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The impact of green space on nonaccidental and 
cause-specific mortality in the Adventist Health 
Study-2 population
Holly Hreha a,*, Rhonda Spencer-Hwanga, Synnove Knutsena, David Shavlika

Background: There is growing interest in evaluating the long-term health effects of neighborhood environments, particularly green 
space. However, only a limited body of research further incorporates multiple ambient air pollutants.
Methods: This study looked at the relationship between green space, as measured by the Normalized Difference Vegetation Index, 
and mortality adjusted by key confounders in the Adventist Health Study-2, a longitudinal cohort study from 2002 to 2015, across 
the contiguous United States (N = 67,400). We used Cox proportional hazard regression models to assess the risk of nonaccidental, 
cardiovascular disease (CVD), ischemic heart disease (IHD), and respiratory disease mortality from green space around subjects’ 
home address under multiple covariate and pollutant adjustments.
Results: We found a 0.1 unit increase in the Normalized Difference Vegetation Index was associated with nonaccidental (hazard 
ratio [HR]: 0.96 [95% confidence interval (CI): 0.93, 0.99]), CVD (HR: 0.94 [95% CI: 0.90, 0.98]), and IHD (HR: 0.87 [95% CI: 0.81, 
0.94]) mortality, with the greatest precision in fully adjusted three-pollutant models using the 1000-m buffer. Effect estimates were 
strengthened in urban areas, when incorporating seasons, and for females. However, all associations between green space and 
respiratory mortality were null.
Conclusion: This study supports evidence that increased neighborhood green space is inversely associated with nonaccidental, 
CVD, and IHD mortality, where the inclusion of multiple environmental covariates had a greater impact on effect estimate magnitude 
and precision than adjustment by individual lifestyle and health factors.
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Introduction
There is growing evidence that increasing neighborhood-level 
green space can reduce mortality risk, with the Normalized 
Difference Vegetation Index (NDVI) serving as a popular 
method of estimating green space exposure.1–7 The mechanism 
behind the health benefits of surrounding greenery is thought 
to be multifactorial and summarized by Markevych et al8 as 
relating to its ability to reduce other harmful exposures and 
restore and promote healthy activities, in support of both 
mental and physical health. Such effects manifest through 
interactions with other environmental determinants of health, 
such as air pollutants,9–11 temperature,12,13 and noise,14 as well 
as through individual determinants of health, including phys-
ical activity,15 social cohesion,16 mental health,15 and sleep.17 

The connection between green space and ambient air pollu-
tion is of particular interest. Air pollution has been widely 
studied for its harmful effects on human health.18 While green 
space has been associated with reduced mortality regardless 
of ambient PM2.5 concentrations,3 more recent literature sug-
gests that the higher mortality associated with ambient PM2.5 
may only exist in areas of low greenness.10 Others have found 
inverse correlations between green space and ambient air 
pollution,1,19 as well as looked at air pollutants as a media-
tor,3,5,19,20 such that the beneficial effects of green space are 
through reducing harmful air pollutants. Despite these noted 
interactions, of the multitude of studies that looked at the 
NDVI with nonaccidental,1–6,11,19–24 cardiovascular disease 
(CVD),2,5,11,19–24 ischemic heart disease (IHD),2,3,5,19,20 and 
respiratory disease2,3,5,6,11,19–24 mortality, only one adjusted for 
PM2.5, NO2, and O3, simultaneously,2 where most either did 
not include any air pollutants or adjusted for a single pollut-
ant at a time.

Surrounding green space and ambient air pollution can also 
change over time. However, when assigning NDVI exposure, few 
studies incorporated time-dependent methodologies,1,3,4,23 and to 

What this study adds:
This research expands upon the relationship between green 
space and cause-specific mortality risk. While many results were 
in line with previously published work, the strengthening of 
estimate precision and magnitude after simultaneously adjust-
ing for multiple air pollutants supports greater exploration 
into multienvironmental models. In addition, our null findings 
between green space and respiratory mortality and the observed 
effect modification suggest that there may be more nuanced 
environmental and disease characteristics needed to understand 
this relationship. Overall, we believe this research provides new 
insight into improving methods for studying the association 
between green space and health.
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our knowledge, none did so with a time-changing window that 
moved across the entire follow-up period. For these reasons, this 
study sought to quantify the relationship between green space 
and mortality and the confounding effect of multiple ambient 
air pollutants, across the contiguous United States (U.S.), using a 
moving exposure window that was updated for each age risk set.

