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Abstract

Background: There is a projected rapid increase in cancer survivors in the US population, from 

15.5 million in 2016 to 26.1 million by 2040. Improvements in treatment and detection have led to 

increased survival, however, there is now a risk of developing new cancers as a result of 

environment toxins, behavioral risk factors, genetic predisposition, and late-term effects of 

radiation and chemotherapeutic treatments. This study takes a geospatial approach to examining 

the place of occurrence of multiple cancers originating in the population of four screenable cancers

—female breast, colorectal, prostate, and cervical cancers—among the US population.

Methods: During 2004–2014, 6,523,532 primary cancer patients with one of these four 

screenable cancers were examined, and subsequent primary cancers (multiple cancers of any type) 

were noted. Individual level analyses estimated the odds of diagnosis with multiple cancers 

controlling for age, sex, and race-ethnicity. Change in effects on odds of multiple cancer diagnoses 

with age, sex, and race-ethnicity were evaluated controlling separately for late-stage diagnosis of 

the primary cancer or each primary cancer diagnosis type. County-level spatial cluster analysis 

was employed to identify and visualize higher than average multiple cancer rates.
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Results: Over half of the study population were female and almost 30% of the study population 

were diagnosed at late-stage for their first cancer. Multiple occurrences of all cancers increased 

during the time period for patients with initial breast or colorectal cancers. Among BC primary 

cancer cases, subsequent multiple cancers were mostly new breast cancers. By contrast, for CRC 

primary cancer cases, subsequent multiple cancers were about equally likely to be new CRC cases 

or other cancer types. Sex, age and race-ethnicity were all significantly associated with multiple 

cancers. In the model controlling for CRC as the primary type, the age and race-ethnicity effects 

were somewhat different than for all the other models. Thus, there was something distinctly 

different about the multiple cancer incidence among patients with CRC as their primary cancer as 

compared to patients with BC, CVC, or PC primaries. In subsequent analyses by county, there 

were distinct geospatial patterns in multiple cancer rates with most high-rate clusters occurring in 

the north- and mid-west US.

Conclusions: There were distinct individual level and geospatial disparities in multiple cancer 

diagnoses for the study population of all primary breast, colorectal, cervical, or prostate cancer 

patients during the decade studied. It is importance to emphasize continued screening for cancer 

survivors and research on personal and environmental drivers of multiple primary cancers.

Keywords

Spatial analysis; multiple primary neoplasms; cancer; National Program of Cancer Registries 
(NPCR)

Introduction

As of January 2019, there were an estimated 16.9 million cancer survivors in the United 

States (US), approximately 4.8% of the population, with a projected increase to 22.1 million 

by 2030 and to 26.1 million by 2040 (1,2). Factors driving the dramatic increase of the 

cancer survivor cohort include improvements in treatment and early detection, but also the 

aging of the population (2–4). One of the major concerns for clinicians, patients, and their 

families is the risk of developing new cancers, unrelated to the first (5,6). Therefore, the 

need for population- based monitoring and characterizing the distribution of multiple 

primary cancers has been widely recognized (2–7). There is a great need for up-to-date, 

population-based studies focused on characterizing risks of multiple primary cancers among 

individuals by age, sex, and cancer site of initial diagnoses. The small body of extant 

research has found that the most frequent diagnosis of secondary primary malignancies is 

among individuals initially diagnosed with prostate cancer (among men), breast cancer 

(among women) and colorectal cancer (among both sexes) (3). However, there is no 

information about the geospatial distribution of multiple primary cancer incidence or 

possible environmental predictors.

The National Cancer Institute defines a secondary cancer as cancer that has metastasized 

from the place where it first started and is the same type of cancer as the original, while a 

second metachronous primary (or multiple cancer) is a new primary cancer that occurs in a 

person who has had cancer in the past (8). The overall reported frequency of multiple 

primary cancers is between 2.4% and 17% (1,3), yet this topic remains important and not 

well studied (9,10). The issue of multiple primary cancers diagnosed in individuals over 
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time, or metachronously, is intimately connected to the increasing survival of cancer 

patients, as cancer treatment itself using chemotherapy or radiation can increase the risk of 

subsequent cancers, as can health behaviors such as diet, obesity, and smoking (11). In 

addition, genetic predisposition or environmental toxins may also increase the risk of 

multiple primary cancers (2,3,7). Information on these risk factors at the population level is 

limited. Geospatial analysis of clustering in these events is a first step towards identifying 

geographical disparities which may reflect underlying place-based conditions. Efforts to link 

information on patient reported outcomes with population-based cancer registry data to 

facilitate the surveillance of long-term and late effects are ongoing (12).

