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A Partial Correlation Screening 
Approach for Controlling the False 
Positive Rate in Sparse Gaussian 
Graphical Models
Ginette Lafit1,2*, Francis Tuerlinckx1, Inez Myin-Germeys2 & Eva Ceulemans1

Gaussian Graphical Models (GGMs) are extensively used in many research areas, such as genomics, 
proteomics, neuroimaging, and psychology, to study the partial correlation structure of a set of 
variables. This structure is visualized by drawing an undirected network, in which the variables 
constitute the nodes and the partial correlations the edges. In many applications, it makes sense to 
impose sparsity (i.e., some of the partial correlations are forced to zero) as sparsity is theoretically 
meaningful and/or because it improves the predictive accuracy of the fitted model. However, as we 
will show by means of extensive simulations, state-of-the-art estimation approaches for imposing 
sparsity on GGMs, such as the Graphical lasso, ℓ1 regularized nodewise regression, and joint sparse 
regression, fall short because they often yield too many false positives (i.e., partial correlations that are 
not properly set to zero). In this paper we present a new estimation approach that allows to control the 
false positive rate better. Our approach consists of two steps: First, we estimate an undirected network 
using one of the three state-of-the-art estimation approaches. Second, we try to detect the false 
positives, by flagging the partial correlations that are smaller in absolute value than a given threshold, 
which is determined through cross-validation; the flagged correlations are set to zero. Applying this 
new approach to the same simulated data, shows that it indeed performs better. We also illustrate our 
approach by using it to estimate (1) a gene regulatory network for breast cancer data, (2) a symptom 
network of patients with a diagnosis within the nonaffective psychotic spectrum and (3) a symptom 
network of patients with PTSD.

In many scientific disciplines, researchers are interested in the linear dependencies and unique relations between 
larger sets of variables, such as genes1, proteins2, symptoms of a disease3, functional brain connectivity4, etc. There 
is consensus that computing all pairwise correlations between these variables is misleading, because such correla-
tions do not correct for linear relations that might be due to other variables. Therefore, many researchers recur to 
calculating partial correlation coefficients, which express the remaining linear dependency between two variables, 
after the effect of the rest of the variables under study is removed. More specifically, Gaussian Graphical Models 
(GGMs) have become increasingly popular5,6. These models yield an undirected network (i.e., undirected graph) 
in which the variables are depicted as nodes and the partial correlations among the variables are visualized as the 
edges among the nodes. The width of an edge reflects the size of the corresponding partial correlation (see Fig. 1).

Often, a sparse GGM is fitted, which implies that many of the partial correlations are forced to zero and thus 
that the corresponding edges in the network can be dropped. In some applications, the assumption of sparsity 
is intrinsic to the phenomenon under study. For instance, it has been shown that most genetic networks are 
sparse7,8. In other applications, the assumption of sparsity is motivated through improved interpretability. Indeed, 
even if the true model is not sparse the sparsity assumption allows to more accurately estimate the remaining 
parameters when the amount of information per parameter (n/p) is relatively small9, and prevents overfitting10.

Popular methods to estimate sparse GGMs are the regularized nodewise regression approach of Meinshausen 
and Bühlmann11, the joint sparse regression (SPACE) approach by Peng, et al.12 and the Graphical lasso (Glasso) 
proposed by Friedman, Hastie and Tibshirani13. These three approaches optimize different objective functions 
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(see Methods section) but all set some of the estimated parameters, and thus some of the network edges, to zero 
through 1 penalization. This penalization boils down to summing the absolute values of the estimated parameters 
and adding this sum to the objective function, after multiplying it by a regularization parameter. This parameter 
determines the impact of the penalty and has to be tuned by the user. Different tuning approaches have been 
proposed, based on cross-validation, information criteria, or finite sample derivations. Yet, 1 penalization often 
does not work well. Indeed, recent studies on the use of 1 penalization in standard regression analysis have shown 
that it tends to yield too many non-zero regression weights14–16. Translating these results to the estimation of 
sparse GGMs, we expect regularized nodewise regression, SPACE and the Glasso to often yield false positives, 
implying that some of the drawn edges should have been dropped. We will test this hypothesis in extensive simu-
lations, in which we will also evaluate the effect of the tuning approach (i.e., information criteria, k-fold cross 
validation or finite sample derivations).

To overcome the problem of incorrectly included edges, we will present a novel approach, that we call Partial 
Correlation Screening (PCS). Our PCS approach consists of two steps. In the first step, we estimate a sparse partial 
correlation network using one of the state-of-the art methods mentioned above. In the second step, we try to filter 
out the false positives that will probably be present in the estimated network. To this end, we screen the resulting 
partial correlation matrix for values that are smaller in absolute value than a cross-validation based threshold and 
set these to zero. This novel approach is based on earlier work on thresholding after regularization. Specifically, 
Saligrama et al.17 and Descloux and Sardy18 proposed the idea of thresholding after applying an 1 regularized 
procedure in the context of regression analysis. Ha and Sun19 presented a related idea for GGMs that consists of 
estimating the partial correlation matrix using a ridge penalty and then determining the non-zero entries of the 
matrix by hypothesis testing. Therefore, we will also evaluate what happens if we replace the 1 penalty by a ridge 
penalty. We will apply the Partial Correlation Screening approach to the same simulated data to show that it 
indeed performs better. Finally, we will show how the PCS approach can be used to estimate networks based on 
real datasets: (1) a gene regulatory network of patients with breast cancer, (2) a symptom network of patients with 
a diagnosis within the nonaffective psychotic spectrum and (3) a symptom network of patients with 
Post-Traumatic Stress Disorder (PTSD).

The rest of the article is organized as follows. In the next section, we first present a toy example to introduce 
some notation and concepts and to illustrate that state-of-the-art estimation approaches yield networks that dif-
fer from the population model. Then, using this toy example we show how our PCS procedure works. Next, we 
discuss the results of two simulation studies, one based on settings that have been used in other papers on this 
topic and one based on the estimated network for a real data set. We present applications to real datasets. Next, 
we discuss our findings and formulate conclusions. Finally, the Methods section presents a detailed description of 
the evaluated tuning approaches for each of the state-of-the-art estimation approaches and of the PCS procedure.

Results
Toy example.  The toy data consists of n = 100 observations that are sampled from a p = 6-dimensional mul-
tivariate Gaussian distribution. We set the covariance matrix of the distribution Σ to:

Σ =
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1 63 0 00 0 70 0 00 0 63 0 70
0 00 1 00 0 00 0 00 0 00 0 00
0 70 0 00 1 68 0 00 0 70 0 13

0 00 0 00 0 00 1 00 0 00 0 00
0 63 0 00 0 70 0 00 1 63 0 70
0 70 0 00 0 13 0 00 0 70 1 68 (1)

Figure 1.  The undirected network implied by the toy example.

https://doi.org/10.1038/s41598-019-53795-x


3Scientific Reports |         (2019) 9:17759  | https://doi.org/10.1038/s41598-019-53795-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

The conditional independence structure of this distribution can be represented by a GGM. The corresponding 
undirected network is shown in Fig. 1. The six variables X1 to X6 form the set of nodes V = {1, 2, 3, 4, 5, 6}. The 
set of edges E contains all node pairs (i, j) that are connected in the network, implying that Xi is conditionally 
dependent on Xj, given all the remaining variables. Thus, variable pairs that do not belong to the edge set are con-
ditionally independent, given all remaining variables. For instance, in this illustration, the network shows an edge 
between variables X3 and X6. Therefore, these variables are conditionally dependent. However, there is no edge 
between variables X1 and X2, implying that X1 and X2 are conditionally independent.