Methods

Study population

Our study included data from the Adventist Health Study-2 
(AHS-2), a prospective longitudinal cohort study of members 
of the Seventh Day Adventist church, with participants located 
across the United States and Canada (N = 96,194).25 Enrollment 

occurred between 2002 and 2007 with a detailed and validated 
questionnaire that included many factors related to lifestyle, 
health, and demographics, described in detail, previously.25

We included AHS-2 participants with nonmissing data on sex 
and year of birth with a valid address in the contiguous U.S. 
at baseline (Figure 1). Participants residing in Canada, Alaska, 
and Hawaii were excluded because environmental data did not 
incorporate these regions. Subjects internally flagged for exces-
sive missing questionnaire responses or with a body mass index 
(BMI) <14 or >60 were also excluded, leaving 90,171 subjects 
in the available baseline sample. All other variables in the model 
with missing data were addressed with multiple imputations 
using the MICE function in R, version 4.2.1 (The R Foundation, 
Vienna, Austria).26 Key dietary variables were assisted with a 
guided multiple imputation process.27 We ran three separate 

Figure 1. Flowchart depicting AHS-2 subject exclusions for study sample selection.
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imputation models, one for each NDVI buffer region, with 10 
imputations each.

Subjects were tracked for address changes and mortality from 
the date they entered the study to 31 December 2015. Address 
updates included the location and date of recording, to optimize 
matching exposures in space and time. All recorded addresses 
were geocoded using ArcGIS Pro 2.7 (ESRI, Redlands, CA)28 
and merged with spatial and environmental exposures.

After imputations, we further excluded those with pre- 
existing cancer, CVD, and respiratory diseases available from the 
AHS-2 baseline questionnaire. Pre-existing CVD included prior 
stroke, transient ischemic attack, myocardial infarction, conges-
tive heart failure, angina, or having had any of the following 
surgeries: coronary bypass, stent, or carotid artery surgery. Pre-
existing respiratory diseases were defined as chronic bronchitis 
or emphysema. All pre-existing conditions were self-reported.

This study was a secondary analysis using existing AHS-2 
data with no additional participant contact. Subjects provided 
written and informed consent at enrollment. This research was 
approved by the Loma Linda University Institutional Review 
Board.

Outcomes

Outcomes were defined by the International Classification 
of Diseases and Related Health Problems (ICD-10) listed as 
the underlying cause of mortality on death records from the 
National Death Index. We looked at the relationship between 
green space and nonaccidental (ICD-10: A00–R99), CVD (ICD-
10: I00–I99), IHD (ICD-10: I20–I25), and respiratory disease 
(ICD-10: J00–J99) mortality.

Environmental exposures

Exposure to green space was measured through the NDVI, 
using satellites, which calculate the reflectiveness of visible and 
near-infrared light off the surface of the Earth.29 While the NDVI 
ranges from −1 to 1, this study only used land-based estimates 
spanning zero to one (low to high vegetation, respectively), 
excluding negative water-based values.29

We used NDVI data from the National Aeronautics and 
Space Administration’s (NASA) Moderate Resolution Imaging 
Spectrometer (MODIS) Terra and Aqua satellites that were pro-
cessed using NASA’s Stennis Time Series Product Tool.30 Data 
were collected at a 250-m resolution and averaged for every 8 
days across the contiguous U.S.30 We aggregated raster files into 
meteorological seasonal averages from 2001 to 2015 and used 
the focal statistics tool in ArcGIS Desktop 10.8 (ESRI, Redlands, 
CA)31 to recalculate cells to the average within a 250, 500, and 
1000-m radius. All AHS-2 addresses were assigned a respective 
250, 500, and 1000-m NDVI average (buffer zone) from these 
focal statistics grids, for each season across follow-up. Subjects 
were then assigned a time-changing average NDVI based on 
the preceding four seasons, with exposures updated based on 
a quarterly unit change for each age risk set in the survival 
model. For example, an event in the Summer of 2008 would be 
assigned an average of the Summer and Fall of 2007 and Winter 
and Spring of 2008, while nonevents were assigned the average 
of the preceding four-quarters relative to their exposure at the 
same age as the event.

Ambient air pollution data also spanned the follow-up period 
and included annual estimates of fine particulate matter (PM2.5), 
nitrogen dioxide (NO2), and tropospheric ozone (O3) by Census 
Block centroids across the contiguous U.S. Air pollution esti-
mates were created by Kim et al32 via Integrated Empirical 
Geographic regression models. PM2.5 and NO2 annual estimates 
were averaged from daily 24-hour pollutant concentrations, 
while O3 annual estimates were averaged from a moving 8-hour 
daily maximum concentration between the warmer months of 

the year (May–September).32 Pollutant exposure was assigned to 
AHS-2 participants based on the nearest Census Block centroid 
to each subject’s home address from 2001 to 2015. Annual air 
pollution estimates were weighted to mimic the seasonal changes 
within NDVI data and exposures were assigned for each age risk 
set based on a similar moving four-quarter average.

Addresses were merged with environmental predictors using 
ArcGIS Desktop 10.8,31 which were further collapsed into mov-
ing seasonal averages using both R, version 4.2.126 and SAS/
STAT software, version 9.4 (SAS Institution, Cary, NC).33

Covariates

We adjusted for many self-reported individual-level covariates 
obtained from AHS-2 questionnaire data, as well as exter-
nal spatial covariates, based on participants’ home address. 
Covariate data was selected a priori, and all variables were kept 
regardless of individual significance.

