polymeric and Metallic Nanoparticles and Nanogels

Nanoparticles (NPs) are drug delivery nanomaterials with high specificity to the target
organ and rapid diffusion properties, with sizes less than 500 nm [6,95]. Polymeric NPs pri-
mary interact with immune and vascular cells, modifying the brain’s environment, and are
often used as drug carriers in TBI [6], but also after spinal cord injury [96]. Most studies on
polymeric NPs are focused on acute consequences, with promising results in neuroprotec-
tion and behavioral outcomes. Their potential impact in chronic TBI remains uncertain [97].
Attachment of polymers or functional groups on NPs’ surface, known as functionaliza-
tion [96] (Table 3), greatly improves polymeric NP functions. Frequently used degradable
polyesters are preferred due to their broad availability and prior approval [97], while conju-
gation of poly (ethylene) glycol is often applied in order to prolong NPs’ systemic circulation
time by minimizing the absorption by the reticuloendothelial system [68,69]. Recent studies
emphasize the potential of functionalized NPs for optimizing the delivery of therapeutic
agents, including drugs, MSCs, and small interfering RNAs (siRNAs) [57,68,70,75]. These
advancements enhance neural function, mitigate oxidative stress, exert anti-inflammatory
effects, and ultimately improve neurological outcomes [55,60,79,98].

Nanogels are three-dimensional hydrogel structures formed by a crosslinked poly-
mer mesh that can absorb water while staying insoluble. By addition of different ac-
tive components, nanogel properties—e.g., size, shape, charge, porosity, flexibility and
biodegradability—can be altered [99]. Nanogels can serve as a drug carriers for anti-
inflammatory drugs [74,76], growth factors [61] and stem cells [70], and improve volume
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lesion site. The use of hydrophobic methacrylate gelatin nanogel as a sealant for structural
support has shown a great potential in nervous system recovery [80].

Metallic NPs have attracted a significant interest due to their potential in visualization
techniques, i.e., tracking stem cells [92]. They have demonstrated the ability to navigate
through tissues more effectively than polymeric nanoparticles [97]. For example, cerium
oxide metallic NPs, used as drug carriers, show antioxidant properties and improved
recovery in experimental animals [63]. Furthermore, gold NPs can be used for detection of
ultralow concentrations of serum biomarkers [87,88].

Table 3. Selected recent studies on nanomaterials used to improve traumatic brain injury outcomes.

Nanomaterial Surface Functionalization Main Results Reference

Polymeric nanoparticles
(NP)

Poly (butyl cyanoacrylate)
(PBCA)

PBCA NPs effectively deliver large
molecules, such as HRP or EGFP, across

the BBB 4 h post-TBI.
[57]

PBCA NPs deliver β-NGF factor and
promote the neurite outgrowth and
reduce mortality after TBI in rats.

[54]

Poly (lactic-co-glycolic acid)
(PLGA)

Transplantation of PLGA scaffolds
combined with MSCs/MSC and NGF
enhances neural function and restores

brain tissue structure in after TBI.

[79]

PLGA with SOD1 and CAT reduce
ROS post-TBI. [60]

PLGA based DOPA-NGF microunits
improve neuronal recovery and decrease

neuronal loss, astrocytic and
microglial activation.

[55]

Poly (ethylene) glycol
(PEG)

PEG hydrophilic carbon cluster
ameliorates neuronal loss, oxidative

stress and repairs BBB.
[84]

PEG prolongs RNA NPs’ half-life in
blood in order to knockdown TNF-α

cytokine, increase nanoparticle stability,
reduce of protein adsorption and uptake

by the reticuloendothelial system.

[67]

Xenon-containing microbubbles
functionalized with PEG reduce

BBB disruption.
[71]

PEG-azide modifies clotting cascade in
in vivo response and increases neuronal

survival in TBI rats.
[62]

PLGA–PEG

PLGA-PEG NPs encapsulating
isoliquiritigenin can replicate the effects

of intracranial isoliquiritigenin
administration in lowering serum

COX-2 levels.

[75]

PLGA–polysorbate
(PLGA–PS)

Tau siRNA–loaded PS-NPs silence tau
expression in vivo early and late

after TBI.
[68]
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Table 3. Cont.