Because the variables are Gaussian distributed, a variable pair (i, j) is conditionally independent if and only if 
their partial correlation given the rest of the variables is zero5. Let’s denote by Γ the partial correlation matrix. The 
entries ρij|V\{i, j} of this matrix are the partial correlations between variables Xi and Xj, conditioned on the rest of 
variables. For the toy example the matrix Γ equals:

Γ =
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0 00 0 00 0 00 1 00 0 00 0 00
0 00 0 00 0 45 0 00 1 00 0 45
0 45 0 00 0 45 0 00 0 45 1 00 (2)

We can now define the neighborhood of each node. The neighborhood of node i consists of all the nodes j that 
form an edge with node i, implying that the partial correlation of Xi and Xj differs from zero. In the toy example 
the neighborhood of node 1 is formed by nodes 3 and 6, while the neighborhood of node 2 is empty.

Since the true edge set of the toy example is sparse, we can estimate it by means of the Glasso, SPACE, 1 regu-
larized nodewise regression (NR) and ridge nodewise regression (Ridge). Unlike Glasso and SPACE which 
directly estimate the edge structure, NR computes a regression model per node and thus yields two regression 
weights for each edge. To combine the information in these two weights into one edge, we can consider two vari-
ants, NR-AND and NR-OR. The AND rule means that an edge is only included in the model if both regression 
weights differ from zero, whereas the OR rule is more liberal and selects all edges for which at least one of the 
regression weights is not set to zero. Ridge estimates the partial correlations by fitting a regression model for each 
node using an 2 penalty, which shrinks the regression weights towards zero.

For each of the estimation methods, a number of approaches have been put forward to tune the regularization 
parameter, the details of which are provided in the Methods section. For Glasso we will use 10-fold cross valida-
tion using two different loss functions: the first approach aims to minimize the negative log-likelihood function 
(CV1) and the second approach focuses on the sum of the prediction errors of each node (CV2). Moreover, we 
will apply two selection rules when using cross-validation: selecting the model that yields the lowest value and 
applying the one-standard-error-rule (1se)20. Additionally, we will consider the Bayesian Information Criterion 
(BIC) and the Extended Bayesian Information Criterion (EBIC)21. To tune the weight of the 1 penalty term in 
SPACE and NR, we will apply 10-fold CV, its one-standard-error-rule variant, BIC and the finite sample result 
(FSR) proposed by Meinshausen and Bühlmann11. Note that in NR the tuning is performed for each separate 
regression. To optimize the weight of the 2 penalty term in Ridge we will apply 10-fold CV for each separate 
regression. We note that this considered set of procedures is not intended to be exhaustive. Yet, the set is sufficient 
to illustrate the problem of efficiently tuning the penalty weight when there is limited information.

Figure 2 shows the GGMs obtained with the nineteen considered approaches (i.e., nineteen combinations of 
estimation method (Glasso, SPACE, NR-AND, NR-OR and Ridge) and tuning options (CV, CV-1se, BIC, EBIC, 
FSR). We observe that Glasso-CV1-1se (panel c), NR-AND-FSR (panel o) and NR-OR-FSR (panel s) yield a 
network that is more sparse than the true network. Applying Glasso-CV1-1se all edges are set to zero. Whereas 
with NR-AND-FSR the edges (1, 3) and (3, 6) are set to zero, with NR-OR-FSR only the edge (3, 6) is set to zero. 
The other estimation methods yield networks that contain the true set of edges as well as false positives, with the 
number of false positives varying from ten (Glasso-CV2, panel d; NR-AND-CV-1se, panel m; Ridge-CV, panel t) 
to one (SPACE-CV-1se, panel i).

Our PCS procedure aims to remove these false positive edges. The first step of the procedure is to apply one 
of the nineteen considered approaches. In the second step, we try to single out the false positives by thresh-
olding the entries of the estimated partial correlation matrix. Specifically, only the partial correlations that are 
larger in absolute value than a given threshold are retained, whereas the others are set to zero and thus removed 
from the network. The threshold is calibrated by means of 10-fold cross-validation (see Methods section for 
more information). For the toy example the nineteen computed thresholds range from 0.0001 to 0.283. Figure 3 
presents the networks that we obtain by applying these thresholds to the networks in Fig. 2. We observe that 
PCS-Glasso-CV1 (panel b), PCS-Glasso-CV2 (panel d), PCS-Glasso-CV2-1se (panel e), PCS-Glasso-BIC (panel 
f), PCS-Glasso-EBIC (panel g), PCS-SPACE-CV (panel h), PCS-SPACE-BIC (panel j), PCS-SPACE-FSR (panel k), 
PCS-NR-AND-CV (panel l), PCS-NR-AND-CV-1se (panel m), PCS-NR-AND-BIC (panel n), PCS-NR-OR-CV-
1se (panel q), PCS-NR-AND-BIC (panel r) and Ridge-CV (panel t) remove the false positives and yield the true 
network. For, PCS-SPACE-CV-1se (panel i) none of the false positives are removed. PCS-NR-OR-CV (panel p) 
discards all but one false positive edge. Obviously, the networks with false negatives (panels c, o and s) cannot be 
improved by PCS.

Simulation study with synthetic data.  In this section we perform an extensive simulation study to eval-
uate and compare the performance of the different procedures. We will inspect the results obtained with the 
nineteen combinations used above and study whether they improve when adding PCS. To this end, we replicated 
the settings used by Liu et al.22, Ravikumar et al.23, Rothman et al.24 and Yuan and Lin25.
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Design.  Each simulated data set is generated by drawing n independent observations from a p-variate Gaussian 
distribution with mean zero and partial correlation matrix Γ. We considered two possible sample sizes n = {100, 
500} and three different values of p = {20, 60, 200}. We inspected four different specifications of the population 
partial correlation matrix Γ. To illustrate these specifications for p = 60, we visualized them in Fig. 4.

	 1.	 Model 1: 2 neighbor Chain Graph, in which ρii|V\{i} = 1 and ρi, i+1|V\{i, i+1} = ρi−1, i|V\{i, i−1} = −0.4, and all other 
edges are set to 0.

	 2.	 Model 2: 3 neighbor Chain Graph, in which ρii|V\{i} = 1, ρi, i+1|V\{i, i+1} = ρi−1, i|V\{i, i−1} = −0.4, ρi, i+2|V\{i, i+2} =  
ρi−2, i|V\{i, i−2} = −0.2, and all other edges are set to 0.

Figure 2.  Estimated undirected networks for the toy example, before applying PCS.
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	 3.	 Model 3: 2 nearest-neighbor graph. We first specify the inverse of the covariance matrix Σ as follows: we 
randomly select p points from a unit square and we compute all pairwise distances between the p points. 
Then, for each node the neighborhood set is found by including the two nodes with the smallest distance. 
Next, the OR-rule is applied to these neighborhood sets to derive the associated undirected network. The 
off-diagonal elements of the corresponding Σ−1 are randomly chosen from the interval 

∪− − . .[ 1, 0 5] [0 5, 1]. To ensure that Σ−1 is positive definite, the matrix is transformed as: 
Σ−1 + (|λ(Σ−1)min| + 0.1)Ip where λ(Σ−1)min refers to the smallest eigenvalue and Ip is an identity matrix of 
dimension p. To compute Γ we normalize Σ−1 and we multiply the off-diagonal elements by (−1).

	 4.	 Model 4: Random graph. We first specify Σ−1 as follows: each upper triangular element of Σ−1 is set equal 

Figure 3.  Estimated undirected networks for the toy example, after applying PCS.
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to 0.3 with probability ρ and to zero otherwise. We set the probability ρ = {0.1, 0.01, 0.001} when p = {20, 
60, 200}, respectively. Next, we set the lower triangular elements equal to the corresponding upper trian-
gular elements. To ensure that Σ−1 is positive definite the matrix is transformed as in model 3. Finally, to 
compute Γ we normalize Σ−1 and we multiply the off-diagonal elements by (−1).

We generated 100 replicates for each cell of the design. An R script to conduct the simulation experiment is 
provided in the Supplementary Information.

