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Abstract: In this work, the effects of the deteriorating affinity-related properties of membranes due
to leaching and erosion on their rejection capacity were studied via computational fluid dynamics
(CFD). The function of affinity-enhancing agents is to modify the wettability state of the surface of a
membrane for dispersed droplets. The wettability conditions can be identified by the contact angle a
droplet makes with the surface of the membrane upon pinning. For the filtration of fluid emulsions,
it is generally required that the surface of the membrane is nonwetting for the dispersed droplets
such that the interfaces that are formed at the pore openings provide the membrane with a criterion
for the rejection of dispersals. Since materials that make up the membrane do not necessarily possess
the required affinity, it is customary to change it by adding affinity-enhancing agents to the base
material forming the membrane. The bonding and stability of these materials can be compromised
during the lifespan of a membrane due to leaching and erosion (in crossflow filtration), leading to a
deterioration of the rejection capacity of the membrane. In order to investigate how a decrease in
the contact angle can lead to the permeation of droplets that would otherwise get rejected, a CFD
study was conducted. In the CFD study, a droplet was released in a crossflow field that involved a
pore opening and the contact angle was considered to decrease with time as a consequence of the
leaching of affinity-enhancing agents. The CFD analysis revealed that the decrease in the contact
angle resulted in the droplet spreading over the surface more. Furthermore, the interface that was
formed at the entrance of the pore opening flattened as the contact angle decreased, leading the
interface to advance more inside the pore. The droplet continued to pass over the pore opening
until the contact angle reached a certain value, at which point, the droplet became pinned at the
pore opening.

Keywords: oily water filtration; membrane technology; contact angle; multicontinuum approach; CFD

1. Introduction

Membranes used in separation and filtration processes are manufactured to hold dis-
persed materials and let a continuous phase pass through them. In general, membranes
can be fabricated and conditioned by interfacial polymerization [1–3], layer-by-layer assem-
bly [4–6], surface grafting, and physical coatings [7–10]. The two main types of membranes
that are widely used in industry are polymeric- and ceramic-type membranes. Polymeric
membranes are categorized into different kinds according to the manufacturing process
used to make them. However, they can be broadly categorized into two main types, namely,
symmetric and asymmetric membranes. A symmetrical membrane has a similar structural
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morphology at all locations. An asymmetric membrane is made of two or more structural
planes of nonidentical morphologies, where each plane has different structures and hy-
draulic resistances. A typical asymmetric membrane has a relatively dense, extremely thin
surface skin layer that is supported on an open, much thicker porous substructure. Figure 1
shows schematics of symmetric and asymmetric porous membranes.
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Membranes fabricated via phase inversion are generally selected as the substrates,
which provide mechanical support. Phase inversion is defined as a process of controlled
polymer transformation from a liquid phase to a solid phase and is a common method
that is used in the fabrication of membranes. In this method, solvents are removed from
the liquid–polymer solution, leaving a porous, solid membrane. The method of phase
inversion is highly dependent on the type of polymer used and on the solvent that is used
to dissolve the polymer. Thin-film composite membranes consist of a thin dense film of
highly cross-linked polymer that is formed on the surface of a thicker microporous support.

The porous structure of the membrane is the key factor that determines its selectivity
features. The sizes of the pore openings are chosen such that they can achieve the required
purification level. In general, they must be smaller than the size of the dispersed materials
such that they can hold them at the surface. Since the pore openings of membranes present
a distribution of sizes, and likewise, dispersed materials present a distribution of sizes,
there are occasions in which small dispersals land over large pore openings, and in such
cases, permeation occurs. Dispersed materials in fluids can be of two types, namely, solid
particles or droplets of other immiscible fluids. When the dispersed materials are droplets
of immiscible fluids within the continuous phase, separation would also depend on the
surface affinity properties of the membrane toward the dispersed droplets. That is, fluids
are generally prone to deformations that enable them to flow with the continuous fluid
unless interfacial forces are strong enough to keep them intact. Interfacial forces depend on
the surface tension and the contact angle at the solid surface. It is required that dispersed
droplets form interfaces at pore openings to prevent them from permeating. Such inter-
faces must be concave toward the pinning droplets to achieve a holding capacity against
permeation. This would be the case when the contact angle along the contact line is greater
than 90◦. In other words, the surface of the membrane must be conditioned such that it
is non-wetting for the dispersed droplets. The larger the contact angle, the harder it will
be for the pinned droplets to permeate through the membrane and vice versa. Such a
nonwetting character of the membrane surface for the pinned droplets may be natural or
artificial. In most cases, the surface of membranes may need to be treated to achieve suffi-
cient nonwetting capabilities. The results of the modification will yield different membrane
responses from pinned droplets, fouling development, and absorption characteristics [11].
Several methods have been proposed for surface conditioning, including coatings, chemi-
cal grafting, polymer blends, plasma, and surfactants. Figure 2 shows a schematic of the
different methods that are used to modify the surface properties of the membrane. Coating
materials for application in membrane technology have been developed to acquire desired
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affinity properties (in terms of hydrophilicity, oleophobicity, etc.). Coating refers to the
application of a thin-film layer of a different polymer or monomer system to form a new
surface via composite formation (e.g., through polymerization processes).
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Figure 2. Schematic diagram of the different techniques that are used to modify the surface properties
of membranes. CNT: carbon nanotube, MOF: metal–organic framework, ZIF: zeolitic imidazolate
frameworks, PLO: porous layer oxides (Reproduced with permission from [12]. Wiley, 2013.)