Nanomaterial Surface Functionalization Main Results Reference

Metallic NP

Cerium oxide NPs, coated with
6-aminocaproic acid and

polyvinylpyrrolidone, show antioxidant
properties and improve

recovery post-TBI.

[63]

Anti-S100 B labeled gold NPs can be
used to determine concentration of

S100B in human serum.
[87]

Gold NPs in an optical microfiber
interface increase sensitivity of ultralow

concentrations of GFAP in human
serum post-TBI.

[88]

Superparamagnetic iron oxide NPs can
serve as an MRI contrast agent for

labeling MSCs, enabling non-invasive,
real-time in vivo tracking following
intranasal delivery post-TBi in mice.

[92]

Nanogel

PEG hydrogel containing
dexamethasone-conjugated hyaluronic

acid improves motor function, and
reduces lesion volume and inflammation

after mild and moderate TBI.

[74,76]

Hyaluronic acid-based hydrogels based
and gelatin combined with salvianolic

acid B and VEGF, used as sealants,
reduce the lesion volume site.

[61]

Hyaluronic acid hydrogels
encapsulating bone MSCs and nerve

growth factor may enhance
neurotrophic support and mitigate

neuroinflammation, thereby facilitating
neurological recovery and functional

restoration post-TBI in mice.

[70]

Hydrophobic methyl-acrylated gelatin
mitigates TBI-induced mortality,

neurological deficits, and cerebral
edema while modulating iron-related

toxicity via PI3K/PKC-α signaling.

[80]
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Table 3. Cont.

Nanomaterial Surface Functionalization Main Results Reference

Lipid NPs
(LNPs) PEG

LNPs are a promising non-viral gene therapy
platform for treating TBI and PEG-LNPs

prolong blood half-time after
i.v. administration.

[69]

Fluorescently dyed lipid nano droplets can be
used to track nanocarriers in brains of TBI mice

and are able to cross the BBB by endothelial
transcytosis into the penumbra and are later

internalized by neurons.

[90]

A lipoprotein nanocarrier can deliver
cyclosporine A to damaged brain sites,
effectively reducing neuronal damage,

alleviating neuroinflammation, and rescuing
memory deficits post-TBI.

[73]

Liposomes

Baicalein encapsulated in liposomes decreases
brain edema, reduces inflammatory cytokine

serum levels and improves motor
function outcomes.

[65]

Dexamethasone encapsulated in liposomes can
specifically affect the damaged brain,
decreasing lesion size, neuronal loss,

astrogliosis, pro-inflammatory cytokine release,
and microglial activation predominantly in

male mice acutely post-TBI.

[72]

Liposome encapsulated with
20-hydroxyeicosatetraenoic acid inhibitor,

applied i.v., reduces lesion volume, neuronal
degeneration, microglial activation and

ameliorates neurological outcome.

[77]

Delayed application of intranasal liposomes
with anti-inflammatory protein IL-4 preserves
the structural and functional integrity of white
matter via oligodendro-genesis, and facilitates

long-term sensorimotor recovery.

[59]

Liposomes applied i.v. can be used as imaging
agents due to their ability to carry contrast

agent and target inflamed brain area. Empty
liposomes also reduce lesion volume and show

therapeutic effect after experimental TBI
in mice.

[86]

VCAM-1 liposome nanocarrier concentrate in
the brain at higher levels than untargeted IgG

controls after intravenous injection.
[58]

Leukosomes

Leukosomes, applied i.v., serve as effective
imaging agents by delivering contrast agents,
specifically targeting inflamed brain regions.
Additionally, empty liposomes have higher

adherence affinity to lesion blood vessels and
reduce lesion size following experimental TBI

in mice.

[86]
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Table 3. Cont.

Nanomaterial Surface Functionalization Main Results Reference

Exosomes

Exosomes from human platelet concentrates’
supernatants show a strong anti-inflammatory
effect by decreasing GFAP and TNFα mRNA

levels after TBI in mice.

[81]

Exosomes from umbilical cord MSCs enhance
neurological recovery of TBI rats by NF-κB

pathway inhibition.
[85]

Exosomes derived from neural stem cells
preconditioned with IFN-γ supports the

regeneration of damaged neural tissue and
enhances endogenous neurogenesis.

