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ABSTRACT

Carefully designed control experiments provide a
gold standard for benchmarking different genomics
research tools. A shortcoming of many gene expres-
sion control studies is that replication involves pro-
filing the same reference RNA sample multiple times.
This leads to low, pure technical noise that is atypical
of regular studies. To achieve a more realistic noise
structure, we generated a RNA-sequencing mixture
experiment using two cell lines of the same cancer
type. Variability was added by extracting RNA from
independent cell cultures and degrading particular
samples. The systematic gene expression changes
induced by this design allowed benchmarking of dif-
ferent library preparation kits (standard poly-A ver-
sus total RNA with Ribozero depletion) and analy-
sis pipelines. Data generated using the total RNA kit
had more signal for introns and various RNA classes
(ncRNA, snRNA, snoRNA) and less variability af-
ter degradation. For differential expression analysis,
voom with quality weights marginally outperformed
other popular methods, while for differential splicing,
DEXSeq was simultaneously the most sensitive and
the most inconsistent method. For sample decon-
volution analysis, DeMix outperformed IsoPure con-
vincingly. Our RNA-sequencing data set provides a

valuable resource for benchmarking different proto-
cols and data pre-processing workflows. The extra
noise mimics routine lab experiments more closely,
ensuring any conclusions are widely applicable.

INTRODUCTION

Transcriptome profiling experiments are widely used in
functional genomics research and have helped advance our
understanding of gene regulation in health and disease.
Throughout the evolution of this technology, from probe-
based quantification on microarrays through to sequence-
based transcript counting using second and third genera-
tion sequencing, researchers have conducted specially de-
signed control experiments to benchmark different plat-
forms and analysis methods. An early high profile exam-
ple focused on the Affymetrix gene expression platform (1)
using a spike-in design and a dilution data set (2). These
experiments became the gold standard for benchmarking
different pre-processing algorithms (3) during the rapid de-
velopment of new background correction, normalization
and transformation methods (4) for the Affymetrix tech-
nology. The spike-in design allows bias to be assessed for a
small number of RNA molecules that have predictable fold-
changes (FCs) when samples with different spike concentra-
tions are compared with one another, while for all remain-
ing genes, no change in expression should be observed. The
dilution design on the other hand affects the expression level
of every gene in the same way, so that when comparisons
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between pairs of samples are made, predictable FCs will be
induced. This allows bias and variance to be assessed using
the data from every gene.

Another popular configuration for control experiments
is the mixture design, where two distinct samples are mixed
in known proportions, inducing predictable gene expres-
sion changes across the entire series (5–7). This approach
is exemplified by Holloway et al. (2006) (8), who designed
and conducted an experiment to compare a range of mi-
croarray platforms. In this study, RNA from MCF7 and
Jurkat cell lines were profiled as both pure and mixed sam-
ples in different proportions (94%:6%, 88%:12%, 76%:24%
and 50%:50%). Holloway et al. (8) pioneered an approach
in which a non-linear model is fitted to the expression val-
ues for each gene as a function of the mixing proportions,
yielding consensus estimates of signal and noise per gene,
allowing comparisons between platforms to be easily made.

The Microarray Quality Control Consortium (MAQC)
used this design in a large scale inter-lab (11 sites), inter-
platform comparison of 7 microarray technologies using
commercially available bulk RNA sources (Universal Hu-
man Reference RNA from Stratagene and Human Brain
Reference RNA from Ambion) profiled as pure and mixed
samples in 2 different proportions (75%:25%, 25%:75%)
(9). This project matched genes between platforms using
the probe sequences and looked at reproducibility as mea-
sured by the coefficient of variation between replicate sam-
ples (within and between labs), rank correlations between
microarray and qPCR platforms and consistency of differ-
ential expression results (amongst others). The study con-
cluded that all platforms compared are capable of produc-
ing reliable gene expression measurements.

With the advent of RNA-sequencing (RNA-seq), the
MAQC project was extended by the sequencing quality con-
trol (SEQC) consortium (10) that used the same design to
compare different technologies (Illumina HiSeq, Life Tech-
nologies SOLiD and Roche 454) across labs (10 sites) us-
ing different data analysis protocols (aligners, gene annota-
tions and algorithms for detecting differential expression).
In this analysis, the built-in truth from the mixture design
was used to measure consistency in two different ways (cor-
rect titration ordering across the four samples and ratio re-
covery) order to compare study sites and analysis methods.
In addition, spike-in controls enabled assessment of how
well changes in absolute expression levels could be recov-
ered. The authors concluded that assessing relative changes
in gene expression was far more reliable than absolute ex-
pression changes.

Previous mixture experiments performed using either mi-
croarray or RNA-seq have a number of well-known limi-
tations. The first is that the samples used are all identical,
coming from the same source of bulk RNA, meaning that
any variation observed is purely technical in nature. In prac-
tice, biological noise is a key source of variability in both mi-
croarray (11,12) and RNA-seq experiments (13) that should
ideally be simulated in the experimental design. The second
related issue is that sample quality is uniform and high. In
regular experiments, both biological variation and variation
in RNA quality can be expected.

RNA-seq studies that have incorporated biological vari-
ability include comparisons between lymphoblastoid cell

lines (males versus females), with the relatively small num-
ber of sex-specific genes providing inbuilt truth for methods
comparisons (14,15). Another recent study obtained true
positives by comparing a large number of biological repli-
cate samples (42 wild-type versus 44 mutant samples) from
Saccharomyces cerevisiae (16). By analysing subsets of the
data, the authors were able to assess the effect of varying
sample size on the performance of 11 differential expression
methods.

To address some of the shortcomings outlined above, we
designed and conducted a mixture experiment that simu-
lated variability beyond the purely technical. This exper-
iment compared two popular library preparation meth-
ods (Illumina’s TruSeq poly-A mRNA kit and Illumina’s
TruSeq Total Stranded RNA kit with Ribozero depletion)
using short reads (100 bp) obtained from the Illumina
HiSeq platform. In the sections that follow we present de-
tails on the experimental design and quality control of this
data set and results from the various methods compared
using the inbuilt truth available from the mixture design.
Popular differential expression analysis methods, differen-
tial splicing algorithms and deconvolution algorithms were
compared using these data.

MATERIALS AND METHODS

Experimental design and sample preparation

The design of the mixture control experiment ensures the
FCs for each gene will follow a predictable dose-response,
as initially proposed in Holloway et al. (2006) (8). This de-
sign was also used in the MAQC (9) and SEQC projects
(10). A pilot RNA-seq experiment involving five cell lines
(H2228, NCI-H1975, HCC827, H838 and A549, obtained
from ATCC) where RNA from each was profiled in dupli-
cate using the same experimental conditions, library prepa-
ration method (Illumina’s TruSeq Total Stranded RNA kit
with Ribozero depletion) and analysis pipeline described
below. Based on these data the two most similar cell lines
(NCI-H1975 and HCC827) were chosen for the main study.
These data are available under GEO series accession num-
ber GSE86337.