To list some advances in this regard, Shao et al. [13] suggested the self-polymerization
of polydopamine, which acts as a glue for the entrapment of hydrophilic TiO2 nanoparticles.
They reported an increase in the hydrophilicity characteristics of the membrane and the per-
meation flux. Similarly, Cheng et al. [14] developed a surface modification of PES (polyether
sulfone) membranes via the interfacial polymerization of amino-functional polyethylene
glycol (PEG) and trimesoyl chloride. The higher hydrophilic moiety, the positive surface
charge, and the larger pore size were the main factors contributing to the improved perfor-
mance of the membrane. Galiano et al. [15] introduced a PBM (polymerized bicontinuous
microemulsion), which was prepared, polymerized, and used as a coating material for the
surface modification of commercially available PES membranes [16]. Chemical grafting, on
the other hand, is the process of attaching a low-molecular-weight active group (monomer)
to a parent polymer or membrane. Surface grafting is one of the most promising methods
for modifying the membrane surface through the covalent bonding interaction between
the grafted chains and the membrane [17,18]. Some membranes exhibit low reactivity
(e.g., polyvinylidene fluoride (PVDF)), which makes it difficult for biomolecules to couple
with its surface in a covalent manner; thus, for this aim, the grafting of functional groups
is required [19–22]. On the other hand, metal–organic frameworks (MOFs) have recently
been introduced to the synthesis of functional porous materials, where the hydrophobicity
can be controlled or tuned. The existence of inorganic and organic species that are arranged
in a regular pattern provide countless numbers of MOFs that can be synthesized using
different metal and organic linkers [23,24]. Metals or metal oxides represent the inorganic
component in MOFs and they occupy the nodes, while the organic part is a multidentate
ligand, such as benzene carboxylic acid. Moreover, thin films of MOFs were shown to be
effective at tuning membranes’ affinities for water and wastewater treatment [25,26].

Another method of changing the affinity properties of the membrane includes the
use of polymer blends (PBs). PBs are mixtures of two or more different polymers that
can improve the chemical properties of membranes and their separation performance. It
is to be noted that permanent surface modification by grafting hydrophilic groups and
crosslinking coatings are strategies that are attempted to reduce the problem of fouling.
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However, changes in the membrane structure and integrity often result. Recently, several
studies have explored the passive adsorption of surfactants and soluble polymers as an
economical means of achieving similar membrane modification. The use of surfactants
refers to treatment with water-insoluble material to enhance the hydrophilicity (i.e., im-
prove wetting) [27–31]. However, it has a potential problem related to the possibility that
produced water may get contaminated due to leaching. This can also cause deterioration of
the selectivity features of membranes, particularly those used in the filtration of oily water
systems. In other words, the leaching of affinity-enhancing surfactants with time can lead to
the deterioration of the contact angle, which in turn can lead to the premature permeation
of pinned droplets that would otherwise not permeate. This will happen particularly when
the crossflow filtration methodology is used. In this case, the flow of the feed stream along
the membrane surface continuously erodes and washes any affinity-modifying agents
from the surface. The continuous leaching of affinity-enhancing agents at the membrane
surface will decrease the rejection capacity of the membrane and cause a significant loss of
functionality [32].

Produced water is a class of wastewater that is usually associated with the production
of oil. Water is used to displace the oil and, in the process, it carries the oil with it to the
production facilities. At the wellhead, the majority of the oil is separated from the water
using physical methods. Even though the leftover water contains less oil, it cannot be
disposed of directly; it needs to go for further separation before it can be disposed of. One
of the effective methodologies that have been used in the filtration of produced water is the
use of membrane technology. The selectivity feature of membranes when filtering produced
water depends not only on their pore sizes but also on the interfacial forces. Therefore,
membrane surfaces are usually treated such that they exhibit a nonwetting character for the
dispersed phase. As introduced earlier, the processes of enhancing the affinity properties
of membranes include surface grafting or the addition of surface coatings, surfactants,
polymer blends, etc. However, concerns remain about the persistence of affinity-enhancing
agents and the associated wearing or leaching, particularly in crossflow filtration. This can
lead to the deterioration of membrane functionality with time. In this work, we explored
this topic and showed how the deterioration of the contact angle (as a manifestation of
the wettability state of the membrane) can influence its performance. A method was
introduced to quantify the loss of performance of a membrane due to the deterioration of
its affinity-related characteristics. The study was conducted via the tools of computational
fluid dynamics (CFD) at the microfiltration scale. It aimed at studying the behavior of
an oil droplet along the membrane surface as the contact angle progressively decreased.
Since the contact angle influences both the critical entry pressure and the critical velocity of
dislodgment, it was expected that the fates of the droplets at the membrane surface would
change with a decrease in the contact angle. In the next two sections, we provide details on
how the contact angle influences the critical conditions. We also provide an expression for
the critical entry pressure for the case in which the wettability conditions are different at
the surface and inside the pores.