With such a large and growing population of cancer survivors in the US, there is increasing 

interest in improving cancer survivors’ well-being and quality of life (11–13). Lifestyle 

factors such as diet, being overweight, physical activity, alcohol consumption, and tobacco 

use are important considerations for cancer survivors because they are known risk factors for 

cancer—including developing new primary cancers after cancer treatment (14). Of special 

concern is tobacco use, which varies among cancer survivors by cancer type with highest 

rates among bladder, lung, and ovarian survivors (15). Researcher found that 9.3% of cancer 

survivors continued to smoke up to 9 years after diagnosis (15). Younger cancer survivors in 

particular have been shown to have a higher prevalence of smoking after diagnosis than the 

general population. During 2008 to 2017, 31% of cancer survivors aged 18 to 44 years were 

current smokers, compared with 19% of the general population (16). Finally, the risk of 

developing a second primary cancer may be related to late-stage diagnosis of the primary 

cancer in Lymphoma patients (17). It is not known whether late-stage diagnosis of other 

cancers is significantly related to higher incidence of unrelated, multiple cancers but it 

provides a rationale for continued cancer screening among cancer survivors.

What can be done to reach the special needs of the cancer survivor population? This study 

focuses on a geospatial approach to examine occurrence of multiple cancers that manifested 

in the US population diagnosed with one of four primary and screenable cancers—female 

breast, prostate, cervix, or colon. From this population of more than 6 million cancer 

patients, about 1% developed multiple cancer(s) during a follow up period of 1–10 years. 

Prior to this study, it has been unknown whether the distribution of multiple cancer patients 

is spatially random, or clustered in some fashion that would enhance focused follow up and 

intervention policies to improve lifestyle choices.

Many years ago, Kerner and colleagues called for the use of spatial analysis to inform 

prevention strategy and policy implementation (18). While other methods look for epicenters 

of disease in a global pattern, the LISA methodology used here accounts for local spatial 

instabilities in overall patterns of global spatial association. This methodology is considered 

more reliable for inference in both the absence and presence of spatial autocorrelation, 

allowing for the identification of concentrations of both unusually high and low concentrated 

values (high and low clusters) and spatial outliers.

In this study, we examine a cohort of all primary cancer cases diagnosed during 2004–2014 

as one of four ‘screenable’ types—female breast, cervix, colorectum, or prostate. These four 

cancer types represent about 34% of new cancer cases diagnosed in the U.S. in 2019 (14). 
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We examine the cohort during a period of follow up ranging from 1–10 years, accounting for 

all new primary cancers (multiple cancers) that manifested among survivors during 2004–

2014. We then examine the national-level odds of diagnosis with multiple primaries by sex, 

age and race-ethnicity and conduct a geospatial analysis of the incidence rates of multiple 

cancers at the local county level. We present the following article in accordance with the 

STROBE reporting checklist (available at http://dx.doi.org/10.21037/ace-19-40).

Methods

We examined persons with primary cases of female breast, prostate, colorectal or cervical 

cancers diagnosed from 2004—2014 using the United States Cancer Statistics (USCS) 

database, which covered 99% of the U.S. population for this time period (19). While all 

states participate in the USCS database, five were excluded from the spatial cluster analysis 

because they did not provide county-level cancer data—Illinois, Kansas, Michigan, 

Minnesota, and Missouri—and Alaska and Hawaii were also excluded due to sparse cases. 

However, Illinois, Michigan, and Minnesota provided data without county indicators and 

included the entire cancer populations in their states. All states with complete cancer 

population data (n=46) were included in the logistic regression modeling. From this initial 

cohort of patients with one of the four primary cancers, multiple primaries were defined for 

those diagnosed with at least one other cancer of any type (as additional primary cancers) at 

any point in the subsequent time period, ending in 2014. Synchronous cancers were not 

included in the definition of multiple cancers. We used the protocols and definitions from a 

recent study to define our multiple cancer cases consistent with extant literature, which 

found that over all cancer survivors diagnosed during 1973–2005, about 8% had multiple 

cancer diagnoses (3).