[56]

I.v. application of exosomes from human
umbilical cord MSCs can improve neurological
repair after TBI in rats by inhibiting apoptosis,

promoting neurogenesis and
reducing inflammation.

[66]

Intranasal administration of exosomes from
human adipose-derived stem cells 48 h after
injury alleviates motor and cognitive deficits

following TBI in rats.

[83]

I.v. injected microglial exosomes are absorbed
by injured brain neurons, delivering
miR-124-3p to hippocampal neurons,

mitigating neurodegeneration and
ameliorating cognitive recovery after rmTBI

in mice.

[82]

Carbon dots and
carbon quantum dots

I.v. application of PEG-capped silver indium
selenide-based quantum dots enables precise

hemorrhage diagnostics after TBI in mice.
[89]

I.v. applied carbon dots, functionalized with
herbal medicine, ameliorate neurological

functions and reduce brain edema, neuronal
damage and BBB permeability.

[64]

Fluorescently labeled quantum dots enable
imaging-guided treatment of TBI while

exhibiting antioxidant activity due to uniform
Mn atom distribution.

[91]

Abbreviations: NP, nanoparticles; PBCA, poly (butyl cyanoacrylate); HRP, horseradish peroxidase; EGFP, en-
hanced green fluorescent protein; BBB, blood–brain barrier, TBI, traumatic brain injury; β-NGF, β-nerve growth
factor; PLGA, poly (lactic-co-glycolic acid); MSC, mesenchymal stem cells; NGF, nerve growth factor; SOD1,
superoxide dismutase; CAT, catalase; ROS, reactive oxygen species; DOPA-NGF, 3,4-dihydroxyphenylalanine
nerve growth factor; PEG, poly (ethylene) glycol; TNF-α, tumor necrosis factor alfa; COX-2, cyclooxygenase-2;
PLGA-PS, PLGA-polysorbate; VEGF, vascular endothelial growth factor; PI3K/PKC-α, phosphatidylinositol
3-kinase/protein kinase C alpha; S100B, S100 calcium-binding protein B; GFAP, glial fibrillary acidic protein;
MRI, magnetic resonance imaging; LNPs, lipid nanoparticles; IL-4, interleukin 4; VCAM-1, vascular cell adhesion
protein 1; IFN-γ, interferon gamma; rmTBI, repetitive mild traumatic brain injury; i.v., intravenous injection;
Mn, manganese.

4.3. Lipid Nanoparticles

Lipid nanomaterials are considered highly promising for biological application due to
their non-toxic lipid components, and have gained attention as an effective nanoscale drug
delivery system, particularly in mRNA-based COVID-19 vaccines [100]. Recent studies
highlight the use of lipid NPs for efficient delivery of drugs [73], MSCs, and siRNAs [69],
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enhancing neural function and reducing oxidative stress. Additionally, fluorescently labeled
lipid nano-droplets have been detected in the penumbra of TBI mice, where they were
engulfed by neurons [90].

Liposomes, currently the most commonly used nanocarriers due to their excellent
biocompatibility, biodegradability, and low immunogenicity [101], are spherical nanocar-
riers built from hydrophobic lipid bilayer [6] and, if charged (i.e., with cations), express
higher stability and reduced aggregation capability. They are used in gene therapy, as
they are capable of transporting negatively charged biomolecules, such as DNA, RNA and
oligonucleotides [102].

Leukosomes are proteolipid vesicles that contain phospholipids and membrane pro-
teins derived from leukocytes and are used for drug delivery in the treatment of various
disorders with few available therapeutic options, such as TBI. Functionally, leukosomes
preserve the natural tendency of leukocytes to selectively bind to inflamed blood vessels
in vivo, promoting tissue repair by maintaining structural integrity and limiting neutrophil
infiltration [103]. Biomimetic NPs, such as liposomes and leukosomes, can be designed
to carry a contrast agent that can penetrate into the inflamed brain area after TBI, and be
used as a diagnostic tool [86]. Additionally, empty liposomes and leukosomes show a
therapeutic effect by reducing lesion size, with higher adherence affinity to the lesion blood
vessels in leukosomes than liposomes [86].