Person-level demographic data included sex (male/female), 
race (White, Black, other), marital status (currently married 
including common law marriages, and not currently married), 
educational attainment (≤high school diploma, some college/
trade school/associates degree, and ≥bachelor’s degree), born in 
the United States or Canada (yes/no), and household income 
(≤$30,000, $31,000–$50,000, $51,000–$100,000, >$100,000). 
Lifestyle variables included: frequency of consuming red/pro-
cessed meat (never to <monthly, ≥once a month but <weekly, 
1–2 per week, and ≥3 per week) and tree nuts (<weekly, 1–2 per 
week, 3–6 per week, and ≥daily),34,35 current alcohol consump-
tion (beer/liquor and wine; <monthly/never and ≥monthly), fre-
quency of vigorous exercise (never, ≤1 per week, 2–3 per week, 
and ≥4 per week), and smoking status (never, past, current). Red 
and processed meats included: beef, lamb, pork, ground beef, 
other processed red meats, and processed poultry. Tree nuts 
included: almonds, walnuts, and cashews.

We also included additional spatial and temporal data: 
5-year 2006–2010 census-tract median household income and 
median home value, 2010 rural/urban classifications,36 and the 
year subjects entered the study (2002–2003, 2004–2005, and 
2006–2007). These spatial estimates were based on the subjects’ 
baseline address. Urban status was defined as urban (popula-
tion ≥50,000), urban cluster (population 2,500–49,999), and 
rural (population <2,500).37 Additional effect modification 
analyses incorporated meteorological season of event (another 
time-changing estimate quantifying a seasonal age risk set) and 
baseline region of the United States, based on the four National 
Weather Service Regions: West, Central, South, and East.38

Covariates related to health and medication use included 
BMI, being treated for diabetes within the past year, ever diag-
nosed with high blood pressure or cholesterol, and took aspi-
rin, blood pressure, or cholesterol-lowering medications for 
at least 2 consecutive years in the past 5 years (yes/no vari-
ables). Females were also adjusted for menopause status and 
if hormone replacement therapy (HRT) was used after meno-
pause (premenopause, postmenopause without HRT, and post-
menopause with HRT). Unless otherwise specified, all models 
included the same covariate adjustments, except for respiratory 
mortality models, which were further adjusted by self-reported 
pre-existing asthma (yes/no).

Statistical analysis

We looked at the relationship between green space and mortal-
ity adjusted by key demographic, lifestyle, health, and spatial 
factors using attained age Cox proportional hazard regression 
models with time-changing environmental exposures. We cal-
culated hazard ratios (HRs) from surrounding neighborhood 
green space for nonaccidental, CVD, IHD, and respiratory mor-
tality and compared effect estimates under different covariate 



Hreha et al. • Environmental Epidemiology (2024) 8:e332 Environmental Epidemiology

4

and pollutant adjustments. Models were clustered on baseline 
county. Main analyses were conducted using the 1000-m NDVI 
buffer around the home, with supplemental analyses compar-
ing results from the 250-m and 500-m buffers. Individuals who 
moved outside the contiguous U.S., were lost to follow-up, or 
died during the study were censored at the time of event.

We used restricted cubic splines with four knots placed at 
the 5th, 35th, 65th, and 95th percentiles to model all nonen-
vironmental continuous variables (BMI, census-tract median 
household income, and census-tract median home value). These 
variables were also log-transformed. Due to the complexity of 
time-changing environmental exposures, we tested the linearity 
of the NDVI, PM2.5, NO2, and O3 with restricted cubic splines 
and only maintained the spline term if there was a significant 
difference in the log-likelihood ratio tests between splined and 
linear models. We evaluated the proportional hazards assump-
tion for all variables with time interaction terms, addressing 
nonproportionality by keeping significant interactions in the 
model. There was no evidence of nonlinearity or nonpropor-
tionality in the NDVI.

HRs were reported for a 0.1 unit increase in the NDVI for each 
mortality outcome under different covariate adjustments. We 
also looked at effect modification between the NDVI and urba-
nicity, region of the U.S., and season of event. For nonaccidental 
mortality, we further conducted subgroup analyses that sepa-
rated the population by sex and those who ended the study at 

<80 and ≥80 years of age. Supplemental analyses included effect 
modification between green space and self-reported asthma, 
with and without adjustment by season of event, within respi-
ratory mortality models. Finally, we tested the sensitivity of our 
estimates by expanding the exposure window to 2 years prior to 
the event and adjusting for, rather than excluding, pre-existing 
conditions, for all mortality outcomes. Statistical analyses were 
performed in the SAS/STAT software, version 9.4.33