Multiple cancers were then identified using ‘Sequence Number Central’ variable 

(I380_SeqNoCntrl). This code indicates the sequence of all reportable cancers (neoplasms) 

over the lifetime of a person and each primary case is assigned a different number. 

Progressions or recurrences of primary cancers are not assigned new numbers. Those coded 

with ‘00’ indicate only one primary in the patient’s time in the sample during 2004–2014. 

All subsequent numbers up to 59 identify which malignant primary the case report is, i.e., 

‘02’ is the second of two or more primaries. The combination of the two variables was used 

to identify multiple cancer occurrences for the study population.

At the county level, multiple cancer incidence rates were calculated as the count of cases 

with multiple cancers in each county divided by the adult county population in the year 

2010, multiplied by 100,000. In calculating and visualizing the spatial patterns of the 

multiple cancer incidence rates, there were 2,438 counties from the 43 states included in the 

final analysis.

To indicate the primary cancer cases that were diagnosed at a late stage (defined as stage 3 

or 4), we used the Collaborative Stage Data Collection System in the USCS database to 

derive SEER Summary Stage 2000 to describe our outcomes. To code for multiple cancers, 

we used the United States Cancer Statistics Restricted Access Dataset, Data Dictionary and 

Data Standards book (20). Primary cancer types were identified using the ‘Primary Site’ 
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variable (I400_Site), which is the code derived from the International Classification of 

Diseases for Oncology, Third Edition, or ICD-O-3.

Analyses were run at the individual level, producing national results based on 46 states, and 

at the county level, producing visualizations of local cancer incidence rate patterns across 43 

states. At the individual level, unadjusted and adjusted logistic regression was employed to 

determine the odds of diagnosis with multiple cancers, controlling for age, sex, and race-

ethnicity. An additional adjusted model was run to determine the odds of multiple cancer 

diagnosis, given late-stage diagnosis of the first primary cancer (pooling across all cancer 

types), while controlling for age, sex, and race-ethnicity. Separate adjusted models used 

primary cancer type as a control variable to evaluate whether any changes in the effects of 

age, race-ethnicity and sex were observed when controlling for each individual primary 

cancer diagnosis. Summary statistics were computed using SAS 9.4 (21).

Spatial analyses of county level multiple cancer rates were performed in GeoDa software 

(Open Source) (22) and results were mapped in QGIS (Open Source Geospatial Foundation 

Project) (23). Following previously established methods in applied policy studies (24–27), 

the global Moran’s I and Local Indicators of Spatial Association (LISA) spatial clustering 

tests were performed using GeoDa software. The global Moran’s I test determines if there is 

global clustering in the pattern of rates but cannot identify the location of the clusters, thus 

we use the LISA test to identify the local clusters. The LISA statistic is computed for each 

county, using all of the data across counties as a reference distribution to establish statistical 

significance of the relative size and degree of correlation with neighboring values for the 

county’s observed cancer rate. The underlying assumption is of a Gaussian distribution of 

rates (approximately normal) which is appropriate for these rates. The resulting visualization 

using mapping is a description of the local patterns of association and is not predictive or 

confirmatory regarding why these patterns exist in their observed locations.

More specifically, the LISA statistic is computed using conditional permutation, or 

bootstrapping, that holds the value fixed for the county of interest and randomly permutes 

the remaining values to obtain a reference distribution for the correlation among the county’s 

multiple cancer rate value and the group’s (those assumed as comparators). The actual 

observed value with neighbors is then compared to the reference distribution to determine 

extremity of the value. Under the null hypothesis of spatial randomness, it would be unusual 

to observe a highly correlated value with the actual neighbors, which would then appear in 

the tail (rejection region) for the test. Thus, LISA statistics are relative to all of the 

observations of the variable of interest. In our analysis, clusters are determined statistically 

significant at the P<0.05 level. Using a series of LISA tests, one for each county, counties 

are classified as either non-significant or as falling into one of four categories (high-high, 

low-low, high-low, and low-high), relative to the mean multiple cancer incidence rate 

observed across all counties (28). For spatial clusters (high-high and low-low), the center of 

the cluster (index county used in the test) and neighbors are of interest (29). The maps show 

the center of the cluster in color (i.e., red for significant and higher than average surrounded 

by other counties higher than average), while the actual extent of the cluster includes the 

center and its surrounding neighbors. Neighbors are defined ex-ante by a queen weights 

matrix, then used in the cluster analysis to define the clusters. The neighbors are properly 
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included in the cluster, shown here as a grey buffer zone around the center. County lines are 

removed from all maps to meet data restriction standards.