To obtain samples for the mixture study, cell lines from a
range of passages (2–4) were grown on 3 separate occasions
in RPMI media (Gibco) supplemented with Glutamax and
10% fetal calf serum to a 70% confluence. Cell lines were
treated with 0.01% Dimethyl sulfoxide (Sigma), and after 6
h, cells were collected, snap-frozen on dry ice and stored at
−80◦C until required. Total RNA was extracted from be-
tween half a million and a million cells using a Total RNA
Purification kit (Norgen Biotek) with on-column DNAse
treatment according to the kit instructions. RNA concen-
tration for each pair of replicates to be mixed was equalized
using Qubit RNA BR Assay kit (Life Technologies) so that
both samples in a pair had the same concentration (concen-
tration for all pairs was in the range of 100 ng/�l). Repli-
cates of pure NCI-H1975 (100:0) and pure HCC827 (0:100)
and intermediate mixtures ranging from 75:25 to 50:50 to
25:75 (Figure 1) were obtained. We refer to these samples
labelled as 100:0, 75:25, 50:50, 25:75 and 0:100 in Figure 1
as 100, 75, 50, 25 and 0, respectively in the remainder of the
paper.
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Samples were mixed in these known proportions three
times to create three independent replicates of each mix-
ture. All mixtures corresponding to the second replicate
were split into two equal aliquots. One aliquot was pro-
cessed normally (we refer to this as the ‘good’ replicate),
while the second aliquot was degraded by incubation at
37◦C for 9 days in a thermal cycler with a heated lid (we re-
fer to this as the ‘degraded’ replicate), with RNA integrity
number (RIN) determined using TapeStation RNA Screen-
Tape (Agilent). A total of 10 �l (∼1 �g) from each repli-
cated mixture (both good and degraded) were used for Next
Generation Sequencing library preparation using two dif-
ferent protocols: Illumina’s TruSeq Total Stranded RNA
kit with Ribozero depletion and Illumina’s TruSeq RNA
v2 kit. Libraries were quantified and normalized by qPCR,
as recommended by Illumina, and libraries prepared us-
ing the same protocol were pooled together. Library clus-
tering was performed on a cBot with Illumina HiSeq SR
Cluster kit v4 cBot. Each of the two pools of libraries was
sequenced as single-end 100 base pair reads over 4 lanes
on an Illumina HiSeq 2500 with an Illumina HiSeq SBS
kit v4. Base calling and quality scoring were performed
using Real-Time Analysis (version 1.18.61) and FASTQ
file generation and de-multiplexing using CASAVA (version
1.8.2). Library quantification, clustering, sequencing, base
calling and de-multiplexing were carried out at the Aus-
tralian Genome Research Facility (Melbourne, Australia).
This data set is available under GEO series accession num-
ber GSE64098.

Read mapping and counting

FASTQ files from the same libraries were merged and
aligned to the hg19 build of the human reference genome us-
ing the Subread and Subjunc software (version 1.4.6) with
default settings (17). Next reads were summarised in vari-
ous ways according to the NCBI RefSeq annotation (hg19
genome assembly) using the featureCounts procedure (18)
in an unstranded manner. The default featureCounts be-
haviour, when generating gene-level counts using the inbuilt
annotation, is to count the reads overlapping any of the ex-
ons in a given gene. We refer to this annotation as ‘gene-level
exon counts’ and use it for the downstream analyses, unless
stated otherwise. In addition to this default annotation, we
also generated exon-level counts for the differential splicing
analysis (Figure 8). To compare the number of reads map-
ping to different genomic features from each protocol (Fig-
ure 2A), we summarised the reads separately over exons, in-
trons and intergenic regions based on the inbuilt RefSeq an-
notation from the Rsubread package. 5′ and 3′ UTR regions
were considered as exons and reads were reduced to their 5′
position. To compare the abundance of RNA from differ-
ent functional categories by protocol (Figure 2B), gene-level
exon counts were assigned to different RNA classes based
on the Entrez gene type annotation. Gene body coverage
plots (Figure 4A) were generated directly from bam files us-
ing geneBody coverage.py from the RSeQC (19) software
suite based on 3800 house-keeping genes. To explore gene-
level signal in different ways, we ran featureCounts using
a range of custom annotations including: gene-level exon
annotation (default featureCounts behaviour – reads over-

lapping exons are counted and summarised over the entire
gene); gene body annotation (reads overlapping any part of
the gene body between the transcription start and end sites
are counted); conservative gene-level intron annotation (the
difference between the full length gene counts and gene-
level exon counts, i.e. reads that overlap both an intron and
an exon are only assigned to the respective exon). Finally, we
also produced a conservative intergenic count. First we pro-
duced a combined gene and intergenic annotation, which
encompassed the gene body and the intergenic region pre-
ceding this gene along the genomic coordinates, regardless
of the gene direction. We then counted all reads overlap-
ping each of these amalgamated regions and subtracted the
number of reads that overlapped the corresponding gene
body, thus obtaining a conservative estimate of the number
of reads overlapping the respective intergenic region (i.e. the
reads that overlapped both the gene and the preceding in-
tergenic region were only assigned to the respective gene).
These counts were used to fit the non-linear models of gene
expression (see below).

Non-linear modelling of gene expression

We use the non-linear model described in Holloway et al.
(2006) to get high precision estimates of the abundance of
each gene in the two reference cell lines. For each gene g,
let Xg be its expression level in NCI-H1975 and let Yg be
its expression level in HCC827. The expression ratio (fold-
change) between NCI-H1975 and HCC827 for that gene is
therefore Rg = Xg/Yg.

For each mixture series, there are 15 RNA samples in to-
tal. Write pi for the proportion of RNA from cell line NCI-
H1975 in a particular RNA sample i, with 1 − pi being the
proportion of RNA from cell line HCC827, for i = 1, . . . ,
15. The expression level of gene g in the RNA mix must be
piXg + (1 − pi)Yg. The expression FC between the RNA mix
and the HCC827 reference must be {piXg + (1 − pi)Yg}/Yg
= piRg + 1 − pi, which is an increasing function of Rg. This
shows that, regardless of the true values of Xg or Yg, the
expression values for each gene must change in a smooth
predictable way across the mixture series.

Write logCPMgi for the trimmed mean of M-values
(TMM) normalized log2-count-per-million value obtained
from voom for gene g and sample i. We fit the following non-
linear regression model to the log2-count-per-million values
for each gene:

logCPMgi = log2

{
pi Xg + (1 − pi)Yg

} + εgi (1)

where the εgj represent measurement error and are assumed
to be independent with mean zero and gene-specific stan-
dard deviation �g. The non-linear regression returns esti-
mates X̂g, Ŷg and φ̂g for each gene. The estimates X̂g and
Ŷg are generally more precise than would be obtained from
the pure samples alone because they combine information
from all the samples. The regression also returns the esti-
mated expression log-ratio, Mg = log2(X̂g/Ŷg), between the
two pure samples.

The gene-wise non-linear models were fitted to the ma-
trix of log2-count-per-million values using the fitmix-
ture function in the limma package. The fitmixture
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function fits the non-linear regressions very efficiently to
all genes simultaneously using a vectorized nested Gauss–
Newton type algorithm (20). A number of separate fits were
performed for each gene, the first used only the good qual-
ity samples (15 in total) for each data set and the second fit
to the substituted data set where the good replicate 2 was
replaced with the corresponding degraded sample. We re-
peated this analysis for all possible annotations, i.e. using
the log2-count-per-million values obtained from gene-level
exon, gene-level intron, gene body and intergenic regions.
The model was also fitted to various subsets of the data to
avoid any over-fitting of the non-linear models (Equation 1)
for the purpose of comparing the log-FCs from these mod-
els and the various differential expression methods. To do
this, the samples used in a given pair-wise comparison for
the differential expression analysis were excluded from the
non-linear model fitting. The non-linear regression directly
estimates the log-FC for each gene between the pure sam-
ples. It is also easy to predict what the log-FCs should be be-
tween the other RNA mixes. Let the mixing proportion of
NCI-H1975 in the first group be p, and the mixing propor-
tion of NCI-H1975 in the second group be q. Then log-FC
for gene g, predicted from the non-linear model, is

δ̂g(p, q) = log2

{
pX̂g + (1 − p)Ŷg

q X̂g + (1 − q)Ŷg

}
. (2)

Differential expression analysis methods

Differential expression analysis is carried out on TMM nor-
malized gene-level exon counts for poly-A mRNA samples.
Genes that were expressed in 3 or more samples were kept
in the downstream analyses. Genes that fall outside of this
criterion are removed. A gene is considered to be expressed
if it has a count-per-million (CPM) value of greater than
1. The number of genes is reduced to 14 981 after filtering
on expression. The analysis was also repeated using a lower
CPM cutoff value of 0.5, leaving 16 131 genes.