4.4. Exosomes

Exosomes are membrane bound vesicles that can encapsulate lipids, proteins, nucleic
acid, messenger RNAs, non-coding RNAs and cytokines needed for normal cell commu-
nication. Exosomes have a great potential for therapeutic purpose [104], specifically in
miRNA transport [105]. For example, exosomes from human platelet concentrates showed
inflammation reduction capacity by lowering GFAP and tumor necrosis factor alfa mRNA
levels [81], while umbilical cord MSC exosomes have enhanced neurological recovery
through inhibition of the NF-κB pathway [85]. Studies have shown that endogenous neuro-
genesis can be stimulated with neuronal stem cell-derived exosomes preconditioned with
interferon gamma [56], while umbilical cord MSC exosomes can stimulate neurogenesis,
inhibit apoptosis and reduce inflammation [66]. Additionally, motor and cognitive function
have been improved after intranasal delivery of adipose-derived stem cell exosomes [83]
and microglia derived exosomes with miR-124-3p that target damaged hippocampal
neurons [82].

4.5. Carbon Dots and Carbon Quantum Dots

Carbon dots and carbon quantum dots are semiconducting NPs [106] used for diag-
nostics, bioimaging and drug delivery purposes [107,108]. For example, intravenous ad-
ministration of PEG-capped silver indium selenide-based quantum dots (QDs) has shown
precise, real-time hemorrhage detection and surgical guidance in mice [89]. Improvement
in imaging-guided treatment, with concomitant antioxidant activity has also been shown
in the use of fluorescently labeled QDs with uniformly distributed manganese atoms [91].
Additionally, application of carbon dots functionalized with herbal medicines enables
improvement in neurological functions, by reducing brain edema, neuronal damage, and
BBB permeability after TBI [64]. Collectively, these nanomaterials combine diagnostic
imaging and therapeutic antioxidant functions, offering promising integrated strategies for
TBI management.
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5. Innovations in Traumatic Brain Injury Rehabilitation: Brain–Machine
Interfaces and Virtual Rehabilitation Interventions

Neurorehabilitation strategies for post-TBI recovery have traditionally been focused
on the biological manipulation of cellular processes and disturbances, with the primary
aim of promoting neuronal repair and neuroregeneration. However, achieving long-term
functional recovery requires the use of alternative and innovative approaches, such as the
construction of brain–machine interfaces (BMIs), also known as brain–computer interfaces
as well as virtual rehabilitation interventions (VRIs) [109,110]. These methods target neu-
roplasticity in an effort to restore motor, cognitive, and psychosocial functions of affected
individuals. Emerging techniques in neurorehabilitation include robotic-assisted therapy
and exoskeletons, virtual reality (VR) and augmented reality (AR) applications, wearable
technologies, and sensor-based systems [111]. In addition to these, neuromodulation is
one of the emerging fields in neurology and psychiatry, but also in neurorehabilitation of
patients with acquired brain injury [112].

5.1. Brain–Machine Interface-Driven Approaches in Traumatic Brain Injury Rehabilitation

BMIs are defined as systems that decode neural signals to enable direct communication
between the brain and an external device [113]. These signals can be obtained through
non-invasive or invasive methods and are then used to control external devices [114].
Neural or brain–machine interfaces use these signals, connected to computers that extract,
interpret, and process the information from the nervous system to generate functional
outputs. In the context of TBI rehabilitation, the functional outputs aim to promote motor
recovery, such as controlling robotic exoskeletons [115–117], or cognitive retraining through
neurofeedback [118].

Main components of BMIs are signal acquisition, signal processing, feature extrac-
tion and translation, and the device output component (Figure 1). The first step in the
process is the signal acquisition, i.e., collection of raw brain signals via sensors, which can
involve non-invasive methods as well as invasive neural implants [114]. Non-invasive
acquisition can be achieved by using electroencephalogram, magnetoencephalogram, or
MRI to capture brain activity without penetrating the skull [119]. Invasive techniques
include implantation of the intracortical electrodes that can record single-unit activity
directly from neurons within brain tissue for the acquisition of high-resolution data [119].
In between these are the partially invasive techniques such as electrocorticography that
measures signals directly from the cortical surface [120]. The next step is the preprocessing
of the acquired raw brain signals, removal of noise and artifacts caused by environmental
factors or physiological interference, and preparation of the obtained information for the
feature extraction (i.e., analyses of the preprocessed signals to identify patterns or spe-
cific signal characteristics) and translation (i.e., translation of the extracted feature into
commands using machine learning algorithms or other computational models) [121]. The
final component, device output, is devised to execute the translated commands through
an external device (e.g., prosthetic limbs, wheelchairs, robotic systems or machines which
enable communication via speech synthesis or text input) [122]. Many BMI systems operate
in a closed-loop format, i.e., the actions of the user generate feedback used for the necessary
system adjustments [123,124].