Results

Sample statistics

This study included 6,523,532 persons with primary cases diagnosed during 2004–2014. 

Among the four cancer types, our cohort of primary cancer cases were distributed as 

follows: about 41% were primary breast cancer cases, 24% were colorectal cases, 2% were 

cervical and 34% were prostate. 54.5% of the study population were female, 35.9% were 

age 50–64, the largest of five age groups, and white (75.9%). About 29.7% were diagnosed 

at late stage, and <1% of the study population were diagnosed as synchronous multiple 

cancers (Table 1, Figure 1). These 65,008 individuals are mixed in among the primary 

cancer types (Table 1). Metachronous multiple cancers varied by primary cancer, ranging 

from 1.5% to 8.6% (Table 2), which is consistent with an earlier comprehensive study of 

cancer populations (3). The indicators for these metachronous cases define the dependent 

variable used in the logistic regressions.

When examined by cancer type and over time (Table 2), late-stage diagnoses were highest 

for colorectal and cervical cancers. Late-stage diagnoses increased over time for colorectal, 

cervical, and prostate cancers. Multiple occurrences of cancers in the cohort were highest for 

persons whose first cancer was breast, followed by colorectal cancers, which is consistent 

with earlier data over a longer horizon [for primary cancers of the breast or colon diagnosed 

and followed during 1973–2005, multiple cancers associated with an initial breast cancer 

had higher observed/expected ratios than multiple cancers associated with an initial 

colorectal cancer, across the age groups (1.17 vs. 1.06, respectively). However, the 

percentage of primary cancer cases with subsequent multiple cancers over this long horizon 

were similar (12.27% for breast, 12.44% for colorectal) (3)]. In our cohort using a much 

shorter but more recent timeframe (2004 to 2014), the percentage of multiple cancers 

increased over time for patients whose first cancer was breast or colorectal (Table 2). It has 

been noted that the reporting of multiple primary cancers may be influenced by significant 

changes in cancer risk factors and advances in diagnostic sensitivity and improved screening 

as time passes (1). Thus, the slight increases observed overall may be artifacts of improved 

screening and diagnostic practices over the decade. Individuals with primary BC were more 

likely to have BC diagnosed as a multiple cancer, while people with a primary CRC were 

about equally likely to have CRC or another cancer type as a multiple cancer (Table 2). 

Thus, there seems to be something different about the CRC survivors as compared to the BC 

survivors, suggesting a different etiology or exposures or behaviors.

Logistic regression

Table 3 shows results from adjusted multiple logistic regression models. The odds of 

multiple cancers given cancer type or late-stage diagnosis were examined, and effects of sex, 

age or race-ethnicity did not change substantially, with the exception of the CRC indicator 

model. In the late stage and colorectal regression models, females were less likely to be 

diagnosed with multiple primaries than males. Sex was not included in the female breast, 
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cervical and prostate models. Across all models, those age 65 and older were more likely to 

be diagnosed with multiple primaries compared to the referent group age 50–64, with age 75 

and older having the highest odds. Those odds are attenuated in the colorectal cancer model 

to 1.32 times the odds of diagnoses compared to an average 2.43 times the odds in the late 

stage, female breast, cervical and prostate models. Those younger than 50 were less likely to 

be diagnosed with multiple primaries, with age less than 40 having the lowest odds. Those 

age 40–49 had slightly higher odds of diagnosis in the colorectal (OR 0.58) and prostate 

(OR 0.66) cancer models compared to the other models, averaging an OR of 0.25. Hispanic 

and Asian persons were less likely to be diagnosed with multiple primaries, while Black 

persons were more likely to be diagnosed compared to the White referent group. American 

Indian and Alaskan Native persons were more likely to be diagnosed with multiple primaries 

for all models except the colorectal model where they were less likely to be diagnosed with 

multiple cancers compared to White persons.