Performance measures.  To evaluate how well the different methods perform in distinguishing between true 
non-zero partial correlations and true zero ones, we compute the True Positive Rate (TPR) and False Positive 
Rate (FPR):

=
+

TPR TP
TP FN (3)

=
+

FPR FP
TN FP (4)

where TP is the number of true positives (true non-zero edges that are estimated as such), TN is the number of 
true negatives (true zero edges that are recognized as such), FP is the number of false positives (true zero edges 
that are estimated as non-zero) and FN is the number of false negatives (true non-zero edges that are estimated 
as zero). The TPR and FPR coefficients take values in the range [0, 1]. For the TPR a value of 0 indicates that the 
labeling of edges as non-zero is completely wrong, a value of 0.5 indicates that the procedure cannot do better 
than random prediction and a value of 1 indicates a perfect recovery of the non-zero edges. Similarly, a FPR value 
of 0 indicates a perfect recovery of the zero edges, a value of 0.5 indicates that the procedure cannot do better than 
random prediction and a value of 1 indicates that the labeling of edges as zero is completely wrong. We also report 
the average number of TP and FP values across the 100 replicates.

Results.  Tables 1 to 3 show the average TPR and FPR scores for the different methods under consideration for 
the different choices of p. We also report the average number of TP and FP for the different methods in Tables 4 to 
6. First, we compare the performance of the methods without conducting PCS. The TPR and FPR scores depend 
strongly on the model used to generate the data and the values of n and p (i.e., amount of available information). 
In general, when comparing the performance of the different methods in controlling the amount of false non-zero 
partial correlations, we observe that for every combination of p and n, SPACE and NR perform better than Glasso. 
The results for Glasso are affected by the penalty tuning approach: whereas using cross-validation tends to introduce 
a large number of false positives across all different conditions, applying EBIC yields many false negatives. For NR 
and SPACE, the results depend on n and p and the data generating model. For n = 100, the best overall though still 
rather bad performance for Models 1 and 4 is obtained with some of the NR-AND variants and for Models 2 and 
3 with some of the SPACE variants. We also note that for Model 2 none of the state-of-the-art methods (excluding 
Ridge) is able to efficiently estimate the true number of positive edges. Furthermore, in the high-dimensional case 
(i.e., p > n) all approaches perform badly in controlling the amount of false positive edges. When n = 500, the TPR 
and FPR values are clearly better than for the low-sample size setting and indicate good overall performance.

Turning to the results after applying PCS, we observe in Tables 1 to 6 that PCS-SPACE and PCS-NR estimate 
networks that contain a smaller number of false positive edges than the state-of-the-art methods without PCS. 
This improvement is larger for Models 1, 3 and 4 and when n = 100 and n < p, in that PCS is able to control the 
number of false positive edges without compromising the number of correctly estimated true edges. Furthermore, 
the performance differences between the different SPACE and NR variants have diminished. PCS-SPACE-BIC 
has the best overall performance across all the n = 100 conditions. For PCS-Glasso-EBIC the results cannot be 
improved by PCS, because Glasso-EBIC yields networks with a large number of false negatives. When n = 500, 
PCS performs almost perfectly in finding the non-zero edges in Models 1, 3 and 4, while for Model 2, the best 
overall performance is obtained with PCS-NR-OR-BIC when p = 20, 60 and with PCS-NR-OR-FSR when p = 200.

Figure 4.  Heatmaps of the true simulated networks when p = 60. White represents partial correlations equal to 
zero, and black represents partial correlations different from zero.
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Finally, we study how the sample size and the non-sparsity level influence the height of the estimated threshold 
in the PCS procedure. For Glasso, SPACE, NR using the AND rule and NR using the OR rule, we estimate a linear 
mixed effect model with a random intercept in which observations are clustered according to the tuning procedure 
(i.e., different CV variants, information criteria or finite sample results). The model includes the estimated thresh-
olds as the dependent variable and the sample size and the non-sparsity level as predictors. The non-sparsity level is 
computed as the number of true non-zero partial correlations divided by the total number of edges in the network. 
For Ridge we estimate the same model using OLS regression. Table 7 shows the obtained regression coefficients for 
each estimation procedure. We observe that across the different estimation procedures there is a significant negative 
relation between the sample size and the estimated threshold value. Also, we found a significant negative relation 
between the non-sparsity level and the threshold value parameter for all methods except Glasso.

Simulation study based on real data.  In this section we simulate data based on the sparse GGM results 
obtained by Armour, et al.3 for 20 Post-Traumatic Stress Disorder (PTSD) symptoms of 221 U.S. military veterans. 
The 20 PTSD symptoms are assumed to form four symptoms clusters: intrusions (B1-B5), avoidance (C1-C2), 
negative alterations in cognitions and mood (D1-D7), and alterations in arousal and reactivity (E1-E6). Armour, 
et al.3 applied the Glasso-EBIC approach and used bootstrapping techniques to estimate the parameter accuracy 
and stability of the partial correlation matrix Γ26. The associated network, shown in Fig. 5, reveals strong positive 

n = 100

Model 1 Model 2 Model 3 Model 4
TPR FPR TPR FPR TPR FPR TPR FPR
no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS

Glasso-CV 0.999 0.989 0.160 0.008 0.781 0.647 0.240 0.100 0.963 0.901 0.083 0.009 0.989 0.860 0.174 0.014
Glasso-CV-1se 0.992 0.985 0.042 0.019 0.315 0.309 0.019 0.018 0.866 0.849 0.013 0.007 0.853 0.825 0.022 0.013
Glasso-CV2 1.000 0.988 0.316 0.007 0.932 0.653 0.547 0.047 0.993 0.923 0.275 0.003 0.990 0.857 0.200 0.014
Glasso-CV2-1se 0.999 0.988 0.138 0.011 0.794 0.650 0.261 0.095 0.971 0.908 0.107 0.008 0.924 0.858 0.051 0.017
Glasso-BIC 1.000 0.989 0.213 0.008 0.066 0.059 0.014 0.009 0.988 0.927 0.206 0.006 0.659 0.621 0.051 0.011
Glasso-EBIC 0.300 0.299 0.021 0.003 0.000 0.000 0.000 0.000 0.947 0.899 0.054 0.009 0.000 0.000 0.000 0.000
SPACE-CV 0.993 0.991 0.015 0.010 0.667 0.632 0.072 0.054 0.939 0.919 0.016 0.008 0.910 0.876 0.024 0.016
SPACE-CV-1se 0.991 0.989 0.007 0.005 0.550 0.541 0.034 0.032 0.913 0.887 0.005 0.003 0.875 0.833 0.011 0.009
SPACE-BIC 0.994 0.991 0.014 0.007 0.624 0.588 0.044 0.036 0.956 0.907 0.013 0.004 0.938 0.873 0.031 0.015
SPACE-FSR 0.997 0.992 0.026 0.009 0.599 0.571 0.045 0.036 0.964 0.924 0.025 0.007 0.961 0.869 0.044 0.016
NR-AND-CV 0.997 0.979 0.116 0.015 0.819 0.697 0.215 0.047 0.978 0.944 0.084 0.007 0.945 0.838 0.081 0.033
NR-AND-CV-1se 0.942 0.940 0.007 0.004 0.425 0.417 0.022 0.017 0.834 0.817 0.003 0.001 0.623 0.588 0.004 0.003
NR-AND-BIC 0.992 0.987 0.024 0.006 0.522 0.504 0.039 0.022 0.915 0.884 0.012 0.002 0.847 0.793 0.014 0.007
NR-AND-FSR 0.793 0.793 0.000 0.000 0.122 0.113 0.000 0.000 0.730 0.725 0.000 0.000 0.411 0.403 0.000 0.000
NR-OR-CV 1.000 0.967 0.296 0.023 0.906 0.682 0.445 0.041 0.991 0.941 0.267 0.014 0.982 0.749 0.238 0.025
NR-OR-CV-1se 0.988 0.987 0.027 0.013 0.617 0.595 0.078 0.045 0.917 0.887 0.021 0.003 0.838 0.733 0.027 0.008
NR-OR-BIC 0.996 0.979 0.078 0.009 0.709 0.633 0.122 0.033 0.962 0.921 0.061 0.004 0.920 0.782 0.054 0.014
NR-OR-FSR 0.867 0.865 0.001 0.001 0.124 0.116 0.000 0.000 0.767 0.759 0.000 0.000 0.527 0.524 0.001 0.001
Ridge-CV 1.000 0.867 1.000 0.143 1.000 0.572 1.000 0.242 1.000 0.828 1.000 0.046 1.000 0.222 1.000 0.047
n = 500 no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS
Glasso-CV 1.000 1.000 0.076 0.001 0.999 0.981 0.277 0.036 0.988 0.984 0.023 0.014 1.000 1.000 0.071 0.003
Glasso-CV-1se 1.000 1.000 0.034 0.002 0.947 0.942 0.090 0.080 0.943 0.943 0.017 0.012 1.000 1.000 0.016 0.003
Glasso-CV2 1.000 1.000 0.314 0.002 1.000 0.988 0.639 0.011 1.000 1.000 0.264 0.002 1.000 1.000 0.169 0.002
Glasso-CV2-1se 1.000 1.000 0.120 0.002 1.000 0.985 0.393 0.024 1.000 0.999 0.092 0.004 1.000 1.000 0.036 0.004
Glasso-BIC 1.000 1.000 0.233 0.002 0.999 0.983 0.318 0.030 1.000 1.000 0.261 0.001 1.000 1.000 0.113 0.002
Glasso-EBIC 1.000 1.000 0.149 0.002 0.993 0.974 0.170 0.062 1.000 0.999 0.096 0.003 1.000 1.000 0.060 0.002
SPACE-CV 1.000 1.000 0.008 0.002 0.989 0.985 0.041 0.029 1.000 1.000 0.008 0.002 1.000 1.000 0.012 0.001
SPACE-CV-1se 1.000 1.000 0.005 0.001 0.957 0.956 0.018 0.018 1.000 0.999 0.005 0.001 1.000 1.000 0.009 0.001
SPACE-BIC 1.000 1.000 0.007 0.002 0.983 0.978 0.021 0.019 1.000 0.999 0.009 0.001 1.000 1.000 0.026 0.001
SPACE-FSR 1.000 1.000 0.020 0.001 0.993 0.985 0.040 0.029 1.000 0.999 0.023 0.002 1.000 1.000 0.044 0.002
NR-AND-CV 1.000 1.000 0.111 0.003 1.000 0.991 0.273 0.012 1.000 1.000 0.081 0.002 1.000 1.000 0.079 0.001
NR-AND-CV-1se 1.000 1.000 0.001 0.000 0.931 0.930 0.018 0.004 0.998 0.998 0.000 0.000 0.995 0.994 0.001 0.000
NR-AND-BIC 1.000 1.000 0.009 0.001 0.992 0.989 0.055 0.007 0.999 0.999 0.007 0.001 1.000 1.000 0.008 0.001
NR-AND-FSR 1.000 1.000 0.000 0.000 0.612 0.612 0.002 0.002 0.988 0.988 0.000 0.000 1.000 1.000 0.000 0.000
NR-OR-CV 1.000 1.000 0.305 0.002 1.000 0.987 0.510 0.012 1.000 1.000 0.274 0.002 1.000 1.000 0.239 0.001
NR-OR-CV-1se 1.000 1.000 0.003 0.001 0.981 0.979 0.050 0.006 0.999 0.999 0.006 0.000 0.999 0.999 0.011 0.000
NR-OR-BIC 1.000 1.000 0.046 0.001 0.998 0.992 0.148 0.008 1.000 1.000 0.038 0.001 1.000 1.000 0.034 0.001
NR-OR-FSR 1.000 1.000 0.000 0.000 0.662 0.662 0.004 0.002 0.994 0.994 0.000 0.000 1.000 1.000 0.001 0.000
Ridge-CV 1.000 1.000 1.000 0.002 1.000 0.977 1.000 0.021 1.000 0.999 1.000 0.003 1.000 0.996 1.000 0.010

Table 1.  Average true positive rate (TPR) and false positive rate (FPR) over 100 replications when p = 20. Note: 
Standard errors for TPR range from 0.002 to 0.046 and standard errors for FPR range from 0.000 to 0.019.

https://doi.org/10.1038/s41598-019-53795-x


8Scientific Reports |         (2019) 9:17759  | https://doi.org/10.1038/s41598-019-53795-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

within-cluster connections between nightmares (B2) and flashbacks (B3), blame of self or others (D3) and neg-
ative trauma related emotions (D4), detachment (D6) and restricted affect (D7), and hypervigilance (E3) and 
exaggerated startle response (E4). On top of that, they also find many moderately positive connections within 
the symptom clusters: for instance, intrusive thoughts (B1) and nightmares (B2), avoidance thoughts (C1) and 
avoidance remainders (C2), irritability/anger (E1) and self-destructive behaviour (E2), but also between symptom 
clusters, for instance between loss of interest (D5) and difficulty in concentrating (E5).

n = 100

Model 1 Model 2 Model 3 Model 4
TPR FPR TPR FPR TPR FPR TPR FPR
no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS

Glasso-CV 1.000 0.981 0.086 0.002 0.655 0.467 0.103 0.018 0.935 0.750 0.079 0.003 1.000 0.915 0.079 0.001
Glasso-CV-
1se 0.998 0.977 0.028 0.003 0.369 0.351 0.010 0.008 0.817 0.714 0.014 0.003 0.982 0.908 0.008 0.001

Glasso-CV2 1.000 0.980 0.161 0.002 0.822 0.496 0.268 0.011 0.957 0.761 0.132 0.003 0.997 0.905 0.055 0.001
Glasso-CV2-
1se 1.000 0.979 0.084 0.002 0.681 0.475 0.123 0.018 0.923 0.740 0.064 0.003 0.978 0.898 0.007 0.001

Glasso-BIC 0.999 0.980 0.051 0.003 0.000 0.000 0.000 0.000 0.722 0.621 0.015 0.003 0.029 0.028 0.000 0.000
Glasso-EBIC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPACE-CV 0.993 0.989 0.004 0.003 0.569 0.531 0.029 0.019 0.834 0.795 0.009 0.005 0.982 0.943 0.004 0.001
SPACE-CV-
1se 0.986 0.984 0.002 0.002 0.474 0.466 0.013 0.012 0.766 0.755 0.003 0.003 0.980 0.941 0.004 0.001

SPACE-BIC 0.997 0.989 0.010 0.003 0.573 0.520 0.025 0.016 0.885 0.809 0.014 0.005 0.997 0.939 0.022 0.001
SPACE-FSR 0.998 0.988 0.009 0.003 0.529 0.507 0.018 0.015 0.889 0.810 0.016 0.005 0.997 0.937 0.022 0.001
NR-AND-CV 0.998 0.972 0.048 0.006 0.687 0.563 0.088 0.013 0.893 0.793 0.047 0.004 0.988 0.882 0.027 0.001
NR-AND-
CV-1se 0.940 0.938 0.003 0.002 0.314 0.311 0.007 0.007 0.566 0.537 0.002 0.001 0.733 0.689 0.001 0.000

NR-AND-
BIC 0.986 0.974 0.008 0.002 0.348 0.332 0.007 0.004 0.728 0.685 0.005 0.001 0.949 0.902 0.003 0.000

NR-AND-
FSR 0.670 0.670 0.000 0.000 0.044 0.038 0.000 0.000 0.308 0.307 0.000 0.000 0.589 0.586 0.000 0.000

NR-OR-CV 1.000 0.943 0.168 0.010 0.822 0.556 0.242 0.014 0.955 0.767 0.159 0.006 0.997 0.836 0.105 0.001
NR-OR-CV-
1se 0.982 0.973 0.017 0.004 0.528 0.494 0.041 0.018 0.767 0.697 0.016 0.002 0.895 0.822 0.012 0.000