2. On the Fate of Oil Droplets at a Membrane Surface

An oil droplet that is pinned at a pore opening forms an interface at the inlet of
the pore that prevents its permeation through the membrane unless the pressure is large
enough. For every droplet and pore opening size, there exists a threshold entry pressure
above which the pinned droplet permeates. An estimation of the entry pressure was
investigated by Nazzal and Wiesner [33] and Salama [34,35] for the cases when the droplets
were assumed to be spherical, which is an assumption that is sufficiently accurate for the
sizes of droplets and pore openings that are typically found in produced water filtration.
In a class of separation processes known as crossflow filtration, the feed stream flows along
the membrane length. The shearing force generated by the flow field deforms the droplets
and can cause variations in the entry pressure magnitudes. However, for the purpose of
analysis, it has been suggested by several authors [36–38] that the formula derived for
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the entry pressure when assuming approximately spherical droplets may still be valid for
the analysis of the filtration process of typical produced-water systems. Figure 3 shows
a droplet undergoing pinning for two cases, namely, (a) pressure-controlled filtration
and (b) crossflow filtration. Four fates have been identified for oil droplets when they
are pinned on a membrane surface in crossflow filtration. These fates are determined
based on the relationship between two operating and two critical conditions. The two
operating conditions include the transmembrane pressure (TMP) and crossflow velocity
(CFV), and the two critical conditions include the critical entry pressure pcrit and the critical
velocity of dislodgment vcrit. When both the TMP and the CFV are larger than the critical
conditions, the oil droplets tend to breakup (i.e., part of the droplet permeates and the
other part stays on the feed side). When the TMP is larger than the critical entry pressure,
while the CFV is smaller than the critical velocity, the pinned droplet permeates. When
the TMP is smaller than the entry pressure, no permeation occurs and the droplet can
either stay pinned or move along the surface according to the crossflow velocity. A fate
map for every size of oil droplets in relation to all sizes of porous membranes may be
constructed where both the operating and critical conditions define areas where the four
previously mentioned fates are located. Salama et al. [37–39] used this map to build a
multicontinuum framework that describes the filtration process of an oily water system
and determines the rejection capacity of the membrane. In the multicontinuum approach,
both the droplet and pore size distributions are divided into several size ranges, with each
size range defined as a continuum. The rules that determine the fate of each oil continuum
for all membrane continua are essentially based on comparing the operating conditions
with the critical conditions. Such a comparison determines the location in the fate map
of each oil continuum and, therefore, suggests its rejection potential. This technique was
used in this study to show how the deterioration of the contact angle can shift the rejection
capacity of the membrane toward the incoming flux of oil droplets.
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3. On the Critical Conditions
3.1. Critical Entry Pressure

Since the selectivity feature of the membranes used in the filtration of oily water
systems is very much related to interfacial phenomena, it is important that a clear un-
derstanding of its role is established. When a droplet is pinned over a pore opening, an
interface is formed that can prevent the movement of the droplet through the pore opening
unless the TMP exceeds a threshold value called the entry pressure. Therefore, if the
operating pressure is kept smaller than the entry pressure, the droplet will essentially stay
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pinned at the surface of the membrane. The contact angle is an important parameter for
determining the entry pressure. When the contact angle is reduced (for example, due to
the leaching of affinity-enhancing agents), the threshold entry pressure also decreases. In
other words, the droplet would require less pressure to start permeating through the mem-
brane when the contact angle is decreased. It is interesting to note that the application of
affinity-enhancing agents may not soak well underneath the surface layer in some cases. In
other words, it is possible that the wettability conditions of the membrane are not uniform
such that the contact angle at the surface of the membrane is different than it is inside the
membrane pores. In this case, the interface(s) formed at the pore openings may construct
different contact angles than it would at the surface. The formula that was developed by
Nazzal and Wisner [33] to estimate the critical pressure only accounts for those cases in
which both interfaces (i.e., at the surface of the membrane and inside the pore opening)
are assumed to have the same contact angle. In order to account for the case in which the
contact angles may be different, in this work, we generalized the formula developed in [33].
To do so, let the contact angle of the interface at the surface of the membrane be ϑ1 and
that at the pore openings be ϑ2; it is easy to show that the critical entry pressure formula
developed by Nazzal and Weisner [33] may be modified to give the following:

Pcrit =
2σ cos ϑ2

rp

1− 3

√√√√ 2 + 3 cos ϑ1 − cos3 ϑ1

4
(

rd
rp

)3
cos3 ϑ2 −

(
2− 3 sin ϑ2 + sin3 ϑ2

)
, (1)

where Pcrit is the entry pressure, σ is the interfacial tension, rp is the radius of the pore
opening, rd is the radius of the droplet, ϑ1 is the supplement to the contact angle (contact
angle = 180

◦ − ϑ1) at the surface of the membrane and, likewise, ϑ2 is the supplement to
the contact angle inside the pore, as shown in Figure 4. It is to be noted that this formula
reduces to that of Nazzal and Wisner [33] in the case when ϑ1 = ϑ2. In the Appendix A, a
derivation of Equation (1) is provided. According to Equation (1), the critical entry pressure
is a function of many factors, namely, the contact angles, the diameter of the droplet, the
diameter of the pore opening, and the surface tension. Figure 5 shows the variations of the
entry pressure with the contact angle. According to Figure 5, the critical entry pressure is
smaller for smaller contact angles.
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Figure 5. Normalized entry pressure variations with the contact angle (which was assumed to be the
same at the surface of the membrane and inside the pore) for the case in which rd = 40 µm, rp = 2 µm,
and σ = 0.035 N/m. The pressure value was normalized relative to the capillary pressure of the
interface inside the pore, i.e., 2σ cos ϑ2/rp.

As has already been highlighted, in crossflow filtration, the flow field can result in the
leach and washout of the affinity-enhancing agents, which may have been added during
the manufacturing process to treat and enhance the performance of the membranes. The
washout of these materials gradually deteriorates the rejection capacity of the membrane.
In other words, the contact angle continuously decreases with time, therefore increasing
the chance of the permeation of oil droplets and reducing the rejection capacity of the
membrane. This process renders the membrane obsolete and causes a loss of capital and
increases running costs. Figure 6 schematically shows successive configurations of an oil
droplet at the surface of the membrane when the contact angle decreases. As shown, the
droplet spreads over the surface more when the contact angle is smaller.
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Figure 6. Succession of configurations of oil droplets at the surface of a membrane with different contact angles. When the
contact angle is smaller, the droplet tends to spread over the surface more.

3.2. Critical Velocity of Dislodgment

The decrease in the contact angle not only affects the magnitude of the entry pressure
but also the magnitude of the critical velocity of dislodgment. When the droplet spreads
over the surface more, it requires a larger velocity for its dislodgement. Figure 7 shows
a schematic of the critical configuration of a pinned droplet in crossflow filtration. The
critical configuration is defined as that configuration at which the droplet breaks up into
two portions: one in the pore and another in the feed. As the receding part of the interface
reaches the pore opening, it gets anchored and starts to deform. The deformation continues
until the interface assumes the static contact angle, as shown in Figure 7.
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Figure 7. The critical configuration is achieved when the contact angle of the receding interface
assumes the static contact angle. Any further deformation will lead to the breakup of the droplet. The
front view shows the projection of the droplet at the frontal cross-section and the side view depicts
the deformation of the droplet due to the crossflow field.