Spatial analysis

The average county-level rate of multiple cancers is a proportion (defined as the count of 

cases with multiple primaries/all cases) was 13.9 cases per 100,000 (SD 8.9). This rate 

ranged from 1.9 per 100,000 to 122.9 per 100,000. The Moran’s I statistic for multiple 

cancer rates (I=0.19) was positive and statistically significant indicating evidence of 

clustering or significant spatial autocorrelation among the county values (P<0.0001). There 

were 113 high-rate (red-red) and 215 low-rate (blue blue) spatial cluster centers found for 

multiple cancer rates (Figure 2). Most high-rate spatial clusters were in the north- and mid-

west Oregon, Montana, Wyoming, North and South Dakota, Nebraska, Iowa, with a couple 

of states in the northeast, West Virginia and Pennsylvania. The Southeast had mixtures of 

high-rate and low-rate clusters and the Northeast had the fewest coverage of clusters.

Figures 3,4 provide additional LISA cluster analyses to help gain insights. Figure 3 shows 

LISA clusters for incidence rates of each of the four cancers, mapped separately. Figure 4 

provides LISA cluster analysis for the late-stage diagnosis rates by county, across all 4 

cancer types, based on late-stage diagnosis of the primary cancers in the study cohort.

Conclusions

This population-based study found that sex, age, and race-ethnicity were significantly 

associated with subsequent diagnoses of multiple cancers. The oldest age group had the 

highest odds of diagnosis as expected since older age is a risk factor for cancer. Black and 

American Indian/Alaskan Native cases had consistently higher odds of diagnosis with 

multiple primaries.

These findings held even after adjusting for primary cancer type and late-stage diagnosis, 

with the exception of colorectal cancer. Initial diagnosis with colorectal cancer showed 

lower odds of diagnosis with multiple cancers in those aged 65 and older and in American 

Indian and Alaska Native groups compared to the effects in all other models This may 

warrant a need to further study the link between initial primary cancer type and its 

association with multiple primary cancer diagnoses
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Further research is necessary to determine what may be driving observed disparities. The 

literature demonstrates that there are a multitude of factors that contribute to multiple 

primaries including genetic susceptibility and familial cancer syndromes, environmental and 

lifestyle exposures (e.g., tobacco, alcohol use), continued adherence to regular cancer 

screening, hormonal factors, immune deficiency and infection, carcinogenic effects of prior 

cancer treatments, and the interaction of these factors (1,30). Areas that have higher rates of 

multiple cancers may have a higher prevalence of risk factors that can be further explored. 

For example, North and South Dakota had high-rate spatial clusters, and those states also 

have tobacco use and excessive drinking rates higher than the national average (31).

Beyond individual level differences, there were distinct geospatial disparities in county level 

rates of multiple cancers. Based on Figure 2, high-rate (red-red) spatial clusters appeared to 

occur in more rural areas. There appear to be many high-rate (red-red) spatial clusters in the 

Midwest and Northwest. As a comparison, we examine LISA clusters in the simple cancer 

incidence rates for the four types of cancer, displayed in four maps in Figure 3. High-rate 

cluster areas of multiple cancers (Figure 2) seem to coincided roughly with places where 

high-rate clusters of colorectal and prostate cancer incidence are found (Figure 3), and 

places where there are high-rate clusters of late-stage diagnosis (Figure 4). Given that the 

occurrence of higher than average multiple cancer rates are not spatially random, this may 

suggest areas to target additional screening and cancer control planning and messaging to 

help prevent multiple cancer occurrences. Late-stage diagnosis can be addressed by 

encouraging screening and prevention messages of these four cancers.