Results
After excluding key self-reported pre-existing conditions 
related to cancer (n = 12,816), CVD (n = 9,303), and respira-
tory diseases (n = 4,847), there were 67,400 subjects remaining 
in the study sample (Figure 1). Mean follow-up time for study 
participants was 11.3 years, totaling 763,798 person-years. 
Table 1 shows the distribution of key variables within the 
full sample and across NDVI quintiles for the 1000-m buf-
fer. Summary statistics for all other variables are provided in 
eTable 1; http://links.lww.com/EE/A297. Quintile cutoffs for 
the 20th, 40th, 60th, and 80th percentiles were 0.38, 0.47, 
0.54, and 0.61, respectively. The average baseline NDVI expo-
sure for the entire cohort was 0.5 ± 0.1 and ranged from an 
average of 0.3 ± 0.1 in the lowest quintile to 0.7 ± 0.1 in the 
highest quintile. There were 5953 deaths from nonaccidental 
causes, 2,147 from CVD, 787 specific to IHD, and 387 deaths 

Table 1.

Summary statistics for key descriptor variables in the full AHS-2 sample (N = 67,400) and across 1000-m NDVI quintiles

NDVI quintiles

Variable list Full cohort 1 (lowest) 2 3 4 5 (highest)

Continuous (mean ± SD)
  Baseline NDVI 0.5 ± 0.1 0.3 ± 0.1 0.4 ± 0.1 0.5 ± 0.1 0.6 ± 0.1 0.7 ± 0.1
  Baseline PM

2.5
 (µg/m3) 11.6 ± 3.7 13.3 ± 5.2 11.3 ± 3.6 11.4 ± 2.8 11.5 ± 2.7 10.5 ± 2.9

  Baseline NO
2
 (ppb) 11.9 ± 6.7 18.8 ± 8.0 13.0 ± 5.9 10.9 ± 4.7 9.4 ± 3.7 7.2 ± 3.0

  Baseline peak O3 (ppb) 48.9 ± 6.3 51.5 ± 5.7 48.4 ± 6.9 48.2 ± 6.0 48.7 ± 5.9 47.6 ± 6.2
  Baseline age (years) 55.5 ± 13.6 55.6 ± 13.7 55.0 ± 13.5 55.3 ± 13.7 55.1 ± 13.6 56.3 ± 13.4
Categorical, n (%)
  Mortality outcome
   Nonaccidental 5,953 (8.8) 1,316 (9.8) 1,160 (8.6) 1,196 (8.9) 1,075 (8.0) 1,206 (8.9)
   CVD 2,147 (3.2) 483 (3.6) 409 (3.0) 456 (3.4) 365 (2.7) 434 (3.2)
   IHD 787 (1.2) 200 (1.5) 157 (1.2) 167 (1.2) 117 (0.9) 146 (1.1)
   Respiratory 387 (0.6) 83 (0.6) 73 (0.5) 78 (0.6) 67 (0.5) 86 (0.6)
  Sex
   Female 44,455 (66.0) 9,154 (67.9) 8,886 (65.9) 8,934 (66.3) 8,795 (65.3) 8,686 (64.4)
   Male 22,945 (34.0) 4,326 (32.1) 4,596 (34.1) 4,547 (33.7) 4,683 (34.7) 4,793 (35.6)
  Race
   White 40,391 (59.9) 6,329 (47.0) 7,843 (58.2) 7,827 (58.1) 8,313 (61.7) 10,079 (74.8)
   Black 20,653 (30.6) 4,845 (35.9) 4,293 (31.8) 4,615 (34.2) 4,260 (31.6) 2,640 (19.6)
   Othera 6,356 (9.4) 2,306 (17.1) 1,346 (10.0) 1,039 (7.7) 905 (6.7) 760 (5.6)
  Born in United States/Canada 53,531 (79.4) 9,119 (67.6) 10,521 (78.0) 10,872 (80.6) 11,072 (82.1) 11,947 (88.6)
  Currently marriedb 48,541 (72.0) 8,851 (65.7) 9,385 (69.6) 9,394 (69.7) 10,061 (74.6) 10,850 (80.5)
  Educational attainment
   ≤High school 13,758 (20.4) 2,794 (20.7) 2,790 (20.7) 2,789 (20.7) 2,619 (19.4) 2,766 (20.5)
   Some collegec 26,522 (39.4) 5,413 (40.2) 5,420 (40.2) 5,355 (39.7) 5,161 (38.3) 5,173 (38.4)
   ≥Bachelor’s degree 27,120 (40.2) 5,273 (39.1) 5,272 (39.1) 5,337 (39.6) 5,698 (42.3) 5,540 (41.1)
  Household income
   ≤$30,000 22,874 (33.9) 4,878 (36.2) 4,767 (35.4) 4,739 (35.2) 4,225 (31.3) 4,265 (31.6)
   $31,000–$50,000 16,150 (24.0) 3,164 (23.5) 3,210 (23.8) 3,285 (24.4) 3,304 (24.5) 3,187 (23.6)
   $51,000–$100,000 19,997 (29.7) 3,884 (28.8) 3,770 (28.0) 3,965 (29.4) 4,231 (31.4) 4,147 (30.8)
   >$100,000 8,379 (12.4) 1,554 (11.5) 1,735 (12.9) 1,492 (11.1) 1,718 (12.7) 1,880 (13.9)
  Urbanicityd