In TBI rehabilitation, BMIs hold significant potential, enabling direct communication
between the brain and external devices. The research summarized in Table 4 demonstrates
the effectiveness of various BMI approaches in TBI patients, offering promising avenues
for improving recovery and restoring lost functions. As research continues, BMIs could
play a crucial role in advancing personalized rehabilitation strategies for TBI.
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Figure 1. Diagram depicting the workflow of a brain–machine interface, comprising sequential
stages: signal acquisition and processing, feature extraction and translation, device output, and
feedback. Abbreviations: PCA, principal component analysis; ICA, independent component analysis;
DSP, digital signal processing; FFT, Fast Fourier Transform; EEG, electroencephalogram; ECoG,
electrocorticogram; MEG, magnetoencephalography; LFP, local field potential.

5.2. Virtual Rehabilitation Interventions in Neurorehabilitation

In neurorehabilitation, VRIs provide an immersive digital environment that uses head-
mounted displays, motion sensors, or haptic feedback to simulate real-world tasks [125].
Key applications of VRIs in TBI patients are in motor skill reacquisition, anxiety reduction
via exposure therapy, and memory enhancement through adaptive scenarios [125–127].
BMIs and VRIs can also be used as hybrid systems through which synchronization of BMI-
derived neural data with VRI visual cues to accelerate skill relearning are combined [128].
Improvement of motor function, the development of cognitive abilities, and the stimulation
of the senses are the main outcomes aimed in the use of VRI-based technologies [129].
VRIs often encompass VR and AR technologies [130]. Although VR and AR differ in
their approach and level of immersion, they have been increasingly introduced as com-
plementary therapeutic approaches in neurorehabilitation, including the treatment of TBI
patients [110,131–140]. Beyond VR and AR, there are other new and emerging technologies
and methodologies, which have been investigated to see if they can enhance rehabilitation
outcomes (Table 4).

Table 4. Overview of immersive and assistive technologies in healthcare and summary of some recent
clinical studies on their role in brain injury rehabilitation.

Technology Type Definition and Key Features Clinical Applications in
Healthcare

Application in Brain
Injury Rehabilitation

Virtual Reality (VR)

Creates a fully immersive digital
environment that replaces the real

world. Users interact with this
environment through headsets,

controllers, and other devices that
track body movements and
provide sensory feedback.

Widely used for motor skill
retraining, cognitive therapy,

and psychological
interventions.

[132,134,135,141–153]
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Table 4. Cont.

Technology Type Definition and Key Features Clinical Applications in
Healthcare

Application in Brain
Injury Rehabilitation

Augmented Reality (AR)

Overlays digital elements—such
as images, videos, or 3D

models—onto the real-world
environment. Enhances reality

without fully replacing it and is
typically accessed through

smartphones, tablets,
or AR glasses.

Particularly useful for
providing real-time guidance

during physical therapy
exercises or offering visual

cues to improve motor
coordination. It has also been
used in cognitive training by
overlaying interactive tasks

onto physical spaces.

[130,137,138,145,154]

Video Capture VR

Uses cameras and software to
track user movements without

requiring physical markers on the
body. The user’s image is
embedded into a virtual

environment, enabling natural
interaction with

animated graphics.

Useful for balance training,
motor skill recovery, and

functional
movement exercises.

[155]

Interactive Video Gaming

Employs commercial gaming
systems or custom-designed
games to engage patients in

therapeutic activities.

Often used for home-based
rehabilitation, providing
accessible and engaging
platforms for motor skill

training, cognitive exercises,
and physical activity.

[156–159]

Tele-Rehabilitation

Uses high-speed networking to
connect patients with therapists
remotely. This enables virtual
therapy sessions and real-time

monitoring of
rehabilitation progress.

Facilitates access to therapy
for patients in remote areas or
those with limited mobility. It

can include virtual
environments combined with

haptic devices, video
conferencing, and data

analytics tools.