Limitations

Multiple primary tumors can be classified as synchronous (2 or more primary tumors 

identified in the same patient and at the same time) or metachronous (new primary tumors 

unrelated to the patients’ previous cancers) (Figure 1) (32,33). In our data there were <1% 

synchronous cases (Table 1) identified as individuals with more than one primary cancer 

case defined at the same time. We do not model these individuals with separate indicators 

and they are not counted among the metachronous cases used to define the dependent 

variable in the logistic regressions. There are more studies of metachronous than of 

synchronous primary cancers, as these metachronous cancers are thought to be more related 

to cancer treatment. Because synchronous primary cancers are diagnosed almost 

simultaneously, their rates may indicate a greater level of cancer predisposition in 

populations at certain locations. This predisposition can be either genetic or arise from gene-

environment interaction. Although gene-environment interaction has been hypothesized to 

play a role in the etiology of multiple tumors (33), there are no data examining this 

hypothesis. While beyond the scope of the current paper, a distinction between these two 

types of multiple cancers may warrant further analyses. It is likely that the synchronous type 

may be more related to behavioral, genetic, or environmental carcinogens and exhibit 

different local spatial patterns than the metachronous type. It is beyond the scope of this 

study to distinguish between these two types of multiple cancers.

The initial adjusted model pooled observations and included all cancer types as separate 

indicators, omitting a reference group to avoid perfect collinearity—however the model 
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would not converge. We believe there is confounding caused by the 65,008 (<1% of cases, 

Table 1) synchronous multiple cancer cases which would cause overlap in the primary 

cancer type indicators where this phenomenon occurred. That is, no individuals were 

counted twice, but an individual with synchronous multiple cancer would be coded as having 

more than one primary cancer type. This would effectively create an interaction effect in the 

primary cancer indicators for a very small subset of the data and result in failure to converge 

in estimation. To keep these individuals in the sample, the models were then parsed out and 

run separately for each primary cancer type. This allowed us to observe if there were 

changes in effects of age, sex, and race-ethnicity when we controlled for each primary 

cancer type. The difference in the effects of age and race-ethnicity observed for the CRC 

model as compared to all other models (where effects were very consistently similar) 

suggests that the primary CRC cases are different than others. This is reflected in the profile 

of types of multiple cancers in Table 2, and is an interesting finding meriting further 

investigation.

This study is also limited in the sense that it only examines multiple cancers from a baseline 

group of persons with primary screenable cancers of four types, and is not based on all 

occurrences of cancer. Further, the reporting of multiple primary cancers may be influenced 

by significant changes in cancer risk factors and advances in diagnostic sensitivity and 

improved screening (1). Finally, this descriptive study examined univariate spatial clustering 

but did not examine geospatial associations with contextual variables that could perhaps 

further elucidate drivers of these geospatial disparities. Such context may be informative in 

distinguishing among synchronous or metachronous multiple cancer clusters, for example. 

Univariate spatial clustering was examined using crude rates rather than age-adjusted rates. 

Although age was considered in the multivariate modeling, the differences in age-

distribution at the county level could potentially influence the clustering effect. While 

geographic differences could potentially reflect age structure differences rather than cancer 

rates, the stable rates across the individual analysis and multiple permutations of the spatial 

analysis may give us more robust results that are not influenced by age. Future studies could 

examine if there are differences in clustering give crude or age-adjusted rates for each 

individual outcome. Given the findings of this study, it is important that work continues to 

explore both personal and environmental drivers of multiple primary cancers, particularly 

among screenable cancers. Additionally, it is important to emphasize screening in cancer 

survivorship care or wellness plans to detect potential additional cancers after treatment.
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Figure 1. 
Conceptual framework of multiple primary cancers etiology: hypothesized involvement of 

genetic, environmental, and lifestyle risk factors in etiology of synchronous cancers; and the 

role of treatment and lifestyle in etiology of metachronous cancers.
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Figure 2. 
LISA map of county-level multiple primary cancer rates per 100,000, 2004–2014.
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Figure 3. 
Map panel of LISA cluster results for female breast, cervical, colorectal, and prostate cancer 

incidence rates per 100,000 from 2004–2014.
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Figure 4. 
LISA map of county-level late-stage cancer rates per 100,000, 2004–2014
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Table 1

Descriptive statistics of the cohort of 4 primary, screenable cancers population, 2004–2014

Variable Cases (n=6,523,532) Percent (%)