   Urban 42,541 (63.1) 11,032 (81.8) 9,908 (73.5) 8,967 (66.5) 7,940 (58.9) 4,694 (34.8)
   Urban cluster 7,283 (10.8) 1,234 (9.2) 1,365 (10.1) 1,795 (13.3) 1,645 (12.2) 1,244 (9.2)
   Rural 17,576 (26.1) 1,214 (9.0) 2,209 (16.4) 2,719 (20.2) 3,893 (28.9) 7,541 (55.9)

aIncludes mixed races.
bIncludes common law marriage.
cIncludes trade school and associate degree.
dPopulation definitions based on: urban (≥50,000); urban cluster (2,500–49,999); rural (<2,500).

http://links.lww.com/EE/A297
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from respiratory diseases. The majority of the sample were 
female (66%), identified as non-Hispanic White (59.9%), were 
born in the United States or Canada (79.4%), and lived in 
an urban area (population ≥50,000) at baseline (63.1%). In 
addition, 34% of the baseline population resided in the West, 
18% in Central states, 24% in the South, and 24% in the East. 
The average ambient concentrations for PM2.5, NO2, and O3 at 
baseline were highest in the lowest NDVI quintile at 13.3 µg/
m3, 18.8 ppb, and 51.5 ppb, respectively, with statistically sig-
nificant inverse Pearson correlation coefficients between green 
space and all three ambient air pollutants (eTable 2; http://
links.lww.com/EE/A297).

Table 2 displays HRs for a 0.1 unit increase in the NDVI 
within the 1000-m buffer for each mortality outcome with 
different covariate adjustments, from crude to fully adjusted 
three-pollutant models. There were negligible differences in the 
magnitude of the HRs between unadjusted base models (non-
accidental HR: 0.98 [95% confidence interval (CI): 0.96, 1.00], 
CVD HR: 0.98 [95% CI: 0.95, 1.01], IHD HR: 0.91 [95% CI: 
0.86, 0.96], and respiratory HR: 1.01 [95% CI: 0.94, 1.09]) to 
models adjusted by PM2.5 and all demographic, lifestyle, spa-
tial, and health covariates (Model 5: nonaccidental HR: 0.97 
[95% CI: 0.95, 0.99], CVD HR: 0.97 [95% CI: 0.93, 1.00], 
IHD HR: 0.91 [95% CI: 0.86, 0.97], and respiratory HR: 1.00 
[95% CI: 0.93, 1.09], see Table 2). In fully adjusted models 
(Table 2, Model 6), which included all three air pollutants, a 
0.1 unit increase in the NDVI resulted in a 4% reduction in 
nonaccidental (HR: 0.96 [95% CI: 0.93, 0.99]), a 6% reduction 
in CVD (HR: 0.94 [95% CI: 0.90, 0.98]), and a 13% reduction 
in IHD (HR: 0.87 [95% CI: 0.81, 0.94]) mortality. HRs in the 
single- and three-pollutant models using the 250-m and 500-m 
NDVI buffers were similar in magnitude (eTable 3; http://links.
lww.com/EE/A297).

Green space was not associated with respiratory mortality 
regardless of buffer size or model adjustments. Effect modifica-
tion estimates between the NDVI and pre-existing asthma were 
also not statistically significant, although there was a notable 
difference in the relationship between green space and respi-
ratory mortality among those with (HR: 1.20 [95% CI: 0.94, 
1.53]) and without (HR: 0.99 [95% CI: 0.90, 1.10]) baseline 
prevalent asthma that continued to diverge when adjusted by 
season of event (with asthma HR: 1.14 [95% CI: 0.90, 1.45] 
and without asthma HR: 0.94 [95% CI: 0.85, 1.05], eTable 4; 
http://links.lww.com/EE/A297). The amount of surrounding 
vegetation also modified the association between asthma and 
respiratory mortality, with a 78% (HR: 1.78 [95% CI: 1.08, 

2.93]) increased risk in the 10th percentile of the NDVI to a 
224% (HR: 3.24 [95% CI: 2.05, 5.13]) increased risk in the 
90th percentile.

Table 3 presents the results of effect modification for green 
space by urbanicity, region, and season of event for each mor-
tality outcome. A 0.1 unit increase in the NDVI significantly 
reduced the risk of nonaccidental (HR: 0.94 [95% CI: 0.91, 
0.98]), CVD (HR: 0.89 [95% CI: 0.84, 0.95]), and IHD (HR: 
0.83 [95% CI: 0.76, 0.91]) mortality in urban neighborhoods, 
with HRs attenuated to the null in urban cluster and rural areas. 
Across regions, green space had a stronger association with 
nonaccidental mortality in the West, and with CVD and IHD 
mortality in the West and South. When incorporating season of 
event into the risk set, HRs were greatest for CVD (HR: 0.86 
[95% CI: 0.81, 0.92]) and IHD (HR: 0.77 [95% CI: 0.69. 0.86]) 
mortality in the Fall, with lower mortality rates that spanned 
all seasons, only attenuating from significance in the Summer 
for CVD and the Spring for IHD. HRs were consistently asso-
ciated with green space and nonaccidental mortality, ranging 
from a 7% to 10% reduction across seasons. The association 
between the NDVI and respiratory mortality remained null for 
all rural/urban categories, regions, and seasons, although with 
some variability.