NR-OR-BIC 0.996 0.977 0.030 0.003 0.535 0.472 0.032 0.008 0.846 0.769 0.022 0.002 0.977 0.916 0.014 0.001
NR-OR-FSR 0.756 0.756 0.000 0.000 0.044 0.040 0.000 0.000 0.331 0.330 0.000 0.000 0.621 0.618 0.000 0.000
Ridge-CV 1.000 0.457 1.000 0.027 1.000 0.350 1.000 0.010 1.000 0.497 1.000 0.012 1.000 0.242 1.000 0.001
n =  = 500 no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS
Glasso-CV 1.000 1.000 0.029 0.000 0.996 0.949 0.136 0.013 0.999 0.992 0.024 0.000 1.000 1.000 0.043 0.000
Glasso-CV-
1se 1.000 1.000 0.015 0.000 0.970 0.932 0.061 0.023 0.989 0.986 0.004 0.001 1.000 1.000 0.001 0.000

Glasso-CV2 1.000 1.000 0.151 0.000 1.000 0.974 0.383 0.004 1.000 0.997 0.206 0.000 1.000 1.000 0.059 0.000
Glasso-CV2-
1se 1.000 1.000 0.076 0.000 1.000 0.964 0.274 0.007 1.000 0.996 0.071 0.000 1.000 1.000 0.004 0.000

Glasso-BIC 1.000 1.000 0.079 0.000 0.985 0.940 0.081 0.021 1.000 0.994 0.060 0.000 1.000 1.000 0.007 0.000
Glasso-EBIC 1.000 1.000 0.038 0.000 0.871 0.865 0.025 0.022 0.998 0.990 0.010 0.001 1.000 1.000 0.003 0.000
SPACE-CV 1.000 1.000 0.001 0.000 0.985 0.979 0.017 0.012 1.000 0.998 0.002 0.000 1.000 1.000 0.004 0.000
SPACE-CV-
1se 1.000 1.000 0.001 0.000 0.947 0.947 0.007 0.007 1.000 0.998 0.002 0.000 1.000 1.000 0.004 0.000

SPACE-BIC 1.000 1.000 0.003 0.000 0.982 0.977 0.011 0.010 1.000 0.999 0.005 0.000 1.000 1.000 0.010 0.000
SPACE-FSR 1.000 1.000 0.006 0.000 0.983 0.978 0.015 0.012 1.000 0.999 0.014 0.000 1.000 1.000 0.023 0.000
NR-AND-CV 1.000 1.000 0.041 0.000 0.999 0.985 0.127 0.002 1.000 0.999 0.046 0.000 1.000 1.000 0.022 0.000
NR-AND-
CV-1se 1.000 1.000 0.000 0.000 0.926 0.925 0.008 0.001 0.972 0.972 0.000 0.000 1.000 1.000 0.000 0.000

NR-AND-
BIC 1.000 1.000 0.003 0.000 0.975 0.974 0.016 0.001 0.999 0.998 0.003 0.000 1.000 1.000 0.001 0.000

NR-AND-
FSR 1.000 1.000 0.000 0.000 0.537 0.537 0.000 0.000 0.965 0.964 0.000 0.000 1.000 1.000 0.000 0.000

NR-OR-CV 1.000 1.000 0.162 0.000 1.000 0.979 0.297 0.003 1.000 1.000 0.157 0.000 1.000 1.000 0.094 0.000
NR-OR-CV-
1se 1.000 1.000 0.001 0.000 0.974 0.970 0.026 0.001 0.995 0.995 0.002 0.000 1.000 1.000 0.005 0.000

NR-OR-BIC 1.000 1.000 0.016 0.000 0.991 0.986 0.053 0.001 1.000 0.999 0.015 0.000 1.000 1.000 0.008 0.000
NR-OR-FSR 1.000 1.000 0.000 0.000 0.563 0.563 0.001 0.000 0.985 0.985 0.000 0.000 1.000 1.000 0.000 0.000
Ridge-CV 1.000 1.000 1.000 0.002 1.000 0.890 1.000 0.024 1.000 0.866 1.000 0.015 1.000 0.761 1.000 0.011

Table 2.  Average true positive rate (TPR) and false positive rate (FPR) over 100 replications when p = 60. Note: 
Standard errors for TPR range from 0.000 to 0.029 and standard errors for FPR range from 0.000 to 0.010.
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To compare the performance before and after using PCS, we drew n observations from a 20-variate Gaussian 
distribution with mean zero and partial correlation matrix Γ. We used two sample sizes n = {100, 500} and repli-
cated the simulation 100 times.

Table 8 shows the average TPR and FPR scores and Figs. 6 and 7 present heatmaps of the frequency with 
which the entries of the partial correlation matrix are detected as non-zero. We observe that Partial Correlation 
Screening (PCS) significantly outperforms Glasso, NR and SPACE. When n = 100, PCS-SPACE-BIC has the best 
performance in terms of the false positive rate, which is in line with the simulation results on synthetic data. For 
n = 500, all the estimation procedures using PCS show an average TPR higher than 0.999 and an average FPR 
below 0.020 (see Table 8).

Breast cancer data.  GGMs have been widely applied to analyze gene expression data, since many authors 
hypothesize that the complex interactions between genes take the form of sparse pathways or networks27–29. More 
specifically, given mRNA levels of different patients, researchers have studied the conditional dependencies of 
genes for a variety of diseases1.

We estimate a sparse partial correlation network for gene expression data from a breast cancer study by West 
et al.30. The dataset contains 7, 129 genes sampled from 49 breast tumor tissues samples: 25 samples from patients 
diagnosed as estrogen receptor positive and 24 samples from patients diagnosed as estrogen receptor negative. In 
line with Sheridan et al.31, we focus on a subset of p = 150 genes related to the estrogen receptor gene ERS1. This 
gene acts as an estrogen-activated transcription factor and has a key role in the proliferation of cancerous cells32.

n = 100

Model 1 Model 2 Model 3 Model 4
TPR FPR TPR FPR TPR FPR TPR FPR
no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS

Glasso-CV 0.999 0.968 0.039 0.001 0.515 0.273 0.033 0.002 0.920 0.723 0.033 0.000 0.990 0.670 0.033 0.000
Glasso-CV-1se 0.999 0.965 0.018 0.001 0.321 0.259 0.005 0.002 0.873 0.720 0.011 0.001 0.956 0.647 0.006 0.000
Glasso-CV2 1.000 0.969 0.065 0.000 0.611 0.283 0.071 0.002 0.932 0.733 0.044 0.000 0.974 0.664 0.011 0.000
Glasso-CV2-1se 0.999 0.967 0.041 0.001 0.517 0.272 0.034 0.002 0.912 0.725 0.028 0.000 0.801 0.646 0.001 0.000
Glasso-BIC 0.996 0.963 0.010 0.001 0.000 0.000 0.000 0.000 0.604 0.520 0.003 0.000 0.000 0.000 0.000 0.000
Glasso-EBIC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SPACE-CV 0.987 0.984 0.001 0.001 0.405 0.365 0.006 0.004 0.809 0.785 0.002 0.001 0.930 0.751 0.002 0.000
SPACE-CV-1se 0.978 0.977 0.001 0.001 0.332 0.327 0.003 0.003 0.801 0.780 0.001 0.001 0.930 0.759 0.002 0.000
SPACE-BIC 0.997 0.981 0.006 0.001 0.497 0.365 0.014 0.003 0.908 0.787 0.010 0.001 0.985 0.718 0.016 0.000
SPACE-FSR 0.994 0.983 0.003 0.001 0.443 0.365 0.009 0.003 0.887 0.786 0.007 0.001 0.978 0.733 0.011 0.000
NR-AND-CV 0.995 0.952 0.018 0.002 0.511 0.358 0.029 0.004 0.874 0.749 0.016 0.001 0.944 0.542 0.010 0.000
NR-AND-CV-1se 0.910 0.908 0.001 0.000 0.187 0.170 0.002 0.002 0.615 0.585 0.001 0.000 0.524 0.390 0.001 0.000
NR-AND-BIC 0.973 0.965 0.002 0.001 0.238 0.217 0.002 0.001 0.750 0.706 0.001 0.000 0.839 0.637 0.001 0.000
NR-AND-FSR 0.475 0.475 0.000 0.000 0.010 0.008 0.000 0.000 0.344 0.343 0.000 0.000 0.239 0.237 0.000 0.000
NR-OR-CV 0.999 0.844 0.083 0.009 0.691 0.215 0.107 0.003 0.940 0.622 0.074 0.003 0.979 0.297 0.051 0.000
NR-OR-CV-1se 0.970 0.954 0.008 0.002 0.386 0.338 0.016 0.007 0.787 0.677 0.007 0.000 0.814 0.518 0.006 0.000
NR-OR-BIC 0.990 0.973 0.010 0.002 0.380 0.289 0.009 0.002 0.836 0.762 0.007 0.001 0.913 0.637 0.008 0.000
NR-OR-FSR 0.551 0.551 0.000 0.000 0.010 0.008 0.000 0.000 0.389 0.389 0.000 0.000 0.252 0.249 0.000 0.000
Ridge-CV 1.000 0.961 1.000 0.002 1.000 0.273 1.000 0.002 1.000 0.718 1.000 0.001 1.000 0.629 1.000 0.000
n = 500 no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS
Glasso-CV 1.000 1.000 0.012 0.000 0.986 0.886 0.064 0.004 0.989 0.975 0.006 0.001 1.000 1.000 0.023 0.000
Glasso-CV-1se 1.000 1.000 0.006 0.000 0.962 0.863 0.036 0.005 0.986 0.974 0.004 0.001 1.000 1.000 0.002 0.000
Glasso-CV2 1.000 1.000 0.080 0.000 0.999 0.928 0.218 0.002 0.999 0.985 0.041 0.000 1.000 1.000 0.011 0.000
Glasso-CV2-1se 1.000 1.000 0.042 0.000 0.996 0.908 0.125 0.003 0.999 0.986 0.041 0.000 1.000 1.000 0.001 0.000
Glasso-BIC 1.000 1.000 0.022 0.000 0.906 0.847 0.017 0.007 0.992 0.977 0.008 0.000 1.000 1.000 0.001 0.000
Glasso-EBIC 1.000 1.000 0.008 0.000 0.665 0.664 0.003 0.003 0.987 0.974 0.005 0.001 1.000 1.000 0.000 0.000
SPACE-CV 1.000 1.000 0.000 0.000 0.966 0.957 0.006 0.005 0.999 0.995 0.001 0.000 1.000 1.000 0.002 0.000
SPACE-CV-1se 1.000 1.000 0.000 0.000 0.931 0.931 0.003 0.003 0.999 0.994 0.001 0.000 1.000 1.000 0.002 0.000
SPACE-BIC 1.000 1.000 0.003 0.002 0.973 0.957 0.007 0.004 1.000 0.996 0.004 0.000 1.000 1.000 0.010 0.000
SPACE-FSR 1.000 1.000 0.002 0.001 0.963 0.958 0.006 0.005 1.000 0.996 0.006 0.000 1.000 1.000 0.013 0.000
NR-AND-CV 1.000 1.000 0.013 0.000 0.995 0.977 0.049 0.001 1.000 1.000 0.014 0.000 1.000 1.000 0.008 0.000
NR-AND-CV-1se 1.000 1.000 0.000 0.000 0.873 0.872 0.002 0.000 0.968 0.968 0.000 0.000 0.999 0.999 0.000 0.000
NR-AND-BIC 1.000 1.000 0.001 0.000 0.934 0.932 0.004 0.000 0.998 0.997 0.001 0.000 1.000 1.000 0.001 0.000
NR-AND-FSR 1.000 1.000 0.000 0.000 0.506 0.506 0.000 0.000 0.942 0.942 0.000 0.000 1.000 1.000 0.000 0.000
NR-OR-CV 1.000 1.000 0.073 0.000 0.999 0.962 0.143 0.001 1.000 0.999 0.067 0.000 1.000 1.000 0.037 0.000
NR-OR-CV-1se 1.000 1.000 0.001 0.000 0.944 0.939 0.010 0.000 0.991 0.990 0.001 0.000 1.000 1.000 0.003 0.000
NR-OR-BIC 1.000 1.000 0.005 0.000 0.972 0.968 0.015 0.000 0.999 0.999 0.004 0.000 1.000 1.000 0.004 0.000
NR-OR-FSR 1.000 1.000 0.000 0.000 0.516 0.516 0.000 0.000 0.960 0.960 0.000 0.000 1.000 1.000 0.000 0.000
Ridge-CV 1.000 1.000 1.000 0.000 1.000 0.742 1.000 0.008 1.000 0.965 1.000 0.003 1.000 1.000 1.000 0.000

Table 3.  Average true positive rate (TPR) and false positive rate (FPR) over 100 replications when p = 200. 
Note: Standard errors for TPR range from 0.000 to 0.037 and standard errors for FPR range from 0.000 to 0.002.
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Table 9 shows how many edges are obtained with the Glasso, NR, SPACE and Ridge techniques under con-
sideration and how much these numbers of edges decrease by applying PCS. It can be concluded that the sparsity 
level varies considerably depending on the approach used. We observe that when the procedures yield dense 
networks (i.e. Ridge-CV, Glasso-CV1, Glasso-CV1-1se, Glasso-CV2, Glasso-CV2-1se and NR-OR-CV), applying 
PCS produces a larger reduction in the number of edges.

Given that the results vary considerably across the methods, the next question is how we should deal with 
this uncertainty when interpreting the networks. We opt to combine the results of the different estimation meth-
ods33,34, by computing a network that includes all edges that occur in at least two of the nineteen obtained PCS 
networks. Note that if we apply this combination approach to the estimated PCS networks for the toy example 
(see Fig. 3), we would recover the true network.

Figure 8 shows the resulting combined network for the breast cancer data. Figure 9 focuses on the sub-network 
of the genes that are related with the estrogen receptor gene ERS1 (Panel a) and the gene FOXA1 (Panel b). We 
can identify some important regularity interactions in the estimated GGM. As a first example, the ESR1 (ESR) 
gene is partially correlated with SLC39A6 (SLC). This gene functions as a zinc transporter and has been shown 
to be highly expressed in ESR1-positive tumours and is highly significantly associated with the spread of breast 
cancer to the lymph nodes32. As a second example, we can inspect the genes that belong to the neighborhood of 
FOXA1 (FOX). FOXA1 has been found to be predominantly expressed in luminal type A carcinomas35 and may 
prevent metastatic progression of this type of breast cancer36. We observe an edge between FOXA1 (FOX) and 
AR (AR) (androgen receptor), which is in line with findings that indicate that AR regulates estrogen receptor 
expression37.

Psychopathological symptoms data.  For a long time, modeling approaches to psychopathological data 
started from the assumption that psychopathological symptoms reflect an underlying mental disorder and thus 
are caused by this disorder38. This assumption has recently been challenged and an alternative hypothesis has 
been put forward stating that symptoms are causally active components of a mental disorder39,40. Within this 
framework, network analysis is then used to study the conditional dependencies between a set of symptoms41,42.

We studied the conditional dependencies of a set of 24 psychopathological symptoms in a sample of 184 
patients (189 before patients with missing data were discarded) within the nonaffective psychotic spectrum, that 
participated in the second wave of the multicenter Genetic Risk and Outcome of Psychosis (GROUP) cohort 
study43. The symptoms are measured using the Brief Psychiatric Rating Scale (BPRS)44, which captures the 
following symptoms: Somatic Concern (SmC), Anxiety (Anx), Depression (Dpr), Guilt (Glt), Hostility (Hst), 
Suspiciousness (Ssp), Unusual Thought (UnT), Grandiosity (Grn), Hallucinations (Hll), Disorientation (Dsr), 
Conceptual Disorganization (CnD), Excitement (Exc), Elevated mood (ElM), Tension (Tns), Mannerisms (Mnn), 
Uncooperativeness (Unc), Motor Retardation (MtR), Suicidality (Scd), Self Neglect (SlN), Bizarre Behaviour 
(BzB), Motor Hyperactivity (MtH), Distractibility (Dst), Emotional Withdrawal (EmW) and Blunted Affect 
(BlA). Each symptom is rated on a 7-point Likert scale. Because the data is measured on a Likert scale rather than 
on a continuous one, we apply the nonparanormal transformation proposed by Liu et al.45 that uses the Gaussian 
copula to transform the data into normal scores.