At this instant, any further deformation will lead to the breakup of the droplet.
Salama [36] recently developed a formula for calculating the critical velocity of dislodgment
in crossflow filtration (in the case of laminar flow conditions in the feed channel). It takes
the following form:

vavg =
1

108ε(θ)

(
H
rd

)(
rP
rd

)2[ (4 + 3π)σ

ζµw

]
, (2)

where H is the height of the feed channel, rd is the radius of the droplet, rP is the radius
of the pore opening, σ is interfacial tension, µw is the viscosity of the continuous phase, θ
is the supplement of the contact angle, ε(θ) is a geometrical factor for the cross-sectional
area of the droplet, and ζ is a coefficient that accounts for the spread of the droplet over the
surface (≈cos θ, where θ is the supplement of the contact angle). This velocity represents
the crossflow velocity that is required to dislodge permeating droplets. Figure 8 shows the
variations of the critical velocity of dislodgment and the contact angle, which indicates that
the critical velocity of dislodgment increases with the degradation of the contact angle. The
critical velocity of dislodgment also depends on the viscosity contrast between the droplet
and the continuous fluid, Salama [40,41]. It also determines the volume of the droplet at
breakup inside the pore and at the surface, Salama [42].
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Figure 8. Normalized critical velocity of dislodgment variations as a function of the contact angle.
This figure shows that the critical velocity of dislodgment decreases with the increase in the contact
angle, which was assumed to be the same at the surface of the membrane and inside the pore. The
critical velocity was normalized relative to the critical velocity when the contact angle is 180◦.

4. CFD Investigation

The flow and transport of multiphase systems are complicated due to the existence of
interfaces that are deformable and undergo general three-dimensional motion. Researchers
in this field have adapted several frameworks that depend on the categories of the multi-
phase systems. Different patterns of multiphase systems exist according to the distribution
of the phases in the bulk continuous phase, usually via visual observation. It can, however,
be difficult to specify with certainty which regime a particular flow belongs to. Since
researchers may not agree on a unique set of flow regimes, many other classifications exist
in the literature. Classification can be useful since different flow regimes affect parameters
in different ways, such as a pressure drop. For two-phase systems, flow regimes determine
the macroscopic behavior of the system, as well as the appropriate modeling approaches.
The flow regimes can be divided into three main classes, namely, (i) regimes for horizontal
flow in channels, where gravity tends to locate the heavier phase closer to the bottom;
(ii) regimes for vertical flow in pipes, where the liquid phase tends to be on the pipe walls,
forming a stable or an unstable film; (iii) regimes for sloped pipes, in which the slope angle
is important, as well as the direction of the flow (upward or downward). The general flow
regimes can be stated as bubbly flow, plug flow, stratified flow, wavy flow, slug flow, churn
flow, annular flow, etc. In produced water applications, the dispersed phase represents tiny
oil droplets that resemble the bubbly flow regime. Models related to the flow of multiphase
systems are very much dependent on the type of flow regime. They can generally be classi-
fied into continuum-type approaches, lumped parameter approaches, or interface-tracking
approaches (e.g., volume of fluid (VOF) method [43], level-set method [44], diffuse inter-
face model [45,46], and lattice Boltzmann methods [47]). In this research, since we were
interested in the fate of oil droplets at the surface of the membrane under oleophobicity
deterioration, interface tracking methods were used. In particular, the VOF method as
adapted in ANSYS Fluent R19 [48] was used to study this problem because of the advantage
that it is locally conservative.

4.1. Governing Equations

The governing equations that modeled this system were those representing the con-
servation of mass and momentum, in addition to constitutive relationships, to calculate
the properties in the interface region. An equation for the advection of a phase function
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was used to track the interface and to calculate the interfacial tension forces. This binary
function was defined such that it is one in one phase and zero in the other phase. The
interface was defined along the cells where the phase-field function was assumed to have a
value between 0 and 1. The governing equations describing this system based on the VOF
model include:

Continuity:

∇·ρv = 0, (3)

where v is the velocity vector and ρ is the density of the combined system.

Momentum:

∂ρv
∂t

+∇·ρvv = −∇p +∇·µ
(
∇v +∇vT

)
+ ρg + Fσ, (4)

where g is the acceleration due to gravity and Fσ is the surface tension force per unit volume.

Transport of phase-field function:

∂ϕ

∂t
+∇·ϕv = 0, (5)

where ϕ is a binary phase-field function that defines the phases.

Constitutive relationships:

These relationships were developed to determine the properties based on the volu-
metric contribution of each phase in each cell:

ρ = ϕρ1 + (1− ϕ)ρ2, (6)

where ρ1 and ρ2 are the densities of the two phases.

µ = ϕµ1 + (1− ϕ)µ2, (7)

where µ1 and µ2 are the viscosities of the two phases. The interfacial tension force per unit
volume was modeled using:

Fσ = σ
ρκ∇ϕ
ρ1+ρ2

2

, (8)

where σ is the interfacial tension and κ is the curvature of the interface. The normal unit
vector at the interface was calculated using:

n =
∇ϕ

|∇ϕ| . (9)

To adjust the surface normal in cells near the wall, the so-called dynamic boundary
condition developed by Brackbill et al. [49] was used. Therefore, at the contact line, the
normal unit vector may be resolved in the plane that is normal to the contact line as:

ni = cos ϑsnw + sin ϑstw, (10)

where ni is the normal unit vector at the contact line, nw and tw are the unit vectors normal
and tangential to the wall, respectively, and ϑs is the static contact angle. The combination
of this contact angle with the normally calculated surface normal one cell away from the
wall determines the local curvature of the surface, and this curvature is used to adjust the
body force term in the surface tension calculation. Figure 9 shows a schematic 3D pictorial
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view of the interface and the normal and tangential vectors at the surface with the contact
angle. The curvature κ(xi) was determined using:

κ =
1
|n|

[(
n
|n| ·∇

)
|n| − (∇·n)

]
. (11)
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Figure 9. A 3D representation of the interface with the unit normal vector in the cells at the walls
along the contact line.