Additional subgroup analyses between green space and non-
accidental mortality (Table 4) showed a stronger association in 
females (HR: 0.94 [95% CI: 0.90, 0.97]) than males (HR: 0.99 
[95% CI: 0.94, 1.04]), but no difference between those <80 or 
≥80 years of age. In sensitivity tests, there were also negligible 
changes in effect after doubling the exposure window for all four 
mortality outcomes (eTable 5; http://links.lww.com/EE/A297), 
and when adjusting for, rather than excluding, pre-existing  
cancers, CVD, and respiratory diseases (eTable 6; http://links.
lww.com/EE/A297), there was no change in the interpretation 
of the results. However, between green space and IHD mor-
tality, there was a slight attenuation, although still a signifi-
cant association, when including pre-existing conditions. While 
results remained null for respiratory mortality, adding subjects 
with pre-existing conditions lowered the mortality rate, with 
narrower CIs.

Discussion
We found neighborhood green space was associated with non-
accidental, CVD, and IHD mortality, with the strongest effects 
in fully adjusted three-pollutant models. This association was 
fairly robust, with little change in HRs from crude models up 

Table 2.

Attained age Cox proportional hazard ratios for a 0.1 unit increase in the NDVI within a 1000-m buffer for each mortality outcome 
(nonaccidental, CVD, IHD, and respiratory), comparing crude to fully adjusted models

Models

Nonaccidental CVD IHD Respiratory

HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI)

Base Modela 0.98 (0.96, 1.00) 0.98 (0.95, 1.01) 0.91 (0.86, 0.96) 1.01 (0.94, 1.09)
Model 2b 0.98 (0.95, 1.00) 0.97 (0.94, 1.01) 0.91 (0.86, 0.96) 1.01 (0.93, 1.09)
Model 3c 0.98 (0.95, 1.00) 0.97 (0.94, 1.01) 0.91 (0.85, 0.96) 1.00 (0.92, 1.09)
Model 4d 0.98 (0.95, 1.00) 0.97 (0.93, 1.01) 0.91 (0.85, 0.96) 1.01 (0.93, 1.10)e

Model 5f 0.97 (0.95, 0.99) 0.97 (0.93, 1.00) 0.91 (0.86, 0.97) 1.00 (0.93, 1.09)e

Model 6g 0.96 (0.93, 0.99) 0.94 (0.90, 0.98) 0.87 (0.81, 0.94) 1.02 (0.92, 1.12)e

aModel clustered on baseline county with no covariate adjustments.
bModel 2 = base model plus adjustment by sex, race, born in the United States or Canada, educational attainment, marital status, household income, consumption of red/processed meat, tree nuts, wine, 
beer/liquor, smoking status, baseline neighborhood-level factors of urbanicity, median household income, and median home value.
cModel 3 = Model 2 plus adjustment by physical activity and BMI.
dModel 4 = Model 3 plus adjusted by diabetes, high blood pressure, blood pressure medication, high cholesterol, cholesterol medication, daily aspirin use, and the use of hormone replacement therapy by 
menopausal status (females only).
eModels additionally adjusted by pre-existing asthma.
fModel 5 = Model 4 plus adjustment by PM

2.5
.

gModel 6 = Model 5 plus adjustment by NO
2
 and O

3
.
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to models adjusted by all covariates other than NO2 and O3. 
Sensitivity analyses also resulted in minimal changes in the mag-
nitude of the association between green space and mortality 
across different buffer sizes, findings that were consistent with 
others,2,3,5,6 and after the inclusion of subjects with pre-existing 
conditions. There was virtually no change in effect when using 
a 2-year exposure window, suggesting longer exposure averages 
are unnecessary.

Additional adjustment by NO2 and O3, however, had the 
greatest effect on overall estimate precision and magnitude. 
We only found one study that compared the NDVI with non-
accidental, CVD, IHD, or respiratory mortality while adjusting 
for PM2.5, NO2, and O3, individually and combined, and like 
our findings, the strength of the association was greater in 