The counts are normalized using each method’s default,
or standard normalization as described in the respective
user guides. Quantile normalization (21) is carried out for
baySeq methods; normalization using the median ratio
method (22) is carried out for DESeq2 and TMM normal-
ization (23) is carried out for edgeR and voom methods.

The voom and voom-qw methods use default settings
in the voom and voomWithQualityWeights functions,
followed by linear modelling and empirical Bayes modera-
tion with a constant prior variance.

Generalised linear models were fitted for edgeR-glm,
where empirical Bayes estimates of gene-wise dispersions
were calculated with expression levels specified by a log-
linear model. This differs from edgeR-classic where the em-
pirical Bayes method used to estimate gene-wise dispersions
is based on weighted conditional maximum likelihood; and
where exact tests are carried out for each gene.

For both baySeq methods, default settings are used to
estimate prior parameters and posterior likelihoods for
the underlying distributions. In baySeq, counts are mod-
elled under a negative binomial distribution and prior pa-
rameters are estimated by the getPriors.NB function.
In baySeq-norm, the underlying distribution of counts are

specified as normally distributed; prior parameters are es-
timated using the getPriors function. A default analysis
for DESeq2 is performed using the DESeq function.

To obtain mean-difference plots in Figure 3A–C, an anal-
ysis of the TMM normalized gene-level exon counts from
the total RNA data set using the good samples only (15 in
total) was carried out using voom, with linear models av-
eraging over the replicate samples and pair-wise contrasts
(100 versus 000, 050 versus 000 and 025 versus 000 samples)
estimated to get log-FCs and average log-CPM values.

To assess the extent of biological versus technical varia-
tion in both the good and degraded data sets (using all 15
samples in each) and the pilot SEQC data set from Law
et al. (15) (16 samples, see below), the edgeR-glm pipeline
described in Chen et al. (2014) (24) was used and the prior
degrees of freedom estimated from the empirical Bayes step
examined. Plots of the biological coefficient of variation
(BCV) versus the average gene expression level were gener-
ated using the plotBCV function. This linear model anal-
ysis was repeated with voom, with the prior degrees of free-
dom from limma’s empirical Bayes step reported.

We investigate simple two-group comparisons by subset-
ting the data for the two groups of interest. For all meth-
ods, correction for multiple hypothesis testing was carried
out using Benjamini and Hochberg’s FDR approach (25).

For each two-group comparison, the estimated log-FCs
were compared with the log-FCs predicted by the nonlinear
regression (δ̂g). The root-mean-square error in the estimated
log-FCs was defined as

RMSE =
⎧⎨
⎩ 1

G

G∑
g=1

(
logFCg − δ̂g(p, q)

)2

⎫⎬
⎭

1/2

(3)

where logFCg is the estimated log-FC for gene g, G is the to-
tal number of genes and p and q are the mixing proportions
for the two groups being compared.

Differential splicing analysis methods

Exon counts were obtained from the poly-A mRNA sam-
ples as described in the ‘Read mapping and counting’ section
above. Unexpressed exons are removed from downstream
analysis, where an exon is considered to be expressed if it
has a CPM value of greater than 0.125 in at least 10 samples,
half the total number of samples. The cutoff value of 0.125
was chosen since there is on average 8 exons per gene within
the data set (i.e. a CPM of 1 cut-off used for the gene-level
differential expression analysis scales down to 1/8=0.125
for the differential splicing exon-level analysis) which left
138 042 exons from 16,500 unique genes for downstream
analysis.

Counts for the edgeR and limma-voom analyses are nor-
malized by the TMM method and counts for DEXSeq are
normalized using the median ratio method. As per the dif-
ferential expression analyses, simple two-group compar-
isons are carried out by subsetting the data for the groups
of interest and p-values are adjusted using Benjamini and
Hochberg’s FDR approach (25).

For DEXSeq, likelihood ratio tests were performed using
size factors and dispersions estimated with default settings.
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Log-FCs are calculated using the estimateExonFold-
Changes function and raw gene-wise P-values are calcu-
lated using the perGeneQValue function.

In voom-ds, linear modelling on exon-level log-CPM-
values were carried out using voom-weights. To test for dif-
ferential splicing, F-tests were performed on each gene using
the diffSplice and topSplice functions.

Dispersions (common, trended and gene-wise) in edgeR-
ds were estimated by calculating an adjusted profile log-
likelihood for each gene and then maximising it. In estimat-
ing dispersions, the prior degrees of freedom was robustified
against outliers. Generalised linear models were fitted with
quasi-likelihood tests, where the prior quasi-likelihood dis-
persion distribution was estimated robustly. Gene-wise tests
for differential splicing were carried out using the diffS-
pliceDGE and topSpliceDGE functions.

Deconvolution analysis methods

The two approaches compared, DeMix (26) and ISOpure
(27), simultaneously estimate the proportion of mixtures
and deconvolve the mixed expressions into individual tu-
mor and healthy expression profiles from RNA-seq data.
Other published deconvolution approaches thus far do not
accomplish these two tasks (28). Both methods assume a
linear mixture structure, that is, Y = (1 − p)N + pT, where Y
is the expression level from a mixed sample, N is the expres-
sion level from normal tissue, T is the expression level from
tumour tissue, and p is the tumour proportion in the ob-
served mixed sample. DeMix is a Bayesian approach avail-
able in R (29) that employs the distribution convolution for
estimating the proportion of tumor and component spe-
cific expressions in tumor-admixed samples. ISOpure uses
a Bayesian hierarchical mixture model that further assumes
that healthy compartments of tumor-admixed sample can
be expressed as the weighted sum of observed healthy sam-
ples and is implemented in MATLAB. Herein, the filtering
of genes is recommended to exclude genes that (i) do not
satisfy the linear convolution structure, or (ii) are uninfor-
mative as they have the same expression levels in both sam-
ple types such that including them in the model estimation
step weakens its ability to differentiate each component.

Analysis of Pilot SEQC RNA-seq data

The 16 RNA-seq samples (4 samples each from group A, B,
C and D) from Law et al. (2014) (15) obtained from the pi-
lot SEQC project were downloaded from the voom Supple-
mentary Information webpage (http://bioinf.wehi.edu.au/
voom/). This data set was pre-processed by filtering genes
with low counts (CPM > 1 in at least 4 samples was re-
quired), followed by TMM normalization (23). The es-
timateDisp function in edgeR was used to estimate the
prior degrees of freedom (24) for this data set. This analysis
was repeated using voom followed by lmFit and eBayes
in limma. The prior degrees of freedom estimated by the em-
pirical Bayes step from each analysis was reported and com-
pared to the mixture experiment described above to assess
the relative contribution of biological and technical varia-
tion in each data set.