These equations describe a nonlinear system that requires numerical techniques to
acquire solutions. Several numerical methods are available but the finite volume method
was chosen in this work, as described in the next section.

4.2. The Numerical Algorithm

The system of equations that describes the conservation principles as given before
are partial differential equations that are applicable at every point of the computational
domain. Another way of representing these equations can be through integration with
respect to the elemental volume. In the integral form, terms that are volume-related are
integrated over the volume and terms that reflect the transport across the surfaces are
integrated over the area. As an example, the momentum equation can be integrated over
the volume as follows: ∫

v

(
∂ρv
∂t

+∇·ρvv−∇·σ− ρg− Fσ

)
dv = 0, (12)

where σ is the stress tensor. Using the divergence theorem, the above equation reduces to
the following equation, which involves both volume and surface integrals:

∂

∂t

∫
v

ρvdv +
∫

A
ρvv·ndA−

∫
A
σndA−

∫
v
(ρg + Fσ)dv = 0, (13)

where n is the outward normal vector. The above equation involves integration with
respect to elemental volume and its surface areas. Therefore, in the numerical algorithm,
some variables are defined at the cell center and some other variables are defined at the
faces, as shown schematically in Figure 10. An operator splitting scheme was used to
solve the coupled system. In this approach, the time-dependent Navier–Stokes equations,
together with the continuity equation, were solved to update the velocity field, assuming
the values of the surface tension force from the previous time step. In other words, the
configuration of the droplet from the previous time step was used to calculate the surface
forces that were used in the balance equations to update the velocity. The new velocity field
was then used to update the configuration of the droplet and the properties of the mixture.
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The solution was obtained iteratively at each time step until the predefined tolerance was
obtained (a tolerance of 10−4 was considered for all variables). An adaptive time step that
ranged between 10−6 and 10−8 s was used to accelerate the solution. In this study, we
considered a region in space that represented the feed channel in the form of a rectangular
parallelepiped. In the middle of the bottom wall, a single pore opening was constructed
downward to resemble a pore opening.
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Figure 10. Schematic of a typical finite volume element over which the governing equations were
discretized. In the finite volume method, variables are defined at either cell centers or cell faces.
Usually, the velocity and stress tensors are defined at the faces, while fluid properties, pressure, and
the phase-field function are defined at cell centers.

The dimensions of the domain spanned a length of 10 microns, a width of 7 microns, and
a height of 2.1 microns. In the middle of the bottom face of the rectangular prism, a hole of
diameter 4 microns with an extended downward length of 1.5 microns was made to present a
cylindrical pore. Figure 11 shows a pictorial view of the schematic 3D computational domain
and a closer view of the droplet over the surface and the pore opening. This setup was
similar to our previous work, Zoubeik et al. [50] and Salama [40–42], as well as the work of
other researchers. Plenty of validation exercises can be found in our previous works [50]. In
this setup, the domain was discretized into uniform rectangular prisms except closer to the
pore opening using ANSYS ICEM. Mesh sensitivity analysis was conducted to reach the
optimal mesh that provided an accurate solution and, at the same time, faster convergence.
Three mesh resolutions were considered, namely, the base mesh (approximately 1.7 million
hexahedral elements), two times denser, and half the mesh size. Both the base mesh and
the denser mesh produced similar behavior, and therefore, throughout this study, the
base mesh was used. An adaptive time-stepping scheme was used. The maximum time
step was restricted to 10−7 s. Details about the mesh sensitivity analysis can be found in
Zoubeik et al. [50]. Validation of the numerical study was confirmed by reproducing results
similar to those found in the literature for similar setups. Again, in Salama et al. [40–42]
and in Zoubeik et al. [50], comprehensive validation exercises can be found, which built
confidence in the modeling approach.
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5. Results and Discussion of the CFD Study

In the introduction and subsequent sections, discussions on the fates of the oil droplet
at the membrane surface were introduced. The critical conditions under crossflow filtration
were identified as the critical entry pressure and the critical velocity of dislodgment. These
two conditions, along with the two operating conditions, which are the TMP and the
CFV, govern the fate of the droplets at the membrane surface. It was indicated that the
contact angle appears in both the formulae for the critical entry pressure and the critical
velocity of dislodgment. Therefore, it is expected that a change in the contact angle would
change the fate of the droplet at the membrane’s surface. Therefore, the purpose of this
CFD analysis was to confirm the changes of the fates of the droplet upon the change in
the contact angle and to identify whether there may be other unexplored fates. The CFD
scenarios considered the following setup: if we start with a droplet at the surface of the
membrane for which the TMP is smaller than the critical entry pressure, then any relatively
larger CFV will displace the droplet along the membrane surface. If the contact angle
decreases (i.e., the surface becomes less nonwetting), then the critical entry pressure will
also decreases (Figure 5). If the nonwetting conditions of the surface of the membrane
continue to decrease, there will be a time at which the critical entry pressure equalizes with
the TMP or even becomes smaller. In such a case, the interface the droplet makes at the
entrance of the pore opening starts to advance inside the pore. On the other hand, from
the perspective of the critical velocity of dislodgment, the decrease in the contact angle
results in an increase in the critical velocity of dislodgment (Figure 8). This implies that
the decrease in the contact angle would make the droplet susceptible to permeation and,
at the same time, make the CFV unable to dislodge the droplet while permeating. Such
an understanding in anticipating the behavior of the oil when the contact angle decreases
needs confirmation, which was the focus of the proposed CFD study. In addition, new
fates could have emerged that were not anticipated before. In the next paragraph, the
CFD setup, along with the operating conditions, is highlighted. The results are shown as
snapshots of the droplet at different times with the change in the contact angle.