three-pollutant, than single pollutant (PM2.5) models.2 While air 
pollutants have been regarded as mediators of the association 
between green space and health, two studies that had broad geo-
graphic coverage showed very little mediation,3,5 and the greater 
precision and strengthened effect from our study and from 
Canada2 suggest mediation had little influence in these areas. 
Effect modification analyses within the fully adjusted three- 
pollutant models found additional strengthening of the associ-
ation between green space and nonaccidental, CVD, and IHD 
mortality in urban areas, as well as a stronger overall effect across 
seasons, when incorporating season of event into the model. 
For example, with CVD mortality, HRs for a 0.1 unit increase 
in the NDVI between the unadjusted Base Model to Model 5, 
resulted in a nonsignificant 2%–3% reduction (Table 2). In fully 
adjusted three-pollutant models, this increased to a significant 
6% reduction (Table 2), which was further elevated to an 11% 
reduction in urban areas and an 8%–14% reduction across 
seasons (Table 3). Thus, in our study, incorporating more envi-
ronmental factors that characterized the defined neighborhood, 
including the season, strengthened associations more than the 
size of the buffer, exposure window, or adjustment by individual 
demographic characteristics, lifestyle habits, and health condi-
tions of study subjects.

Region also modified the effect, but unlike season, many 
regional associations were null. For example, green space was 
only associated with CVD and IHD mortality in the West and 
South, and null in Central and Eastern states. While not a per-
fect surrogate, many areas in Western and Southern states expe-
rience smaller seasonal shifts, particularly in Winter, than do 
states in the Central and Eastern regions. This could have made 
our estimate of green space, the average of the NDVI across all 
seasons, less effective in these areas that are more prone to snow 
during the winter months.

It was also possible that our exposure assignment methods 
could, at least partially, have explained the unexpected null 
results between green space and respiratory mortality. While 
many other studies have found green space inversely associated 
with respiratory mortality,2,3,5,6,20,22 five of these six studies used a 
static single or average estimate of peak NDVI,2,5,6,20,22 in contrast 

Table 3.

Hazard ratios for a 0.1 unit increase in the NDVI within a 1000-m buffer looking at effect modification by baseline urbanicity, baseline 
region of the United States, and season of event for each mortality outcome

Nonaccidental CVD IHD Respiratory

Effect modifiers HR (95% CI)a HR (95% CI)a HR (95% CI)a HR (95% CI)a,b

Urbanicity
  Urban (≥50,000) 0.94 (0.91, 0.98) 0.89 (0.84, 0.95) 0.83 (0.76, 0.91) 0.97 (0.84, 1.12)
  Urban cluster (2,500–49,999) 0.98 (0.91, 1.05) 0.92 (0.84, 1.01) 0.87 (0.75, 1.01) 1.17 (0.97, 1.41)
  Rural (<2,500) 0.97 (0.93, 1.01) 1.01 (0.95, 1.08) 0.94 (0.84, 1.06) 0.99 (0.85, 1.16)
Regionc

  Central 0.99 (0.92, 1.07) 1.05 (0.93, 1.18) 1.00 (0.83, 1.21) 0.83 (0.62, 1.12)
  East 0.98 (0.93, 1.04) 0.97 (0.87, 1.07) 0.97 (0.79, 1.18) 1.15 (0.91, 1.45)
  West 0.94 (0.91, 0.98) 0.92 (0.87, 0.97) 0.85 (0.78, 0.92) 1.06 (0.94, 1.18)
  South 0.99 (0.93, 1.05) 0.92 (0.83, 1.00) 0.81 (0.71, 0.93) 0.97 (0.79, 1.18)
Season of eventd

  Winter 0.90 (0.85, 0.95) 0.91 (0.84, 0.97) 0.84 (0.75, 0.94) 0.93 (0.79, 1.10)
  Spring 0.92 (0.88, 0.97) 0.89 (0.82, 0.96) 0.91 (0.81, 1.02) 1.03 (0.86, 1.23)
  Summer 0.93 (0.89, 0.98) 0.92 (0.85, 1.01) 0.83 (0.73, 0.95) 0.94 (0.81, 1.10)
  Fall 0.91 (0.87, 0.96) 0.86 (0.81, 0.92) 0.77 (0.69, 0.86) 0.98 (0.82, 1.17)

aModels clustered on baseline county and adjusted for sex, race, born in the United States or Canada, educational attainment, marital status, household income, physical activity, consumption of red/
processed meat, tree nuts, wine, beer/liquor, smoking status, body mass index, baseline neighborhood-level factors of urbanicity, median household income, median home value, diabetes, high blood 
pressure, blood pressure medication, high cholesterol, cholesterol medication, daily aspirin use, the use of hormone replacement therapy by menopausal status (females only), and PM

2.5
, NO

2
, and O

3
.

bModels also adjusted by pre-existing asthma.
cRegion based on baseline address and divided into: Western (Arizona, California, Idaho, Montana, Nevada, Oregon, Utah, and Washington), Central (Colorado, Illinois, Indiana, Iowa, Kansas, Kentucky, 
Michigan, Minnesota, Missouri, Nebraska, North Dakota, South Dakota, Wisconsin, and Wyoming), Southern (Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, New Mexico, Oklahoma, Tennessee, 
and Texas), and Eastern (Connecticut, Delaware, Massachusetts, Maine, Maryland, New Hampshire, New Jersey, New York, North Carolina, Ohio, Pennsylvania, Rhode Island, South Carolina, Vermont, 
Virginia, and West Virginia).
dBased on meteorological seasons: Winter (December, January, February), Spring (March, April, May), Summer (June, July, August), and Fall (September, October, November).