RESULTS

RNA-seq mixology balances variability and control

A mixture experiment requires two sources of reference
RNA. How to choose these RNA sources has received little
attention in the past and, typically, RNA sources that have
extremely different expression profiles have been used. Cell
lines are good candidates because they provide a replenish-
able supply of RNA with reproducible characteristics. Our
choice of cell lines was guided by a pilot study that looked at
gene expression across five lung adenocarcinoma cell lines
(H2228, NCI-H1975, HCC827, H838 and A549) via RNA-
seq. The two cell lines HCC827 and NCI-H1975, which
were observed to be most similar according to the multidi-
mensional scaling (MDS) plot (Supplementary Figure S1)
and had similar molecular aberrations (both have mutations
in EGFR: L858R and T790M mutations are found in NCI-
H1975 and deletion of exon 19 is observed in HCC827),
were selected for the main experiment. The intent here was
to have changes that were more subtle than those typically
observed in earlier mixture experiments where completely
different tissue types, were compared. For example, use of
the MCF-7 breast cancer cell line and Jurkat human T lym-
phocyte cells in Holloway et al. (2006) (8), leads to nearly ev-
ery gene being differentially expressed (DE), which is atyp-
ical of regular experiments. The experimental design of our
study, which consists of two pure RNA samples and three
RNA mixtures each repeated in triplicate, is shown in Fig-
ure 1. The cell lines were grown and harvested on three sepa-
rate occasions to simulate some degree of variation between
samples due to lab processing. Each pure RNA sample
from a given cell line (denoted as either 100:0 or 0:100) was
mixed with a corresponding sample from another cell line
in three different proportions (75:25, 50:50, 25:75), yielding
three independent replicates for each pure and mixed sam-
ple. The second replicate from each mixture was divided in
two, with one of the samples prepared normally (the ‘good’
sample) and the other undergoing heat treatment (incuba-
tion at 37◦C for 9 days, see Materials and Methods) to sys-
tematically degrade the RNA (the ‘degraded’ sample). This
process was effective, as shown in Supplementary Figure S2,
with the RIN between 6 and 7 for the degraded samples, and
above 8.5 for the regular samples. Finally, each sample was
split into 2 aliquots, which were used to prepare RNA-seq
libraries using Illumina’s TruSeq Total Stranded RNA kit
with Ribozero depletion (which we refer to as the total RNA
kit) and Illumina’s TruSeq RNA v2 kit (which we refer to as
the poly-A mRNA kit). Libraries were sequenced as single-
end 100 bp reads on an Illumina HiSeq2500 instrument pro-
ducing on average 50 million reads per library (range 32 to
94 million). Reads from all samples were mapped to the
hg19 reference genome using the Subread alignment soft-
ware (17). Mapped reads were assigned using featureCounts
(18) according to NCBI’s RefSeq hg19 gene annotation.

Comparing read distribution by feature type

We used a variety of strategies to annotate the reads de-
pending on the analysis (see Materials and Methods for a
detailed description of the annotation strategies). To facili-
tate comparison of the protocols in terms of read distribu-

http://bioinf.wehi.edu.au/voom/
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Figure 1. Experimental design of the mixture control experiment. RNA from two lung cancer cell lines (NCI-H1975 and HCC827) were obtained after
culture on three separate occasions to obtain samples for three replicates to simulate some degree of biological variability. RNA from each replicate was
either kept pure or mixed in three different proportions. The second replicate of each mixture was split in two and either processed normally or heat treated
(incubated at 37◦C for 9 days, see Materials and Methods) to degrade the RNA and simulate variations in sample quality. Each sample was then processed
using either Illumina’s TruSeq RNA v2 kit (Poly-A mRNA) or Illumina’s TruSeq Total Stranded RNA kit with Ribozero depletion followed by sequencing
on an Illumina HiSeq 2500 to obtain 100 bp single-end reads for further analysis.

tion across different genomic features, we reduced the reads
mapped using the splice aware aligner Subjunc to their 5′ po-
sition and assigned them to non-overlapping custom anno-
tations restricted to either exon, intron or intergenic regions
(UTR regions were considered as exons). Genomic feature
mapping statistics for all replicate 2 samples are shown in
Figure 2A. Interestingly, the poly-A mRNA and total RNA
kits show greatest differences in terms of reads mapping
to introns, which come at the expense of exonic reads. The
levels are similar between the degraded and good samples
within each protocol, with differences of a few percent at
most. The poly-A libraries tend to capture mature poly-
adenylated RNA that had undergone splicing, while the to-
tal RNA protocol captures both mature and pre-messenger
RNA alike, which is reflected in the higher proportion of
intronic reads in the latter. These results are similar to the
percentages reported in Zhao et al. (2014) (30), although we
observe a slightly higher proportion of intronic reads in our
data.

In order to compare the protocols with regard to read dis-
tribution across different RNA classes, we used the gene-
level exon counts (default featureCounts behaviour) ob-
tained from Subjunc aligned data and annotated them ac-
cording to the gene type information available with the an-
notation. The percentage of reads assigned to each type for
all replicate 2 samples is shown in Figure 2B. Consistent
with the protocol design, the Total RNA method is able
to recover a greater proportion of reads from non-coding
(ncRNAs), small nuclear (snRNAs) and small nucleolar
(snoRNAs) RNA species compared to the poly-A mRNA
kit (see Supplementary Figure S3 for results per RNA
class). Across all samples, the percentage of reads mapping
to ribosomal RNAs (rRNAs) was marginally lower for the
total RNA protocol compared to the poly-A mRNA kit

(Supplementary Figure S3), indicating that the Ribozero
depletion used to deplete rRNAs in the former sample
preparation method was highly effective, as previously re-
ported (30,31).

To assess data quality experiment-wide, we generated
MDS plots from the gene-level exon log2 counts per mil-
lion (log-CPM) (Figure 2C and D). This display clearly sep-
arates the samples by mixture proportion, with increasing
concentration of NCI-H1975 indicated from left to right in
dimension 1 and pure samples (100:0 and 0:100) separating
from the mixed samples (75:25, 50:50, 25:75) in dimension 2
in both the poly-A mRNA and total RNA data sets. For the
poly-A mRNA data (Figure 2C), the replicate samples clus-
ter less tightly, with the degraded samples separating slightly
from the non-degraded samples for most mixtures. Samples
from the total RNA data (Figure 2D) on the other hand
tend to cluster more tightly.

Exploiting signal from the mixture design genome-wide

We next inspect the typical FCs for the total RNA data
using a mean-difference plot from three pair-wise compar-
isons (100 versus 000, 050 versus 000 and 025 versus 000) to
visualise the attenuation in signal that occurs as the RNA
samples compared become more similar. Figure 3A shows
the most extreme results, with average log2-fold-changes
(log-FCs) (y-axis) versus average expression (x-axis) for the
pure samples (100:0 versus 0:100, denoted 100 versus 000).
The FCs cover a wide dynamic range and are symmetric
about the log-FC = 0 (no change) line. When samples more
similar in RNA composition are compared, the log-FCs
are compressed and asymmetric (Figure 3B and C). Look-
ing at the log-CPM-values at each mixture proportion for
three representative genes (Figure 3D–F), we see the dose-
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Figure 2. Overview of data quality of mixture control experiment. (A) Mapping statistics of reads assigned to different genomic features for all replicate two
samples (includes both good quality (labels that begin R2) and degraded (labels that begin R2D) RNA samples). The percentages that could be assigned
to exons, introns, intergenic regions or were unmapped are shown in different colours. (B) Mapping statistics of reads assigned to different classes of RNA
for all replicate two samples. This figure breaks down the gene-level exon reads from panel B according to NCBI’s gene type annotation. Multidimensional
scaling plot of (C) poly-A RNA and (D) total RNA experiments showing similarities and dissimilarities between libraries. Distances on the plot correspond
to the leading fold-change, which is the average (root-mean-square) log2fold-change for the 500 genes most divergent between each pair of samples. Libraries
are coloured by mixture proportions, where circles represent good samples and triangles represent degraded samples.

response across the mixture that varies according to the true
RNA abundance of each gene in the pure samples. The gene
DAND5 for example is more abundant in the HCC827 cell
line, while WASH7P is expressed at a similar level in both
samples, and EREG is more abundant in the NCI-H1975
cell line. The non-linear model (see Materials and Methods,
Equation 1, plotted as dashed lines in Figure 3D–F) can
be fitted to the log-CPM values from the ‘good’ data (three
replicates for each mixture) or with the degraded sample re-
placing the non-degraded sample for replicate 2 sample to
estimate the true concentration of a particular gene in each
mixture, along with the error.

Total RNA with Ribozero depletion is a better choice for de-
graded samples

RNA-seq library preparation methods that rely on captur-
ing poly-A RNA species are susceptible to RNA degrada-
tion. As RNA gets degraded, the non-poly-adenylated 5′

end of the molecule becomes under-represented. In order to
assess the 5′-3′ bias in our libraries, we used the RSeQC (19)
software to plot the read coverage over the gene body cal-
culated using 3800 housekeeping genes in 4 representative
libraries. Both total RNA libraries (good and degraded), as
well as the good mRNA library followed roughly the same
distribution (Figure 4A). As expected, the degraded mRNA
library had a drastically different distribution from the oth-
ers with 5′ end reads under-represented in this sample. Com-
pared to both total RNA libraries, the good mRNA library
also had a slightly lower coverage at the 3′ end. This ef-
fect was likely caused by the residual binding of poly-A
sequences to oligo-T beads post-fragmentation and subse-
quent removal of 3′ end fragments when beads were dis-
carded from the reaction.