Table 9 shows the number of edges that result from applying the different methods under consideration. We 
observe that Ridge-CV, Glasso-CV1, NR-OR-CV and Glasso-BIC estimate the most dense networks and that 
applying PCS drastically reduces the amount of edges when the original network was not so sparse.

Figure 10 shows the network computed by combining the different PCS networks and discarding edges all 
that occur only once. Cognitive models that study psychosis have postulated that some of the most prominent 
symptoms are delusional beliefs (grandiosity, suspiciousness, unusual thoughts)46. We indeed observe that there 
is strong positive relation between Unusual Thoughts (UnT) and Suspiciousness (Ssp) and between Emotional 
Withdrawal (EmW) and Blunted Affect (BlA). Also, there is a strong positive relation between Unusual 
Thoughts (UnT) and Grandiosity (Grn), Motor Retardation (MtR) and Elevated mood (ElM), Anxiety (Anx) and 
Depression (Dpr), Depression (Dpr) and Guilt (Glt), and Tension (Tns) and Distractibility (Dst).

Post-traumatic stress disorder symptoms data.  Finally, we return to the PTSD data that we studied 
in Subsection: Simulation Study Based on Real Data. Table 9 shows the number of edges for each of the proce-
dures. We observe a similar pattern as in the previous applications. Figure 11 displays the network that results 
from applying our combination approach to the PCS networks. This combined network recovers the conditional 
dependencies that Armour et al.3 found to be strongly positive: nightmares (B2) and flashbacks (B3), blame of 
self or others (D3) and negative trauma related emotions (D4), detachment (D6) and restricted affect (D7), and 
hypervigilance (E3) and exaggerated startle response (E4).

Discussion
In this article, we have demonstrated through an extensive simulation study that the most popular procedures to 
estimate partial correlation networks, Glasso, SPACE, NR and Ridge, often do not yield the true underlying net-
work, no matter which procedure is applied to select the regularization parameter. Results are heavily influenced 
by sample size and the number of variables (i.e., the lower the sample size and the higher the number of varia-
bles, the worse), with high-dimensional problems being especially difficult. We also note that the Glasso results 
heavily depend on which approach is used to tune the regularization parameter. Specifically, we found that in the 
high-dimensional setting, using the BIC or EBIC yields many false negatives and thus an overly sparse network.

Given that the state-of-the-art methods frequently cannot satisfactorily recover the true set of edges, we have 
presented a novel approach that allows to better control the false positive rate. This procedure boils down to 
performing an additional second step, after applying one or more state-of-the-art methods of choice. In this 
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second step, we discard the partial correlation coefficients in the estimated network that are smaller in absolute 
value than a given threshold, which is obtained through cross-validation. Our novel procedure clearly improved 
the performance of the estimation methods and tuning approaches considered, especially in the settings where 
the state-of-the-art methods yielded bad results. Whereas PCS-SPACE-BIC seems to be the best choice for small 
sample size, which method is applied in the first step hardly matters when sample size increases.

We also applied all approaches to three real data sets. The results again show that our PCS approaches yield 
more sparse networks than the state-of-the art methods. To deal with the multitude of obtained networks, we 
proposed to compute a network that combines the different PCS estimates, but discard the edges that occurred 
in only one network. Although results seemed interpretable, future research should investigate further how to 
efficiently combine the different estimators or how to optimally select among the nineteen obtained networks.

In this paper we used standard simulation settings from the literature to demonstrate the problematic behaviour 
of existing approaches. It is important to mention that except for Glasso, none of the state-of-the-art procedures 
studied in this paper estimates a covariance matrix that is positive definite. Also, it is not guaranteed that this prop-
erty still holds after applying the PCS to Glasso. In future research, it would be useful to investigate the behavior of 
the different approaches under more difficult settings as well as the theoretical properties of the PCS. This would lead 
to several possible extensions of our method. One extension targets data in which the assumption of multivariate 

n = 100

Model 1 Model 2 Model 3 Model 4
TP FP TP FP TP FP TP FP
no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS

Glasso-CV 18.99 18.80 27.28 1.45 28.91 23.93 36.65 15.30 15.41 14.41 14.38 1.49 11.87 10.32 30.96 2.49
Glasso-CV-1se 18.85 18.71 7.13 3.21 11.64 11.42 2.87 2.70 13.85 13.58 2.22 1.29 10.24 9.90 3.98 2.36
Glasso-CV2 19.00 18.78 53.98 1.24 34.49 24.15 83.68 7.22 15.89 14.77 47.83 0.53 11.88 10.28 35.57 2.53
Glasso-CV2-1se 18.98 18.78 23.59 1.89 29.39 24.04 39.98 14.49 15.53 14.53 18.61 1.38 11.09 10.29 9.06 3.05
Glasso-BIC 19.00 18.79 36.45 1.31 2.44 2.19 2.09 1.33 15.81 14.83 35.93 0.97 7.91 7.45 9.14 1.97
Glasso-EBIC 5.70 5.68 3.62 0.56 0.00 0.00 0.00 0.00 15.15 14.39 9.48 1.60 0.00 0.00 0.00 0.00
SPACE-CV 18.86 18.83 2.62 1.77 24.68 23.39 10.96 8.22 15.02 14.71 2.81 1.34 10.92 10.51 4.20 2.79
SPACE-CV-1se 18.83 18.79 1.18 0.93 20.34 20.00 5.22 4.85 14.61 14.19 0.86 0.56 10.50 10.00 2.01 1.54
SPACE-BIC 18.88 18.82 2.36 1.22 23.07 21.75 6.72 5.49 15.29 14.51 2.21 0.72 11.25 10.48 5.50 2.65
SPACE-FSR 18.94 18.84 4.39 1.49 22.18 21.11 6.93 5.54 15.43 14.78 4.32 1.27 11.53 10.43 7.85 2.93
NR-AND-CV 18.94 18.61 19.87 2.63 30.31 25.80 32.95 7.21 15.65 15.11 14.59 1.26 11.34 10.05 14.41 5.90
NR-AND-CV-1se 17.89 17.86 1.21 0.71 15.73 15.43 3.29 2.54 13.35 13.07 0.54 0.26 7.47 7.05 0.75 0.50
NR-AND-BIC 18.84 18.75 4.09 1.03 19.32 18.66 5.92 3.32 14.64 14.14 2.15 0.27 10.16 9.51 2.44 1.30
NR-AND-FSR 15.06 15.06 0.06 0.04 4.52 4.17 0.02 0.02 11.68 11.60 0.03 0.03 4.93 4.84 0.05 0.05
NR-OR-CV 19.00 18.37 50.63 3.85 33.54 25.22 68.12 6.27 15.86 15.06 46.42 2.42 11.78 8.99 42.36 4.45
NR-OR-CV-1se 18.77 18.75 4.55 2.22 22.83 22.00 11.87 6.90 14.67 14.19 3.61 0.54 10.05 8.80 4.84 1.34
NR-OR-BIC 18.92 18.60 13.38 1.57 26.24 23.43 18.69 5.05 15.39 14.73 10.57 0.66 11.04 9.38 9.70 2.50
NR-OR-FSR 16.48 16.44 0.13 0.09 4.59 4.31 0.03 0.02 12.27 12.14 0.05 0.05 6.32 6.29 0.10 0.10
Ridge-CV 19.00 16.48 171.00 24.42 37.00 21.16 153.00 36.96 16.00 13.24 174.00 8.02 12.00 2.66 178.00 8.40
n = 500 no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS
Glasso-CV 19.00 19.00 12.99 0.16 36.97 36.29 42.31 5.46 15.81 15.74 4.03 2.36 12.00 12.00 12.64 0.47
Glasso-CV-1se 19.00 19.00 5.82 0.34 35.04 34.85 13.74 12.29 15.08 15.08 2.90 2.12 12.00 12.00 2.79 0.56
Glasso-CV2 19.00 19.00 53.73 0.26 37.00 36.55 97.70 1.72 16.00 16.00 45.86 0.39 12.00 12.00 30.01 0.43
Glasso-CV2-1se 19.00 19.00 20.54 0.34 36.99 36.46 60.17 3.69 16.00 15.99 16.05 0.61 12.00 12.00 6.39 0.63
Glasso-BIC 19.00 19.00 39.90 0.35 36.98 36.36 48.67 4.63 16.00 16.00 45.40 0.22 12.00 12.00 20.10 0.41
Glasso-EBIC 19.00 19.00 25.45 0.37 36.74 36.02 26.08 9.54 16.00 15.99 16.65 0.50 12.00 12.00 10.61 0.40
SPACE-CV 19.00 19.00 1.35 0.31 36.60 36.43 6.25 4.38 16.00 16.00 1.44 0.35 12.00 12.00 2.16 0.23
SPACE-CV-1se 19.00 19.00 0.78 0.18 35.41 35.37 2.70 2.69 16.00 15.99 0.84 0.23 12.00 12.00 1.66 0.17
SPACE-BIC 19.00 19.00 1.26 0.26 36.36 36.20 3.24 2.98 16.00 15.99 1.49 0.23 12.00 12.00 4.62 0.17
SPACE-FSR 19.00 19.00 3.42 0.25 36.73 36.46 6.09 4.39 16.00 15.99 3.93 0.41 12.00 12.00 7.83 0.39
NR-AND-CV 19.00 19.00 19.00 0.46 36.99 36.68 41.78 1.76 16.00 16.00 14.18 0.41 12.00 12.00 13.99 0.26
NR-AND-CV-1se 19.00 19.00 0.10 0.05 34.43 34.40 2.69 0.62 15.96 15.96 0.05 0.02 11.94 11.93 0.10 0.01
NR-AND-BIC 19.00 19.00 1.62 0.21 36.70 36.61 8.40 1.12 15.99 15.99 1.27 0.16 12.00 12.00 1.49 0.12
NR-AND-FSR 19.00 19.00 0.02 0.01 22.65 22.65 0.30 0.28 15.81 15.81 0.01 0.01 12.00 12.00 0.05 0.03
NR-OR-CV 19.00 19.00 52.20 0.26 36.99 36.51 78.02 1.89 16.00 16.00 47.73 0.36 12.00 12.00 42.47 0.09
NR-OR-CV-1se 19.00 19.00 0.54 0.16 36.29 36.23 7.68 0.96 15.98 15.98 0.96 0.07 11.99 11.99 1.96 0.06
NR-OR-BIC 19.00 19.00 7.88 0.19 36.94 36.72 22.68 1.18 16.00 16.00 6.59 0.16 12.00 12.00 6.09 0.17
NR-OR-FSR 19.00 19.00 0.07 0.03 24.48 24.48 0.56 0.36 15.90 15.90 0.08 0.05 12.00 12.00 0.09 0.07
Ridge-CV 19.00 19.00 171.00 0.27 37.00 36.15 153.00 3.19 16.00 15.99 174.00 0.57 12.00 11.95 178.00 1.75