[136,160,161]

Behavior Change
Techniques

Integrated into VRIs to promote
behavior modification through

structured interventions, such as
goal setting, adaptability,

feedback mechanisms,
and competition.

Used within VR environments
to enhance motor recovery by
tailoring tasks to individual
needs and providing explicit

feedback on performance.

[162]

Wearable Sensors

Wearable devices equipped with
sensors measure physiological
responses such as movement

patterns, muscle activity, or heart
rate during

rehabilitation exercises.

Provide real-time feedback
and data collection for both

therapists and patients,
enabling personalized

adjustments to
therapy protocols.

[163–165]

Extended Reality (XR)

Encompasses VR, AR, and mixed
reality, offering hybrid

environments that combine
digital elements with the

physical world.

Increasingly used in
rehabilitation to provide

immersive yet contextually
relevant environments for

motor skill training, cognitive
exercises, and social

interaction.

[138,139,166]

Haptic Feedback Devices
Simulate tactile sensations by

applying force or vibrations to the
user’s skin or muscles.

Enhance the realism of virtual
environments by providing
physical feedback during

tasks such as grasping objects
or navigating virtual spaces.

[167,168]
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Table 4. Cont.

Technology Type Definition and Key Features Clinical Applications in
Healthcare

Application in Brain
Injury Rehabilitation

Metaverse-Based
Rehabilitation

Integrates hardware (e.g., XR
devices) and software platforms
(e.g., rendering tools) to create
interconnected virtual spaces

for rehabilitation.

Collaborative therapy
sessions, gamified exercises,
and continuous follow-ups

post-discharge from
clinical care.

[140]

5.3. Application of Neuromodulation Techniques in Brain Injury Recovery

One of the emerging fields in brain injury rehabilitation (but also medicine in general)
is neuromodulation [112]. Neuromodulation technologies use stimulants, such as electricity,
magnetism, sound, and light to modify the activity of neurons, either by exciting, inhibiting,
or synchronizing neural activity, with the goal of enhancing or restoring function in the
nervous system, but without causing damage [169]. Neuromodulation can be achieved by
different approaches, including non-invasive, invasive, and a combined technique (Table 5).
Even though many are still being researched, some have already been adopted into stan-
dard care treatments for various neurological and psychiatric conditions. For example, deep
brain stimulation has been FDA-approved since the late 1990s [170], transcranial magnetic
stimulation is used in major depressive and obsessive–compulsive disorders [171,172], va-
gus nerve stimulation helps patients with drug-resistant epilepsy since 1997 [173,174],
and spinal cord stimulation has been shown to be effective for failed back surgery
syndrome [175], complex regional pain syndrome [176], and diabetic neuropathy [177].
A comprehensive review of neuromodulation techniques explored in TBI rehabilitation
has recently been done by Calderone et al. [112] and Kundu et al. [178]. Though there
are some promising results from these studies, unlike in other neurological conditions
(e.g., Parkinson’s and depression), in TBI patients there are specific safety issues [112].
Namely, as TBI itself can increase the risk of seizures, electrical stimulation can increase this
risk. There is also higher risk of infection from implanted devices. Nevertheless, there are
some new and emerging stimulation technologies that offer better control and specificity in
neuromodulation therapy and that might make neuromodulation techniques a valuable
tool in TBI neurorehabilitation [179].

Table 5. Current and emerging neuromodulation approaches in neurorehabilitation with references
to recent clinical studies of its use in brain injury rehabilitation.

Technique Common Uses in
Neurorehabilitation

Application in Brain
Injury Rehabilitation

Non-Invasive Neuromodulation Techniques

Transcranial Direct
Current Stimulation (tDCS)

Applies low direct current to modulate cortical
excitability. Used in stroke, cognitive rehab,

and depression.
[180–186]

Transcranial Magnetic
Stimulation (TMS/rTMS)

Uses magnetic fields to induce electric currents in
the brain. Can excite or inhibit specific areas.

Repetitive TMS (rTMS) is common in stroke and
depression rehab.

[187–191]

Transcranial Alternating Current
Stimulation (tACS)

Similar to tDCS but uses an alternating current.
Targets neural oscillations
(brain wave frequencies).

[192]
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Table 5. Cont.