Three scenarios were considered in this study. These scenarios differed in the con-
sidered TMP, namely, 0.5, 0.75, and 0.9 bars. The velocity of the top surface of the
computational domain in all three scenarios was set to 0.5 m/s. In the first scenario
(i.e., TMP = 0.5 bar) the contact angle started at 135◦ and was reduced in increments of 5◦.
In the second scenario (i.e., TMP = 0.75 bar), the contact angle was reduced in increments
of 2.5◦, and in the last scenario (TMP = 0.9 bar), it was reduced in increments of 1◦. The
simulation results show that, in the first scenario, the droplet continued to be rejected
from permeation through the pore until the contact angle was reduced to 105◦, when it
started to permeate and was no longer rejected. In the second scenario, the droplet became
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pinned at the pore opening when the contact angle was reduced to 122.5◦. In the third
scenario, pinning occurred when the contact angle was reduced to 128◦. Apparently, earlier
permeation of the droplet in the three scenarios could be achieved if the contact angle of
the pore was smaller than that at the surface, as discussed earlier. This was attributed to the
fact that when the contact angle for the interface that was formed at the entrance of the pore
became smaller, an earlier breakthrough was obtained, particularly for smaller droplets.
This is manifested in Figure A2 (in the Appendix A), which depicts the entry pressure
values for different droplet sizes and different contact angles. From this figure, it is clear
that the threshold of oil droplet permeation dropped significantly when the contact angle
of the interface at the pore opening was smaller. It was also noted that the influence of the
contact angle at the pore entrance was very much controlling the permeation threshold of
the pinned droplets more than that at the surface of the membrane, as will be shown later.

Figure 12 shows the side view snapshots of the droplet for the last scenario (i.e., the
scenario with TMP equals 0.9 bar) at different times and for different contact angles. From
this figure, it is clear that, with the decrease in contact angle, the droplet spread over the
surface more. Furthermore, the interface inside the pore opening flattened as the contact
angle decreased. This indicates that less pressure would be required to push the droplet
inside the pore. Furthermore, with the decrease of the contact angle, the volume of that
portion of the droplet that entered the pore opening increased until the case in which the
contact angle had become 128◦.
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Figure 12. Side view snapshots of the droplet for different contact angles. It is clear that when the contact angle was large
and no pinning occurred, the droplet passed along the pore opening and the interface at the pore opening recoiled toward
the droplet. As the contact angle became smaller, two things happened, namely, the droplet spread over the surface more
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TMP = 0.9 bar, vtop wall = 0.5 m/s, σ = 0.025 N/m, θ varied between 135◦ and 128◦.

Under this condition, the droplet moved along the membrane and the interface at the
pore opening moved downward. When the drag force from the crossflow field balanced
the surface tension force at part of the pore opening, the droplet stayed pinned at the pore
opening. Figure 12 shows the top view snapshots of the droplet for the last scenario. The
two cases when the contact angle was 135◦ and 128◦ are presented in this figure. It is
clear that when no permeation or pinning occurred, the droplet encountered the opening
and passed through it while the contact line assumed an almost circular shape. When the
contact angle was reduced, the droplet spreads over the surface, covering a larger area.
With the continual degradation of the contact angle, the droplet finally becomes captured
and is no longer able to move. Under this scenario, the droplet profile at the surface of the
membrane was elongated as shown in Figure 13.

It was interesting to track the volume of the droplet in the feed channel and inside
the pore as it changed with time. With the movement of the droplet over the surface, the
volume in the channel changed slightly when the droplet encountered the pore opening.
This was apparently because of the concave interface (toward the channel) that was formed
at the pore opening. This volume was quite small and when it was normalized by the
volume of the droplet, it represented only few percent and could be ignored, as depicted in
Figure 14a. This figure shows the variations of the normalized volume of the droplet in
the channel with time as the contact angle changed. As seen, the contact angle changed in
increments of 2.5◦ in each cycle. When the droplet encountered the pore opening, a slight
change in the volume was depicted as circled. When the contact angle became such that
the critical pressure associated with the interface at the pore equaled the applied pressure,
the droplet started to permeate. The droplet first permeated at a slower rate corresponding
to the time at which the interface was advancing inside the pore. Once the interface broke
through the exit of the pore opening, the permeation continued at a faster rate until the
whole droplet had permeated.



Membranes 2021, 11, 253 17 of 24

Membranes 2021, 11, x  16 of 24 
 

 

 
40.75 µs 

 
50.2 µs 

 
55.25 µs 

 
60.15 µs 

(h) 𝜃 = 128° 

Figure 12. Side view snapshots of the droplet for different contact angles. It is clear that when the contact angle was large 
and no pinning occurred, the droplet passed along the pore opening and the interface at the pore opening recoiled toward 
the droplet. As the contact angle became smaller, two things happened, namely, the droplet spread over the surface more 
and the interface inside the pore moved downward. This continued until the droplet was no longer able to either recoil at 
the interface inside the pore or it was broken. In the considered example, the following parameters were set to be constant: TMP = 0.9 bar, 𝑣  = 0.5 m s⁄ , 𝜎 = 0.025 N m⁄ , 𝜃 varied between 135° and 128°. 

the surface tension force at part of the pore opening, the droplet stayed pinned at the 
pore opening. Figure 12 shows the top view snapshots of the droplet for the last scenario. 
The two cases when the contact angle was 135° and 128° are presented in this figure. It is 
clear that when no permeation or pinning occurred, the droplet encountered the opening 
and passed through it while the contact line assumed an almost circular shape. When the 
contact angle was reduced, the droplet spreads over the surface, covering a larger area. 
With the continual degradation of the contact angle, the droplet finally becomes captured 
and is no longer able to move. Under this scenario, the droplet profile at the surface of the 
membrane was elongated as shown in Figure 13. 