Table 4.

Subgroup analyses by sex and age subjects ended the study 
using separate attained age Cox proportional hazard regression 
models

Nonaccidental

Subgroup HR (95% CI)a

Sexb

  Female 0.94 (0.90, 0.97)
  Male 0.99 (0.94, 1.04)
Agec

  <80 years 0.96 (0.92, 1.00)
  ≥80 years 0.96 (0.92, 0.99)

HRs reported a 0.1 unit increase in the NDVI within a 1000-m buffer for nonaccidental mortality 
within each subgroup.
aModels clustered on baseline county and adjusted for sex, race, born in the United States or 
Canada, educational attainment, marital status, household income, physical activity, consumption 
of red/processed meat, tree nuts, wine, beer/liquor, smoking status, body mass index, baseline 
neighborhood-level factors of urbanicity, median household income, median home value, diabetes, 
high blood pressure, blood pressure medication, high cholesterol, cholesterol medication, daily 
aspirin use, and the use of hormone replacement therapy by menopausal status (females only).
bSeparate models for males and females.
cSeparate models for risk sets based on subjects <80 years and subjects ≥80 years of age.
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to our moving exposure window of all four seasons. These stud-
ies were also from countries generally located in higher lati-
tudes2,5,6,20,22 than the contiguous U.S., impacting the degree of 
seasonal change, such as temperature, snow, sunlight, and plant 
life cycles, throughout the year. Respiratory diseases, such as 
cold, flu, and allergies, also have prominent seasonal variations, 
with both sickness and weather patterns altering how popula-
tions interact with the natural environment. With these seasonal 
influences in exposure and disease, it is possible that seasonally 
specific estimates, such as peak greenness, are more predictive of 
the association between green space and respiratory mortality. In 
addition, effect modification by season of event found a stronger 
association between green space and respiratory mortality in the 
Winter and Summer. Events in Winter, the prominent cold and 
flu season, could hint towards reduced risk of acute infectious 
respiratory diseases. This idea is further supported by Coleman 
et al11 who found green space was associated with (albeit non-
significantly) pneumonia and influenza mortality (HR: 0.90 
[95% CI: 0.77, 1.05]), but completely null for chronic lower 
respiratory disease mortality (HR: 1.00 [95% CI: 0.91, 1.09]). 
Although the limited number of respiratory events makes these 
associations difficult to assess.

We observed the strongest association between green space 
and IHD mortality, with a 13% reduction for every 0.1 unit 
increase in the NDVI. The weaker association with CVD mor-
tality, which IHD is a subset of, suggested that the relationship 
between green space and total CVD was not representative of 
all cardiovascular-type diseases, with the need for further disag-
gregation of non-IHD CVD events.

Finally, the magnitude of the association between green space 
and nonaccidental mortality was similar to that of other stud-
ies, with generally a small but significant reduction in mortal-
ity risk.1–3,5,6,19–22 We hypothesize that the stronger association 
between green space and nonaccidental mortality among AHS-2 
females may be a result of our green space estimate, neighbor-
hood NDVI, more accurately reflecting our female population’s 
total exposure. While we lacked information on time spent at 
home and exposure profiles beyond the neighborhood buffer 
zone, more females had reported being unemployed (41%) or 
working in the home (20%) on the AHS-2 questionnaire, than 
males (30% and <1%, respectively).

Strengths and limitations

Our large study was strengthened by time-changing green space 
and air pollutants, while adjusting for a broad spectrum of risk 
factors. However, one limitation was the noncongruent granu-
larity of NDVI and air pollution estimates (seasonal and annual, 
respectively), which could have introduced measurement error. 
There were also limited mortality events, particularly for respi-
ratory mortality, after removing subjects with pre-existing can-
cer, CVD, and respiratory diseases. While two studies comprised 
exclusively of persons with some of these prevalent diseases 
had null findings,39,40 sensitivity analyses suggested that only 
IHD mortality risk was attenuated (although still significant) in 
our models after including subjects with these prevalent condi-
tions. Even with such limitations, additional sensitivity analysis 
showed the results to be robust and comparable to other pub-
lished work.

Conclusion
This study adds to the body of research highlighting the inverse 
association of green space with nonaccidental, CVD, and IHD 
mortality, and the precision that can be gained by including mul-
tiple environmental neighborhood characteristics in the model. 
While our study focused on adjusting for multiple ambient 
air pollutants, with added benefits from including season and 
specifying urban localities, future studies should continue to 

broaden the definition of pertinent neighborhood and seasonal 
characteristics that impact human health, as well as quantify 
these associations with more granular mortality outcomes (such 
as cerebrovascular events and infectious versus noninfectious 
respiratory diseases).
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