Sex

 Female 3,552,841 54.46

 Male 2,970,691 45.54

Age, years

 <40 193,157 2.96

 40–49 660,668 10.13

 50–64 2,342,475 35.91

 65–74 1,789,766 27.44

 75+ 1,537,466 23.57

Race-ethnicity

 Hispanic 472,591 7.24

 American Indian/Alaskan Native 29,030 0.45

 Asian 174,393 2.67

 Black 807,985 12.39

 Other 91,604 1.4

 White 4,947,929 75.85

Late stage

 No 4,235,499 64.93

 Yes 1,935,981 29.68

 Missing stage 352,052 5.4

Primary cancer type

 Female breast 2,703,357 41.44

 Colorectal 1,543,108 23.65

 Cervical 132,662 2.03

 Prostate 2,209,413 33.87

Synchronous multiple primaries* 65,008 <1%

*
, the total number of primary cancer cases by type exceeds the total sample size by 65,008 individuals which appear in more than one of the 

primary cancer type tabulations.

Ann Cancer Epidemiol. Author manuscript; available in PMC 2021 April 19.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Scott et al. Page 17

Ta
b

le
 2

Pe
rc

en
t o

f 
la

te
-s

ta
ge

 d
ia

gn
os

es
 b

y 
ca

nc
er

 ty
pe

 a
nd

 ti
m

e 
pe

ri
od

 f
or

 th
e 

st
ud

y 
po

pu
la

tio
n,

 a
 c

oh
or

t w
ith

 o
ne

 o
f 

fo
ur

 s
cr

ee
na

bl
e 

ca
nc

er
s

C
an

ce
r 

ty
pe

T
im

e 
pe

ri
od

M
ea

n,
 la

te
 s

ta
ge

* 
(%

)
R

an
ge

, l
at

e 
st

ag
e 

(%
)

M
ea

n,
 d

is
ta

nt
 

st
ag

e*
*  

(%
)

R
an

ge
, d

is
ta

nt
 s

ta
ge

 (
%

)
M

ul
ti

pl
e 

pr
im

ar
ie

s 
(%

)

M
ul

ti
pl

e 
pr

im
ar

ie
s 

sa
m

e 
ty

pe
 (

%
)

M
ul

ti
pl

e 
pr

im
ar

ie
s 

di
ff

er
en

t 
ty

pe
 (

%
)

B
re

as
t

20
04

–2
00

9
30

24
–3

6
5

3–
6

5.
4

4.
2

1.
2

20
10

–2
01

4
29

22
–3

3
5

3–
6

8.
0

7.
0

1.
0

C
ol

or
ec

ta
l

20
04

–2
00

9
53

48
–5

9
19

17
–2

1
7.

2
3.

4
3.

8

20
10

–2
01

4
57

52
–6

3
22

18
–2

4
8.

6
4.

3
4.

3

C
er

vi
ca

l
20

04
–2

00
9

52
40

–5
6

13
6–

19
2.

8

20
10

–2
01

4
54

33
–5

9
16

10
–2

3
2.

7

Pr
os

ta
te

20
04

–2
00

9
15

10
–2

1
4

3–
6

1.
8

20
10

–2
01

4
18

13
–2

5
6

4–
8

1.
5

* , l
at

e 
st

ag
e 

is
 d

ef
in

ed
 a

s 
SE

E
R

 s
um

m
ar

y 
st

ag
e 

3 
an

d 
4;

**
, d

is
ta

nt
 s

ta
ge

 is
 d

ef
in

ed
 a

s 
SE

E
R

 s
um

m
ar

y 
st

ag
e 

4.

Ann Cancer Epidemiol. Author manuscript; available in PMC 2021 April 19.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Scott et al. Page 18

Ta
b

le
 3

R
es

ul
ts

 f
ro

m
 a

dj
us

te
d 

m
ul

tip
le

 lo
gi

st
ic

 r
eg

re
ss

io
n 

m
od

el
s 

on
 m

ul
tip

le
 c

an
ce

r 
st

ud
y 

po
pu

la
tio

n 
(n

=
6,

52
3,

53
2)

V
ar

ia
bl

e
L

at
e-

st
ag

e 
m

od
el

F
em

al
e 

br
ea

st
 m

od
el

C
ol

or
ec

ta
l m

od
el

C
er

vi
ca

l m
od

el
P

ro
st

at
e 

m
od

el

O
R

95
%

 C
I

P
O

R
95

%
 C

I
P

O
R

95
%

 C
I

P
O

R
95

%
 C

I
P

O
R

95
%

 C
I

P

Se
x

 
Fe

m
al

e
0.