 

Time = 1.3 µs 

 

1.35 µs 

 

1.4 µs 

 

1.6 µs 

 

2.0 µs 𝜃 = 135° 

 

Time = 37.0 µs 

 

39.8 µs 

 

40.25 µs 

 

40.45 µs 

 

40.75 µs 

 

50.2 µs 

 

55.25 µs 

 

60.15 µs 

 

65.45 µs 

 

70.15 µs 𝜃 = 128° 

Figure 13. Top view snapshots of the droplet showing that when the contact angle was large and no permeation occurred,
the droplet encountered the pore opening and passed through it. The shape of the contact line, in this case, was almost
circular. When the contact angle was reduced and pinning conditions occurred, the droplet became held and was no longer
able to move. It is also clear that the contact area was larger for smaller contact angles.
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Figure 14. Normalized volume of the droplet (normalized relative to the initial volume of the droplet) in (a) the feed channel and
(b) inside the pore with time for a decreasing contact angle. The operating conditions were as follows: TMP 0.9 bar, top wall velocity
0.9 m/s, and surface tension 0.019 N/m.

This is also depicted in Figure 14b, which shows the variations of the volume of the
droplet inside the pore opening with time, normalized by the volume of the droplet. In
this case, the scaled volume became more noticeable. As depicted in Figure 14b, several
spikes appeared at the time when the droplet encountered the pore opening. Furthermore,
the size of the spikes increased with the decrease in the contact angle.

This implies that, as the contact angles increased, the interface inside the pore slightly
flattened and the critical entry pressure decreased. As a result, the volume of that portion
of the droplet inside the pore slightly increased until the contact angle reached a value that
matched the critical pressure, at which time, the droplet started to permeate. In this case,
the volume of the droplet inside the pore continued to increase until it totally filled the
whole volume of the pore, it stayed constant for some time and then started to drop when
the droplet in the channel had vanished.

To summarize the findings of this section, it is constructive to show the fate map on
which the critical conditions and the operating conditions are plotted [51–53]. In Figure 15,
the two-dimensional area is divided into three regions by the lines of constant operating
conditions (i.e., the TMP and the CFV), while the critical conditions could assume any value
inside the domain. If a droplet starts at point 1 (i.e., in the rejection region), TMP < pcrit
and the droplet will not permeate; furthermore CFV > vcrit and the droplet will not be
pinned. Now, with the decrease of the contact angle, the critical conditions change, i.e., pcrit
becomes smaller and vcrit becomes larger. This will change the fates of the droplet as time
passes once the critical conditions cross the TMP line. Therefore, for scenario 1, the droplet
will continue to behave in a rejection manner until the critical pressure crosses the TMP line,
in which case, the critical pressure becomes smaller than the TMP and the droplet starts
to permeate. On the other hand, the critical velocity of dislodgment is still smaller than
the CFV and the droplet will break up. For scenario 3, where the initial critical conditions
are such that TMP < pcrit and CFV < vcrit, the droplet will still experience rejection. As
the contact angle continues to decrease and the critical conditions change, the droplets can
experience different fates. As seen in Figure 15, the critical conditions for scenario 3 become
such that TMP ≥ pcrit and CFV < vcrit; in this case the droplet experiences permeation
rather than rejection. There are situations in which the increment change in the decrease
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of the contact angle is small and the droplet would experience pinning when the changes
in the critical conditions get closer to the TMP line. In this case, the droplet experiences
pinning, which is an interesting scenario depicted in the snapshots shown in Figure 12. In
this case, if the decrease in the contact angle stops, the droplet will continue to be pinned
at the entrance of the pore opening. This is a delicate condition as it represents the case
in which the drag force by the crossflow field balances the interfacial tension force, as
depicted in scenario 2.
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Figure 15. When the droplet is initially in state 1, the critical pressure is larger than the TMP (i.e.,
no permeation would occur) and the critical velocity of dislodgment is smaller than the CFV (i.e.,
rejection would occur). As the contact angle decreases, the critical entry pressure decreases and
the critical velocity of dislodgment increases, as depicted by the dashed line. If the incremental
decrease in the contact angle is small, the droplet will cross the constant TMP line, at which point,
permeation starts, and if the critical velocity remains smaller than the CFV, breakup will occur. A
similar pattern can be noticed for scenarios 2 and 3. In scenario 3, the droplet can either be pinned in
the neighborhood of the TMP line or permeate.

6. Conclusions

In this work, the effect of the contact angle on the behavior of the permeation process
of an oil droplet at a membrane surface was studied in a microfiltration setup using CFD
analysis. The microscopic study was conducted to highlight, at a small scale, the behavior of
a single oil droplet upon encountering a pore opening for different contact angle scenarios.
In this work, the wettability conditions at the surface of the membrane and inside the pore
were the same. A formula was derived to determine the critical entry pressure when the
wettability conditions were not the same. As a validation, this formula is shown to reduce
to the equation derived when the contact angles are identical.