To assess the bias and precision genome-wide, we used
the gene-wise log-ratios (Mg) and log-variance estimates
(log2 φ̂2

g) from the non-linear model fitted to the gene-level
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Figure 3. A view of expression changes across the mixture series. Mean-difference plots between the (A) 100 versus 000, (B) 050 versus 000 and (C) 025
versus 000 samples from the total RNA data set show the attenuation of signal as the RNA samples compared become more similar. These mean-difference
plots were obtained from the linear model fits from the voom analysis of the good samples only across the entire series (15 samples). The solid red line
shows the theoretical minimum value that should be possible and the dashed grey line represents log-FC=0 (no change in expression). Panels D–F show
log-CPM values for three genes across the series. The first (D, DAND5) has higher concentration in the HCC827 sample, the second (E, WASH7P) has
approximately equal concentration in each sample and the third (F, EREG) has higher concentration in the NCI-H1975 sample. The dashed black line
shows the non-linear model fit (Equation 1) obtained using the ‘good’ samples. Libraries are coloured by mixture proportions, where circles represent
good samples and triangles represent degraded samples. The concentration parameters and variability estimated from this model can be used to compare
analysis methods and protocols.

exon log-CPM and generated boxplots of these quantities
by library preparation protocol and sample degradation
status (Figure 4B and D). The signal characteristics are con-
sistent between protocols irrespective of whether degraded
samples are included, with a good dynamic range of log-
ratios observed (Figure 4B). Moreover, the log-ratios are
highly consistent between protocols, with a Pearson corre-
lation of 0.94 (Figure 4C), indicating that no systematic bias
is introduced by either kit. Variation on the other hand, was
observed to differ between protocols (Figure 4D). The poly-
A mRNA analysis that includes the degraded samples was
most variable, and the analyses that use only the good qual-
ity samples, irrespective of protocol, were the least variable.
This is consistent with earlier observations from the MDS
plots (Figure 2C and D). The median difference in variabil-
ity level between the analysis with the degraded samples and
the analysis that used only the good samples was 1.38 units
on the log2-scale (i.e. 2.6 times higher on average on the orig-
inal scale) for the poly-A data and 0.52 units (i.e. 1.4 times
higher on the original scale) for the total RNA data. The

average increase in variability for the poly-A mRNA data is
thus 1.85-fold greater than that observed for the total RNA
data. For this reason, we chose to focus on the mRNA data
in the method comparisons in the remainder of this paper
as it shows the most variation due to sample quality and
will allow us to compare the performance of methods in the
presence of high or low baseline variability by either includ-
ing or excluding the degraded samples.

Assessing signal in intronic and intergenic reads

The next issue explored was whether the substantial pro-
portion of reads mapping to introns measured signal or
noise. Figure 5 shows the log-ratios (Mg) and log-variances
(log2 φ̂2

g) estimated using the log-CPM calculated using four
different annotations: gene body (i.e. the number of reads
overlapping a gene anywhere from the start to the end po-
sition, which will include exons (both annotated and unan-
notated) and introns), gene-level exon (as in Figure 4B and
D), the difference between these two counts in order to ob-
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Figure 4. A comparison of library preparation protocols. (A) Plot of read coverage generated by RSeQC for a representative sample from replicate 2.
Coverage is fairly uniform for both good quality and degraded total RNA samples and for the good quality poly-A mRNA sample there is a slightly lower
coverage at the 3′ end. For the degraded poly-A mRNA sample, the 5′ end reads are under-represented in this library. (B) Boxplots for the estimated log-FC
(Mg) by protocol and degradation state from the non-linear model fit across all genes. Irrespective of protocol and whether degraded samples are included,
we see a good dynamic range, indicating that there are no systematic biases between the different protocols. (C) Smoothed scatter plot of the estimated
log-FC (Mg) for the total RNA protocol versus the poly-A mRNA protocol based on the good quality samples. The red dashed line represents the equality
line. This plot shows good agreement between library preparation methods with no systematic bias. (D) Boxplots of variability (log2 φ̂2

g) by protocol and
degradation state from the non-linear model fit across all genes. As for the read coverage plot, we see that the poly-A mRNA analysis that includes the
degraded samples has systematically elevated levels of variability relative to the other analyses.

tain a conservative estimate of the intron and unannotated
exon counts, or from neighboring intergenic regions that do
not contain annotated genes as the control. Very similar dy-
namic ranges of log-FCs as those observed in Figure 4B
were seen from this analysis for each annotation class (Fig-
ure 5A). The level of variability from the model fits (Fig-
ure 5B) was similar for different gene-centric feature types
(gene body, gene-level exon and gene-level intron) with sam-
ple degradation increasing the amount of variation in all

cases. Interestingly, results from the gene body counting ap-
proach are slightly less variable on average than the exon-
only results. Results for intergenic regions provide the neg-
ative control here, with systematically higher variation than
the other feature types. Figure 5C shows a smoothed scatter
plot of estimated log-ratios from the nonlinear model fitted
to the gene-level intron counts (y-axis) versus the log-ratios
estimated from the gene-level exon counts (x-axis) for the
same gene for the total RNA data set, which had more in-
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Figure 5. Exploration of signal and noise across different genomic features. (A) Estimated log-ratios (Mg) by protocol and degradation state obtained
from nonlinear model fitted to reads that could be assigned to either the entire gene (i.e. overlapping anywhere from the start to the end), or exons only, or
the signal left after subtracting the exon-level counts from the gene total (representing introns and unannotated exons), or intergenic regions. Very similar
dynamic ranges of log-FC were observed for data obtained from all classes of features. (B) Variability (log2 φ̂2

g) by protocol and degradation state obtained
from non-linear model fitted across the same feature classes shown in panel A. The level of variability from the model fits were generally comparable
between counting strategies, although much higher for intergenic counts, which presumably pick up noise. (C) Smoothed scatter plot of estimated log-FC
from the non-linear model fitted to the gene-level intron counts (y-axis) versus the log-FCs estimated from the gene-level exon counts for the total RNA
data set, which had more intronic reads. (D) Smoothed scatter plot of estimated log-FCs from counts of neighboring intergenic regions (y-axis) versus the
log-FCs estimated from the gene-level exon counts for the total RNA data set. The red dashed lines in panels C and D represent the equality line.

tronic reads (Figure 2A). The log-ratios showed good agree-
ment, with a Pearson correlation of 0.86. A similar plot
displaying the log-ratios obtained from intergenic regions
neighbouring a given gene versus the log-ratios estimated
from the gene-level exon counts had a much lower corre-
lation of 0.48 (Figure 5D). While exonic reads are mainly
contributed by the more abundant mature mRNAs, intronic
signal at the gene-level can presumably be attributed to pre-
messenger RNA (pre-mRNA). Since these pre-mRNAs are
likely to have a similar relative concentration to their mature

counterparts, including these intron reads in the gene-level
counts is therefore likely to boost signal, rather than add
noise, increasing power.

Differential expression: seven methods compared

Differential expression analysis was carried out using seven
popular methods available as part of the Bioconductor
project (32): edgeR (33) using the method of exact tests
(edgeR-classic) (34) or with generalized linear models and
likelihood ratio tests (edgeR-glm) (35); baySeq (36,37) with
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counts modelled either by negative binomial distributions
(baySeq) or by normal distributions (baySeq-norm); limma-
voom (15,38) either with default settings (voom) or with
sample quality weights (voom-qw) (39); and DESeq2 (40).
Although all of the above software packages are able to
analyse more than two experimental conditions in one anal-
ysis, the results we present here are for simple two group
comparisons between different mixing proportions. This
mimics what is perhaps the most common replicated RNA-
seq experimental design in practice, a two group compar-
ison with three replicate RNA samples in each group (six
samples in total).