81
0.

80
, 0

.8
2

<
0.

01
–

–
–

0.
93

0.
92

, 0
.9

5
<

0.
01

–
–

–
–

–
–

 
M

al
e

R
E

F
R

E
F

A
ge

, y
ea

rs

 
<

40
0.

27
0.

24
, 0

.3
0

<
0.

01
0.

25
0.

22
, 0

.2
7

<
0.

01
0.

25
0.

23
, 0

.2
8

<
0.

01
0.

17
0.

16
, 0

.1
9

<
0.

01
0.

36
0.

32
, 0

.4
0

<
0.

01

 
40

–4
9

0.
54

0.
52

, 0
.5

7
<

0.
01

0.
48

0.
46

, 0
.5

0
<

0.
01

0.
58

0.
56

, 0
.6

1
<

0.
01

0.
47

0.
45

, 0
.4

9
<

0.
01

0.
66

0.
63

, 0
.6

8
<

0.
01

 
65

–7
4

1.
83

1.
79

, 1
.8

7
<

0.
01

1.
88

1.
84

, 1
.9

2
<

0.
01

1.
70

1.
66

, 1
.7

3
<

0.
01

1.
87

1.
83

, 1
.9

1
<

0.
01

1.
70

1.
67

, 1
.7

4
<

0.
01

 
75

+
2.

47
2.

42
, 2

.5
2

<
0.

01
2.

41
2.

36
, 2

.4
6

<
0.

01
1.

32
1.

29
, 1

.3
5

<
0.

01
2.

39
2.

34
, 2

.4
4

<
0.

01
2.

44
2.

39
, 2

.4
9

<
0.

01

 
50

–6
4

R
E

F
R

E
F

R
E

F
R

E
F

R
E

F

R
ac

e-
et

hn
ic

ity

 
H

is
pa

ni
c

0.
94

0.
91

, 0
.9

7
<

0.
01

0.
96

0.
93

, 1
.0

0
<

0.
01

0.
89

0.
86

, 0
.9

2
<

0.
01

0.
91

0.
88

, 0
.9

4
<

0.
01

0.
94

0.
91

, 0
.9

7
<

0.
01

 
A

I/
A

N
1.

15
1.

02
, 1

.2
9

<
0.

01
1.

15
1.

02
, 1

.2
9

<
0.

01
0.

96
0.

85
, 1

.0
8

<
0.

01
1.

10
0.

98
, 1

.2
4

<
0.

01
1.

15
1.

02
, 1

.2
9

<
0.

01

 
A

si
an

0.
85

0.
80

, 0
.9

0
<

0.
01

0.
84

0.
79

, 0
.8

9
<

0.
01

0.
72

0.
68

, 0
.7

6
<

0.
01

0.
81

0.
77

, 0
.8

6
<

0.
01

0.
89

0.
84

, 0
.9

4
<

0.
01

 
B

la
ck

1.
34

1.
31

, 1
.3

8
<

0.
01

1.
40

1.
37

, 1
.4

3
<

0.
01

1.
38

1.
35

, 1
.4

1
<

0.
01

1.
33

1.
30

, 1
.3

6
<

0.
01

1.
29

1.
27

, 1
.3

2
<

0.
01

 
O

th
er

0.
15

0.
13

, 0
.1

9
<

0.
01

0.
14

0.
11

, 0
.1

6
<

0.
01

0.
22

0.
18

, 0
.2

6
<

0.
01

0.
13

0.
11

, 0
.1

5
<

0.
01

0.
10

0.
08

, 0
.1

2
<

0.
01

 
W

hi
te

R
E

F
R

E
F

R
E

F
R

E
F

R
E

F

C
an

ce
r 

ty
pe

 
L

at
e 

st
ag

e
1.

32
1.

30
, 1

.3
5

<
0.

01
–

–
–

–
–

–
–

–
–

–
–

–

Ann Cancer Epidemiol. Author manuscript; available in PMC 2021 April 19.


	Abstract
	Introduction
	Methods
	Results
	Sample statistics
	Logistic regression
	Spatial analysis

	Conclusions
	Limitations

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2
	Table 3