This study considered a domain with a rectangular cross-section that had a nonwetting
affinity to the oil droplet. Therefore, when a droplet was placed at the surface, it assumed a
spherical shape. The droplet was placed right along the centerline plane. A cylindrical hole
in the middle of the domain represented a pore opening. The continuous fluid was sheared
by the motion of the top wall and the established flow field stressed the droplet to force it
to move along the surface. The contact angle at the droplet–water–membrane intersection
(i.e., along the contact line) was initially 135◦ (i.e., nonwetting for the oil). Under these
conditions, the droplet was displaced along the membrane by the crossflow field. When
the droplet encountered the opening, it formed an interface. If the pressure across the
cylindrical hole was smaller than the critical entry pressure, the droplet did not permeate
and continued to move along the surface.
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In this work, we considered a droplet that was initially subject to a TMP that was
smaller than the critical entry pressure and a CFV that was smaller than the critical velocity
of dislodgment. Under these conditions, the droplet should not permeate and instead
should get rejected, which was confirmed by the CFD analysis. When the contact angle
decreases, the critical conditions also start to change. In particular, the critical entry pressure
decreases (i.e., the droplet becomes more susceptible to permeation) and the critical velocity
of dislodgment increases (i.e., the droplet becomes more susceptible to pinning). This will
continue until the critical entry pressure becomes smaller than the TMP and the droplet
starts to permeate, while the critical velocity of dislodgment continues to increase and the
crossflow field will not have enough drag to dislodge the droplet, and therefore, permeation
continues until the droplet fully passes through the pore. This was also confirmed via
the CFD study. An interesting fate also emerged in this study when both the critical and
operating conditions match. In this case, the TMP is not large enough to cause permeation
and the CFV is also not large enough to cause detachment such that the droplet is pinned
at the pore opening. This was also confirmed via the conducted CFD study.
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Appendix A

In this section, a derivation is given for the critical entry pressure of a droplet that
is pinned over a pore opening when the contact angles at the surface and in the pore are
different. The start of the permeation of an oil droplet that is pinned at a pore opening is
marked by the moment when the interface formed at the entrance of the pore assumes the
static contact angle. In produced water applications, oil droplets are typically of sizes on
the order of tens of microns or less, which suggests that the droplet may be considered
spherical in shape. In this case, volume calculations can be used to determine the radii of
curvature of the two interfaces (Figure A1). When the contact angle of the interface at the
pore opening assumes the static contact angle, the critical entry pressure can be calculated
using:

pcrit = p1 − p3 = (p2 − p3)− (p2 − p1), (A1)

where p1 is the pressure in the feed channel (i.e., outside the droplet), p2 is the pressure
inside the droplet, and p3 is the pressure at the exit of the pore.

p2 − p1 =
2σ

R1
, (A2)

p2 − p3 =
2σ

R2
, (A3)

where R1 and R2 are the radii of the two interfaces (i.e., in the feed channel and inside the
pore). Substitution into Equation (A1) yields:

pcrit =
2σ

R2
− 2σ

R1
. (A4)
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Figure A1. An oil droplet at the outcrop of a pore opening forms two interfaces. The critical entry
pressure is achieved when the contact angle at the pore opening is the static contact angle.

To simplify calculations, the radii of curvature of the two interfaces, i.e., R1 and R2,
need to be calculated in terms of the radius of the pore and the radius of the droplet. The
radius of curvature of the interface inside the pore can easily be calculated in terms of the
radius of the pore:

R2 = Rp/ cos ϑ2. (A5)

However, the radius of curvature of the interface at the surface is not readily available
and requires calculating the two volumes comprising the droplet (i.e., inside the pore and
at the surface), which are calculated as follows.

The volume of a spherical segment may be determined using:

V =

h∫
0

πr2dy, (A6)

where h is the height of the spherical segment. Evaluating the volume of that portion of the
droplet inside the pore opening is done as follows:

V2 =
π

3
h2

2(3R2 − h2), (A7)

h2 = R2(1− sin ϑ2) =
1− sin ϑ2

cos ϑ2
Rp, (A8)

V2 =
π

3
(1− sin ϑ2)

2

cos3 ϑ2
R3

p(2 + sin ϑ2) (A9)

=
π

3

(
2− 3 sin ϑ2 + sin3 ϑ2

)
cos3 ϑ2

R3
p. (A10)

Similarly, the volume of that portion of the droplet at the surface is calculated using:

V1 =
4
3

πR3
1 −

π

3
h2

1(3R1 − h1), (A11)
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h1 = R1(1− cos ϑ1), (A12)

V1 =
4
3

πR3
1 −

π

3
R3

1(1− cos ϑ1)
2(2 + cos ϑ1) (A13)

=
π

3
R3

1

(
2 + 3 cos ϑ1 − cos3 ϑ1

)
, (A14)

V1 = Vd −V2, (A15)

π

3
R3

1

(
2 + 3 cos ϑ1 − cos3 ϑ1

)
=

4
3

πR3
d −

π

3

(
2− 3 sin ϑ2 + sin3 ϑ2

)
cos3 ϑ2

R3
p, (A16)

R3
1

(
2 + 3 cos ϑ1 − cos3 ϑ1

)
= 4R3

d −
(
2− 3 sin ϑ2 + sin3 ϑ2

)
cos3 ϑ2

R3
p, (A17)

R1 =
Rp

cos ϑ2

3

√√√√4
(

Rd
Rp

)3
cos3 ϑ2 −

(
2− 3 sin ϑ2 + sin3 ϑ2

)
(2 + 3 cos ϑ1 − cos3 ϑ1)

. (A18)

Using Equation (A4):

pcrit =
2σ cos ϑ2

RP

1− 3

√√√√ (2 + 3 cos ϑ1 − cos3 ϑ1)

4
(

Rd
Rp

)3
cos3 ϑ2 −

(
2− 3 sin ϑ2 + sin3 ϑ2

)
 . (A19)

The variations in the entry pressure with the ratio of the droplet diameter to the pore
diameter are shown in Figure A2 for different values of the contact angle of the interface
at the entrance of the pore opening (at a fixed value of the contact angle at the horizontal
surface of 150◦). From this figure, when the contact angles of the two interfaces at the
pore opening and the surface are the same, the normalized entry pressure is smaller for
smaller droplets. When the contact angle at the pore entrance decreases, the entry pressure
decreases further.
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Figure A2. The entry pressure normalized relative to the capillary pressure at the pore entry(
4σ cos θ2/dp

)
as plotted against the ratio of the droplet (dd) versus the pore

(
dp
)

diameters. From
this graph, it can be seen that in general, when this ratio is smaller, the entry pressure is also smaller.
The contact angle of the interface at the pore entrance has a significant effect, as shown on the graph.
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