A characteristic of the mixture design is that the same
set of genes must be DE between any pair of samples. If a
gene is DE between the two pure reference samples, then it
should also be DE between any pair of samples with dif-
ferent mixing proportions. However, the FCs will be largest
when comparing pure samples and correspondingly smaller
when comparing intermediate mixtures. Unsupervised clus-
tering of samples confirms that the pure samples have the
most extreme transcriptional profiles (Figure 2C and D).
It follows that the two group comparison of the pure sam-
ples (100 versus 000) should result in the greatest number of
statistically significant DE genes, at any given false discov-
ery rate (FDR). Any two group comparison between other
good samples, such as 75 and 25 (075 versus 025), 50 and
25 (050 versus 025) or 75 and 50 (075 versus 050), should
ideally result in significant genes that are a subset of those
observed in the 100 versus 000 comparison.

The mixture experiment has no true positives or true neg-
atives for differential expression that are known a priori.
However, we can compare methods by way of their sen-
sitivity, recovery and inconsistency rates. ‘Sensitivity’ can
be measured by the total number of DE genes detected.
Supplementary Figure S4 shows the number of discoveries
made (at a FDR < 0.05 cutoff), which gradually decreases
for all seven methods as the RNA samples compared be-
come more similar in concentration. Using the 075 versus
025 comparison as an example, ‘recovery’ refers to the pro-
portion of DE genes detected in 100 versus 000 that are also
detected as DE in 075 versus 025 by the same method, while
‘inconsistency’ refers to the proportion of DE genes in 075
versus 025 that are not detected in 100 versus 000 by the
same method. Analogous recovery and inconsistency rates
can be computed for the 050 versus 025 and 075 versus 050
comparisons. These measures examine the performance of
each method in the presence of small transcriptional differ-
ences, and more specifically, assess how much the power of
each method is affected by systematically reducing expres-
sion differences. At the same time, we consider the rate of
inconsistency to be a reflection of the ‘error’ of a method.

Using a CPM threshold of 1 for expression (see Mate-
rials and Methods) and a 5% FDR cutoff for differential
expression, voom-qw is not only the most sensitive method,
but it also achieves the highest recovery rate across all com-
parisons between good samples (Figure 6A and Supplemen-
tary Table S2). For moderate differences in proportions (075
versus 025), voom-qw achieves 82% recovery of DE genes
from 100 versus 000 and 37–39% recovery for subtle differ-
ences (050 versus 025 and 075 versus 050). Thus, voom-qw
retains much of its power even when transcriptional differ-

ences are reduced. Most other methods have recovery rates
only moderately lower than that of voom-qw, except for bay-
Seq and baySeq-norm that have much lower recovery rates
than the other methods: 62% in both methods for 075 ver-
sus 050, and 10–12% in baySeq and 0% for baySeq-norm
for 050 versus 025 and 075 versus 050. Both baySeq meth-
ods lose power more quickly than the other methods when
the transcriptional differences are small.

The experimental design allows us to perform an analy-
sis on the regular samples and compare our results to the
analysis that includes the degraded samples. Replacing the
non-degraded replicate 2 with the degraded sample results
in extra within-group variability that can be observed in the
vertical spread of points in the MDS plot in Figure 2C for
the poly-A mRNA data. Comparisons with degraded sam-
ples will be referred to as 100 versus 000d, 075 versus 025d,
050 versus 025d and 075 versus 050d, respectively. These de-
graded samples are intended to represent low quality sam-
ples that are frequently observed in practice (41).

As expected, increasing within-group variability results
in lower recovery rates for most methods. Here, the relative
performance was observed to be similar to that observed for
the good samples only for all methods except baySeq-norm.
With the increase in within-group variability, baySeq-norm
achieves relatively high recovery rates that are matched by
exceedingly high inconsistency rates (Supplementary Table
S2). For 100 versus 000d, baySeq-norm achieves 99% recov-
ery and 45% inconsistency. This means that whilst almost
all genes are recovered from the 100 versus 000 compari-
son, approximately half of all significant genes in 100 versus
000d are not detected in 100 versus 000. Overall baySeq-
norm has rates of inconsistency ranging between 17% and
45% (excluding comparisons where no genes are detected
as significant). Amongst methods with low inconsistency,
voom-qw has the highest recovery rate for 100 versus 000d
and 075 versus 025d while DESeq2 has highest recovery by
a narrow margin for the most subtle comparisons 050 versus
025d and 075 versus 050d.

Apart from baySeq-norm, all methods detect differen-
tial expression consistently, with low inconsistency rates ob-
served across all comparisons with or without degraded
samples. For large to moderate differences in mixture pro-
portion (100 versus 000d, 075 versus 025 and 075 versus
025d), inconsistency rates sit at between 0–1.7% (not includ-
ing baySeq-norm). For subtle differences in mixture pro-
portion (050 versus 025, 050 versus 025d, 075 versus 050
and 075 versus 050d), inconsistency is between 0–0.3% (not
including baySeq-norm). Although recovery and inconsis-
tency is assessed for each method relative to itself, it is worth
noting that most genes detected as DE in the 100 versus 000
comparison are common to all methods, with an overlap
of 10 015 genes between baySeq, edgeR-glm, voom-qw and
DESeq2 (Figure 6C). The voom-qw method detects the most
unique DE genes (815) and DESeq2 detects the least unique
DE genes (7).

In addition to within-method comparisons, bias can be
examined by looking at differences between the log-FC es-
timated by each method and those predicted by the nonlin-
ear model (Mg) over the entire data set and adjusted accord-
ing to the relevant sample concentrations for the two-group
comparisons (see Materials and Methods, Equation 2).
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Figure 6. Recovery rate of differential expression methods. The rate at which DE genes are recovered from 100 versus 000 are displayed for comparisons
using (A) good samples only and for those using (B) good and degraded samples. Each method is shown in a distinct colour, with different line-types
used when results are overlapping to allow them to be distinguished from one and other. (C) Venn diagram showing the number of common DE genes for
100 versus 000 for selected methods. For a given software package, the method with higher recovery is shown, with exception to baySeq-norm due to its
exceedingly high inconsistency rates.

Predicted log-FCs were first calculated using information
from all good samples across the experiment – a total of 15
samples. On the other hand, the log-FCs estimated by each
differential expression method are based only on the six
samples included in that particular analysis. For this reason,
we assume that predicted log-FCs are more accurate than
the estimated log-FCs. baySeq and baySeq-norm do not es-
timate gene-wise log-FCs, so were not included in this com-
parison. Estimates from voom match closest to predicted
log-FCs for 100 versus 000 and 100 versus 000d, with a strik-
ingly near-perfect match when only good samples are used
(Figure 7). The tail-end of log-FCs suggests that DESeq2
is slightly conservative, where the magnitude of estimated
log-FCs tends to be slightly smaller than the predicted val-
ues; whilst edgeR is slightly liberal, with estimated values
slightly larger than predicted values. edgeR-glm and edgeR-
classic produce almost identical log-FC estimates. The con-
cordance between estimated and predicted log-FCs drops in
075 versus 050 and 075 versus 050d, when the differences are
most subtle. Here, edgeR-glm estimates log-FCs marginally
better than voom and DESeq2, matching closest to the pre-
dicted values. This analysis was repeated by fitting the non-
linear model to subsets of the data that excluded any sam-
ples used in the particular differential expression compar-
ison in order to guard against over-fitting (Supplementary
Figure S5). Results were broadly similar to those seen in
Figure 7, except that edgeR-glm was observed to have higher
RMSE than DESeq2 in the 100 versus 000 comparison.