Technique Common Uses in
Neurorehabilitation

Application in Brain
Injury Rehabilitation

Transcranial Random Noise
Stimulation (tRNS)

Applies random frequencies of current. Thought
to increase cortical excitability and plasticity. Used

for sensory-motor rehab, cognition.
[193]

Invasive or Semi-Invasive Neuromodulation

Deep Brain Stimulation (DBS)
Surgically implanted electrodes. Often used in

Parkinson’s, dystonia, and other
movement disorders.

[194]

Epidural Cortical
Stimulation

Electrodes placed over the dura (outer brain
covering). Investigated in stroke recovery

and epilepsy.
[195]

Vagus Nerve Stimulation (VNS)
Stimulates the vagus nerve (implanted or

non-invasive versions exist). Used in epilepsy and
increasingly in post-stroke motor recovery.

[196]

Emerging or Combined Techniques

Closed-loop
Neuromodulation

Real-time feedback systems that adjust stimulation
based on brain activity (could be considered a
bridge between neuromodulation and BMIs).

[197]

Paired Associative
Stimulation (PAS)

Combines peripheral nerve stimulation with brain
stimulation to boost synaptic plasticity. Used for

motor learning and post-stroke.
[198]

5.4. Ethical and Regulatory Challenges Facing Brain–Machine Interface and Virtual Rehabilitation
Interventions in Brain Trauma Care

With the emergence of new technologies, which offer promising advancements in
brain trauma care, enabling neural recovery and enhanced functional outcomes, their inte-
gration raises significant ethical and regulatory challenges [199–201]. One major concern is
informed consent, particularly with cognitively impaired patients, making it difficult to en-
sure voluntary and fully understood participation [202]. BMI systems raise unprecedented
concerns about cognitive liberty due to worries of unauthorized use of neural data that
could enable manipulation or discrimination. Additionally, there is the risk of technological
dependency, where patients may become reliant on devices without long-term support or
access, as well as reservations due to the high costs of these treatments that might cause
social disparities and limit access to only certain groups of patients [203]. From a regulatory
perspective, standardization and oversight are usually behind technological innovation
that is also the issue with BMI, VR and similar technologies. Lastly, the long-term effects of
brain-device interaction is still not adequately researched, with unclear long-term cognitive
benefits for TBI. As these technologies advance, ethical frameworks and regulatory bodies
must evolve in parallel to ensure responsible development, just access, and patient-centered
implementation in brain trauma rehabilitation.

6. Conclusions and Future Considerations
In conclusion, the future of TBI therapy looks promising, with a range of innovative

approaches being explored. Pharmacological and neuroprotective strategies, including
multifunctional drugs, offer new avenues for preventing or mitigating damage. Precision
medicine, powered by pharmacogenomics and “omics” technologies, enables more person-
alized and effective treatments. The advancement of cell-based therapies, particularly using
human iPSCs, holds great potential for repairing brain damage at a cellular level. Lastly,
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emerging rehabilitation techniques such as BMIs and VRIs are revolutionizing recovery
methods, offering patients new hope for rehabilitation and quality of life. These diverse
therapies collectively represent a transformative shift in how TBI is treated and managed
in the future.

Another opportunity to consider is the integration of molecular and cellular based
novel treatment models with the recent innovative technological approaches. For example,
combining molecular therapies (e.g., stem cells) with technological delivery systems (e.g.,
biomaterials) enhances tissue repair and functional recovery [204]. Nanoparticles and
nanocarriers address the blood–brain barrier challenge, improving precision for gene
therapy and anti-inflammatory agents [1], and techniques like photo-biomodulation and
VR rehabilitation address chronic inflammation and cognitive deficits, complementing
molecular interventions [204,205]. Structured comparison of innovative approaches in brain
trauma treatment that integrate molecular and technology-based strategies targeting both
primary injuries and secondary cascades is presented in Table 6 in which their mechanisms
and synergies have been highlighted.

Table 6. Proposed innovative approaches in brain trauma treatment that integrate molecular, cellular
and technology-based strategies.