Repeating these analyses using a less stringent CPM cut-
off for expression of 0.5 gives results that are broadly similar
to those observed in Figures 6 and 7 for a CPM cut-off of 1
(refer to Supplementary Figures S6 and S7).

Comparing variability levels between our mixture and SEQC

Another issue to consider is whether these data sets contain
more variability than comparable control data sets that are
dominated by technical variation. To assess this, we looked
at the prior degrees of freedom obtained from the edgeR-
glm analysis fitted to all good samples only or the good and
degraded samples (15 samples in each analysis). The pilot
SEQC RNA-seq data set from Law et al. (2014) (15) that
consisted of 16 samples (4 samples of each type A, B, C and
D) was also analysed using edgeR-glm. The SEQC data set
was pre-processed by filtering genes with low counts (CPM
> 1 in at least 4 samples was required), then TMM nor-
malized. The prior degrees of freedom was estimated to be
5.30 using the good samples, 4.53 for the good and degraded
samples and 67.7 for the SEQC data set. This value mea-
sures the consistency of the gene-wise dispersions, with a
smaller prior degrees of freedom indicating the values are
more gene-specific (i.e. there is more biological variation)
and larger values indicating that they are more consistent
(i.e. there is more technical variation) and will be more heav-
ily shrunk to a common value. Repeating this analysis with
limma voom gave similar results with prior degrees of free-
dom values estimated as 5.29, 4.54 and 45.3, respectively
for the 3 data sets. Plotting the BCV from the edgeR-glm
analysis offers another way to visualise this (Supplementary
Figure S8). Much greater spread in gene-level variability is
observed in the current mixture experiment (Supplementary
Figure S8A and B) compared to the SEQC data set (Supple-
mentary Figure S8C) in which all genes at a particular ex-
pression level have a very similar BCV. This analysis shows
that our efforts to simulate additional variation over and
above pure technical noise were successful, with our data
sets having systematically higher variability than the pilot
SEQC data set.
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Figure 7. Accuracy of log-FCs estimated by differential expression methods. Gene-wise log-FCs estimated by the different methods are plotted on the
x-axis against predicted log-FCs obtained from the non-linear model on the y-axis. Areas with high density of points are shaded in blue, where colour
intensity reflects the density of points. Red lines mark equality between estimated and predicted log-FCs. Root-mean-square error (RMSE, Equation 3)
between estimated and predicted log-FCs are displayed in each panel.

Differential splicing: three methods compared

Detection of differentially spliced (DS) genes was carried
out using three available Bioconductor methods for the
analysis of exon counts: DEXSeq (42), edgeR-ds (35) and
voom-ds (38) (see Materials and Methods). The recovery
rate and inconsistency rate of each method is examined as it
was for differential expression. Rate of recovery is defined as
the proportion of DS genes detected in 100 versus 000 that

are also detected in another comparison (075 versus 025,
050 versus 025 or 075 versus 050) by the same method. The
rate of inconsistency is defined as the proportion of genes
detected as DS in a particular comparison (075 versus 025,
050 versus 025 or 075 versus 050) that were not detected in
the 100 versus 000 comparison by the same method.

Using only the good samples, the recovery rates of the
three methods were similar for each comparison, with
DEXSeq having slightly higher recovery than edgeR-ds or
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Figure 8. Recovery and inconsistency rate of differential splicing methods. The rate at which DS genes are recovered from (A) 100 versus 000 and the incon-
sistency of (B) detected genes are displayed for comparisons using good samples only. Each method is shown in a distinct colour, line-type combination.
(C) Venn diagram showing the number of common DS genes for 100 versus 000 across the three methods.

voom-ds (Figure 8A). Compared to the differential expres-
sion analysis, the differential splicing methods rapidly lose
the ability to recover DS genes from the 100 versus 000 com-
parison when the samples become more similar – 22–35%
recovery for 075 versus 025, and 2–6% recovery for 050 ver-
sus 025 and 075 versus 050.

Although DEXSeq achieves slightly better recovery than
edgeR-ds and voom-ds, this advantage is negated by its very
high inconsistency rate (Figure 8B). For the comparisons
involving subtle differences in mixture proportion, meth-
ods are expected to have both low recovery and inconsis-
tency rates since methods should be conservative in theory.
For comparisons of mixed samples, 27–39% of the genes
detected as DS by DEXSeq are not detected in its corre-
sponding 100 versus 000 analysis. This means that a third
of these DS genes did not achieve significance in the com-
parison between the pure samples where DS genes can be
detected confidently, but were significant when the between
sample differences were more subtle.

On the other hand, voom-ds and edgeR-ds achieve much
lower rates of inconsistency, with voom-ds being the least in-
consistent. For 075 versus 025, voom-ds and edgeR-ds have
inconsistency rates of 8% and 9%, respectively. These rates
fall to 0% in voom-ds, and 0–5% in edgeR-ds, for the 050 ver-
sus 025 and 075 versus 050 comparisons which are the most
subtle. Both of these methods have comparable, but slightly
lower recovery rates than DEXSeq, however, any gene that
is detected as DS by these two methods are likely to be also
detected in the 100 versus 000 comparison.

Overall, DEXSeq appears to be liberal relative to voom-ds
and edgeR-ds. For 100 versus 000, 635 genes are commonly
detected by all three methods (41% of the total DS genes
identified by any method, Figure 8C), which is much lower
than was observed for the differential expression analysis
(85%, Figure 6C). Another 686 genes are detected only by
DEXSeq whereas voom-ds and edgeR-ds uniquely detect 70
and 27 DS genes, respectively (Figure 8C).

The analysis was repeated for comparisons where the
non-degraded replicate 2 is replaced with the degraded sam-
ple (100 versus 000d, 075 versus 025d, 050 versus 025d and
075 versus 050d). The number of DS genes detected is much
lower in these comparisons, with reduced recovery and in-
consistency rates relative to the corresponding comparisons
using good samples only (refer to Supplementary Figure
S9).

Results from comparisons between the mixture samples
(075 versus 025, 050 versus 025 and 075 versus 050) indi-
cate that the differential splicing methods deteriorate more
rapidly than the differential expression analysis methods
when the expression changes become more subtle, with
lower recovery rates and higher inconsistency rates. In gen-
eral, differential splicing analysis is more complex and chal-
lenging than differential expression analysis. Detection of
differential exon usage is equivalent to a statistical test of
interaction rather than of a simple change in level between
two treatment conditions, so there is less statistical power
to detect differential splicing. Furthermore, the total gene-
level read counts used for differential expression analysis
are spread over several exons per gene, leaving much lower
counts per feature for exon-level analysis.

Deconvolution analysis: DeMix versus ISOpure

The mixture design is also ideal for comparing methods
that aim to determine the proportions of different sample
types present in heterogeneous samples. To this end, we es-
timate mixture proportions for 12 poly-A mRNA samples
using the statistical methods DeMix (26) and ISOpure (27).
These methods determine the proportions of two different
cell populations (typically normal and cancer cells in a pa-
tient sample) present in a mixed sample and deconvolve the
expression profiles. The input matrix for both methods are
read counts from the four pure samples of each type (100, 0)
and the twelve mixed samples (4 each of 75, 50 and 25). Af-
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ter filtering based on FC cutoffs of >2 or <0.5, only 2055
informative genes remained. As shown in Table 1, DeMix
yielded proportion estimates that were closer to the ground
truth (differences of less than 10%) while ISOpure largely
overestimated mixture proportions across all 12 samples.
We also compared the deconvolved expression values from
the two methods with the four pure samples using Pear-
son correlation coefficients. The correlations from DeMix
are all above 0.95 and were generally higher than those ob-
tained from ISOpure (Table 1). This analysis clearly demon-
strates that DeMix is a more reliable method for deconvo-
lution analysis.