Molecular
Strategies

Technology-Based
Strategies Mechanisms/Applications Key Advancements

Gene Therapy Nanoparticle Delivery Delivering genes to modulate
neuroprotection/regeneration

Nanoparticles cross the
blood–brain barrier, enabling
targeted gene delivery with
reduced immune response

Stem Cell Therapy Biomaterial Scaffolds
Enhancing stem cell survival

and integration via
3D matrices

Hydrogels and nanocarriers
improve stem cell engraftment,

reducing inflammation and
promoting repair

Exosome-based
Therapy Nanocarriers

Transporting exosomes or
drugs to mitigate
oxidative stress

Carbo-genic nanozymes and
engineered exosomes show

efficacy in modulating
neuroinflammation

Precision Medicine Brain–Computer
Interfaces (BCI)

Using biomarkers
(e.g., genomics) to
tailor treatments

BCI enables neurofeedback for
personalized cognitive

rehabilitation, aligning with
biomarker-guided plans

At present, the readiness of these innovative approaches for clinical implementation
varies (Table 7). Nanomaterials have shown promise in preclinical studies, particularly
in crossing the BBB and reducing secondary injury cascades; however, clinical validation
is still lacking [206]. Cell-based therapies, particularly those using bone marrow-derived
MSCs, have demonstrated regenerative and anti-inflammatory effects in early-phase trials,
with therapeutic outcomes influenced by patient age [207]. Currently, biomarker-driven
strategies remain in early development, primarily focusing on genetic subtyping to enable
more personalized interventions [1], while BMI systems are progressing in clinical appli-
cations for motor impairment, whereas VR is still largely exploratory, particularly in the
context of TBI-specific cognitive retraining [208].
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Table 7. Innovative brain trauma treatment approaches and their level of readiness for clinical
implementation.

Treatment Approach Readiness Level Key Findings and Limitations

Nanomaterials for Targeted
Delivery/Neuro-regeneration Preclinical

Nanoparticles demonstrate efficacy in animal
models for targeted drug delivery and

neuroprotection but remain still in
preliminary research phases for TBI. Clinical
translation is limited due to scalability issues

challenges in manufacturing (low
reproducibility, high cost) and safety concerns
(potential off-target accumulation in liver and

lungs) and long-term toxicity
concerns [206,209].

Cell-Based Therapies
(Stem/Progenitor Cells)

Clinical
(Phase I/II Trials)

Autologous bone marrow-derived MSCs
show safety and efficacy in early-stage

clinical trials, with improvements in
consciousness and motor function observed
in subacute TBI patients. Limitations include
donor variability, risk of tumorigenicity, poor

survival/engraftment, and high costs of
autologous cell processing [207,210–213].

Precision Medicine Preclinical/Early Clinical

Genetic risk factors (e.g., APOE, BDNF, Tau
polymorphisms) are under investigation for
patient stratification. No targeted therapies

have reached late-stage clinical trials [7].
Limiting factors are that there are no
TBI-specific biomarkers for patient

stratification, the polygenic nature of TBI, and
the fact that there are no approved therapies
targeting genetic risk factors (e.g., APOE) [1].

Brain–Machine Interfaces (BMI)
and Virtual

Rehabilitation

Clinical
(Pilot Trials)

Implantable BMI systems are in active clinical
trials for restoring communication in patients
with motor impairments (e.g., ALS, stroke).

Virtual rehabilitation lacks TBI-specific
clinical data but is emerging as an adjunct.
Implementation issues are related different

factors: signal drift/noise in chronic BMI use,
limited TBI-specific validation for virtual

rehab protocols, and high costs of BMI
hardware/software [208].

Abbreviations: TBI, traumatic brain injury; MSCs, mesenchymal stem cells; APOE, apolipoprotein E; brain-derived
neurotrophic factor; ALS, amyotrophic lateral sclerosis.

Lastly, this review was intentionally designed as a narrative synthesis to provide a
broad yet focused overview of emerging experimental approaches in TBI, rather than a
systematic evaluation of individual clinical trials. Future systematic reviews, each focused
on specific subtopics covered in this narrative review, will be essential to critically compare
trial designs, methodologies, dosing strategies, adverse events, and clinical outcomes in a
more granular and evidence-weighted manner.
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BMI Brain–machine interfaces
CT Computed tomography
CTE Chronic traumatic encephalopathy
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ML Machine learning
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TBI Traumatic brain injury
VR Virtual reality
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UCH-L1 Ubiquitin carboxyl-terminal hydrolase L1
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