DISCUSSION

For common tasks like differential expression analysis,
there have been many comparison studies that have arrived
at various conclusions on the ‘best’ method using differ-
ent data sets (both simulated and experimental) and assess-
ment criteria (15,16,40,43–47). Some find voom to be best
(15,43), or edgeR (44,47), or DESeq2 (40,46) or edgeR and
DESeq2 to be equal best (45). In terms of our main results
from comparing differential expression testing methods on
our mixture data set, we find voom-qw to be most sensitive
followed by DESeq2, edgeR (glm and classic), voom and fi-
nally baySeq (both normal and regular) is the least sensi-
tive. Recent work has shown that combining differential ex-
pression methods in a weighted manner (48) can offer better
results than relying on individual methods. Further explo-
ration of this approach on data sets such as this, while in-
cluding methods such as voom-qw would be an interesting
topic for future research. Optimising such an approach has
the potential to ensure, that for any given data set, the best
possible results are obtained.

For differential splicing, our study is the first to compare
DEXSeq with the competing methods in edgeR and limma.
The latter methods were found to be more conservative than
DEXSeq, identifying somewhat fewer differential splicing
events, but achieved much better consistency than DEXSeq.

Unlike the study of Gallego Romero et al. (2014) (49),
who degrade PBMC samples by leaving them at room tem-
perature for varying lengths of time, our work couples sam-
ple degradation with a classic mixture design that allows
precision and bias to be assessed for every expressed gene.
Our experiment has three replicate samples per mixture,
which is close to the minimum that can be used for tasks
like differential expression analysis and differential splicing
analysis, so our comparisons should be interpreted with this
in mind, in that we are working in the most difficult setting,
which is nonetheless common in practice. A limitation of
the current study is that we simulated a third of the data to
be more variable by degrading one sample from each group.
This study design particularly tests the ability of differen-
tial expression methods to tolerate heterogeneous variabil-
ity across the samples. If we turn this around and have the
majority of samples being more variable, tasks like detecting
differential expression with such a small sample size will be-
come much harder and yield many fewer significant results
irrespective of the method chosen.

Further extensions to this experiment could include other
library preparation methods, such as exome capture, which

has been shown to improve the results from degraded sam-
ples (50) or Globin depletion methods (51), although the
mixture would need to be re-designed to include an appro-
priate blood sample to make this comparison informative.
The inclusion of controls such as the External RNA Con-
trols Consortium spike-in mixes (1 and 2) in different sam-
ples is another enhancement that would provide transcripts
with known FCs as a further tool for assessing bias. The ad-
dition of spliced spike-in controls (52) is another alternative
that would better tailor the experiment for benchmarking
differential splicing methods.

Other genomics applications, such as ChIP-seq or RNA-
seq using new technologies, such as long read sequenc-
ing platforms from companies such as Pacific Biosciences
(Sequel) or Oxford Nanopore Technology (MinION and
PromethION) could also benefit from having available a ref-
erence data set such as this to allow methodology testing
and inter-platform comparisons.

Our analysis has included many of the most popular Bio-
conductor tools but is not intended as an exhaustive meth-
ods comparison. Different algorithms for other common
analysis tasks such as read alignment and gene counting,
normalization, fusion-detection, intron retention analysis
and gene set testing, to name a few possibilities, could also
be compared using this data set. We also did not test ev-
ery capability of the software packages, in particular, we
have not tested the ability of the software packages to anal-
yse complex experimental designs with multiple treatment
factors and blocking variables. We have also not tested the
newer features of some of the packages, e.g. edgeR’s ro-
bust dispersion estimation (53), edgeR’s quasi-likelihood
pipeline (54) or limma’s robust empirical Bayes (55). A nat-
ural way to facilitate widespread systematic evaluations of
other methods would be to incorporate this data set into
one of the recently released RNA-seq benchmarking tools
such as RNASEQcomp (56) or RNAonthebench (57).

CONCLUSION

We have generated a unique control experiment that is the
first to include sample-level heterogeneity induced by sys-
tematically degrading samples in order to simulate this rou-
tine source of variation. The variability added to our study
has shifted the noise profile away from the pure technical
end of the spectrum typical of previous mixture experiments
much closer to variation levels seen in regular experiments.
The classic mixture design allows precision and bias to be
quantified via a non-linear model for each gene, and used as
a basis for comparing different sample preparation meth-
ods. The comparison of poly-A mRNA and total RNA
sample preparation kits from Illumina saw differences in the
detection of several RNA classes, with more reads mapping
to ncRNA, snoRNAs and snRNAs using the total RNA
protocol. This comes at a price, with the total RNA pro-
tocol sequencing a greater number of intronic reads com-
pared to the poly-A method. Our investigations showed
that these intronic reads measure signal rather than random
noise irrespective of the library preparation method used.
The estimated log-FCs obtained from modelling either in-
tron counts or exon counts at the gene-level were highly cor-
related, indicating that including these reads in gene-level
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Table 1. Mixture proportions estimated from each sample from the poly-A mRNA data by the reference free methods DeMix and ISOpure. The results for
the degraded sample is listed last in each cell in italics and the values closest to the true values are underlined. In each case, DeMix recovers values closest
to the true values shown in the bottom row. Pearson correlation coefficients calculated between each of the deconvolved expression profiles mixed samples
and the associated pure tumor sample are also shown. The highest correlation coefficients for each sample is underlined. Of the two methods compared,
DeMix tends to have higher correlations (closer to 1)

Method 25:75 50:50 75:25

DeMix (estimated proportion) 0.311, 0.294, 0.284, 0.247 0.563, 0.544, 0.518, 0.516 0.759, 0.730, 0.751, 0.733
DeMix (correlation) 0.994, 0.986, 0.989, 0.996 0.987, 0.986, 0.959, 0.956 0.964, 0.998, 0.998, 0.964
ISOpure (estimated proportion) 0.654, 0.673, 0.655, 0.615 0.917, 0.913, 0.908, 0.883 1.00, 1.00, 1.00, 1.00
ISOpure (correlation) 0.975, 0.971, 0.976, 0.965 0.973, 0.968, 0.946, 0.955 0.959, 0.986, 0.987, 0.964
True proportion 0.25 0.5 0.75

analyses rather than ignoring them as is standard practice
offers a simple way to boost signal on the order of 20–30%.
This observation warrants further investigation using other
published RNA-seq data through re-analysis with and with-
out the intronic reads. It could deliver savings on the cost
of sequencing by allowing more samples to be multiplexed
per run for an equivalent amount of gene-centric sequenc-
ing once exon and intron reads are pooled. The inclusion
of degraded samples in the analysis had a more profound
effect on the variability of the poly-A mRNA data than the
total RNA data, which suggests that the latter method is
the best choice in experiments where degraded samples are
expected, such as in clinical studies.

This mixture design also allows for internal comparisons
to be made within methods for benchmarking differential
expression and differential splicing analysis methods. How
well a given method can detect changes when the differences
are large and relatively easy to detect is used as the ‘true pos-
itive’ set and compared to the results obtained when an in-
dependent set of samples that show more subtle changes are
compared in a pair-wise manner. Although most methods
perform well at recovering these ‘true positives’ with high
overlap in the easiest ‘pure versus pure’ comparison (100
versus 000), the voom-qw method that explicitly deals with
sample-level variation slightly outperforms other methods,
with DESeq2 second best, followed by the two edgeR meth-
ods which perform similarly, then standard voom, and fi-
nally the two baySeq methods that have the least power
and consistency. In terms of bias, DESeq2 gives FCs that
slightly underestimate the consensus values obtained from
the nonlinear model, indicating that its shrinkage procedure
gives conservative results. For differential splicing methods,
edgeR-ds and voom-ds were found to both be conservative
relative to the most popular method, DEXSeq, however,
DEXSeq tended to have a high inconsistency rate compared
to these other methods. This is the first time that a mix-
ture experiment has been used to benchmark differential
splicing methods. The results from the deconvolution analy-
sis showed that DeMix consistently outperformed ISOpure.
Our work demonstrates the utility of carefully designed con-
trol experiments for benchmarking library preparation kits
and analysis methods.
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