Table 4.  Average number of true positive edges (TP) and false positive edges (FP) over 100 replications when 
p = 20. For each model the number of non-zero partial correlations are: 19 for Model 1, 37 for Model 2, 16 for 
Model 3 and 12 for Model 4. For each model the number of non-zero partial correlations are: 19 for Model 1, 
37 for Model 2, 16 for Model 3 and 12 for Model 4. Note: Standard errors for TP range from 0.060 to 0.875 and 
standard errors for FP range from 0.024 to 2.913.
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normality is violated. Here, our approach can be easily extended to make use of techniques to estimate semipara-
metric undirected graphs45,47,48. We also note that in some applications, such as in psychology data or in the high 
dimensional setting, some variables might be highly linearly correlated. In this setting, the assumption regarding 
the regularity of the covariance matrix might not hold. A possible solution is to first cluster the strongly correlated 
variables and then take this cluster structure into account when estimating the GGM using the PCS approach49,50.

Finally, it is important to note that imposing sparsity might be too stringent in some applications. For instance, 
in some cases researchers are also interested in detecting partial correlations that are very close to zero. Moreover, 
it can also happen that the true network is not so sparse to begin with. In such cases, using approaches based on 
1 regularization may affect the validity of the results51. Therefore, we believe that future research should also focus 
on exploring how the methods proposed in this paper behave when the true underlying network is less sparse or 
includes some very weak edges.

Methods
Partial correlation estimation procedures.  In this subsection we present the technical details of the 
state-of-the-arts methods to estimate sparse partial correlation networks and the associated tuning methods for 
the regularization parameter.

n = 100

Model 1 Model 2 Model 3 Model 4
TP FP TP FP TP FP TP FP
no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS

Glasso-CV 58.99 57.86 146.82 3.62 76.66 54.68 170.65 29.75 44.87 36.01 136.18 5.62 13.00 11.90 139.32 1.40
Glasso-CV-1se 58.90 57.65 47.81 5.26 43.23 41.01 17.20 13.26 39.20 34.25 24.58 5.00 12.77 11.81 14.39 1.05
Glasso-CV2 59.00 57.81 275.50 3.05 96.22 58.05 443.62 18.63 45.95 36.53 227.62 5.43 12.96 11.77 96.47 0.98
Glasso-CV2-1se 58.99 57.77 143.88 3.58 79.65 55.61 203.21 29.94 44.30 35.54 111.01 5.61 12.72 11.67 12.69 1.22
Glasso-BIC 58.97 57.82 87.72 4.57 0.00 0.00 0.00 0.00 34.67 29.82 25.59 4.33 0.38 0.36 0.30 0.01
Glasso-EBIC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SPACE-CV 58.57 58.33 7.62 5.16 66.57 62.07 47.32 30.92 40.04 38.15 14.94 8.19 12.77 12.26 7.08 2.01
SPACE-CV-1se 58.16 58.04 3.39 3.11 55.44 54.48 22.12 19.92 36.75 36.25 5.52 4.73 12.74 12.23 6.26 2.16
SPACE-BIC 58.84 58.34 17.20 5.05 67.09 60.84 41.09 26.46 42.46 38.83 24.87 8.61 12.96 12.21 39.09 2.01
SPACE-FSR 58.89 58.28 15.29 4.79 61.88 59.36 30.51 24.70 42.69 38.90 28.35 8.59 12.96 12.18 38.13 2.15
NR-AND-CV 58.90 57.36 82.44 9.60 80.37 65.83 146.24 20.96 42.85 38.08 80.62 7.65 12.85 11.46 46.63 1.66
NR-AND-CV-1se 55.44 55.35 4.94 2.73 36.76 36.34 12.38 10.80 27.19 25.76 3.75 1.41 9.53 8.96 2.63 0.14
NR-AND-BIC 58.16 57.49 12.96 2.98 40.67 38.79 11.08 6.13 34.95 32.89 8.18 2.00 12.34 11.72 5.83 0.87
NR-AND-FSR 39.53 39.51 0.04 0.04 5.09 4.48 0.05 0.03 14.79 14.73 0.02 0.02 7.66 7.62 0.01 0.01
NR-OR-CV 59.00 55.62 287.18 16.60 96.20 65.04 399.67 22.58 45.83 36.83 274.38 10.12 12.96 10.87 184.09 2.44
NR-OR-CV-1se 57.95 57.38 29.18 6.82 61.76 57.75 67.10 30.30 36.81 33.47 27.38 3.39 11.63 10.68 20.23 0.53
NR-OR-BIC 58.76 57.63 51.54 5.84 62.59 55.23 52.46 12.70 40.63 36.92 37.44 4.05 12.70 11.91 25.02 1.53
NR-OR-FSR 44.60 44.59 0.11 0.11 5.12 4.63 0.05 0.04 15.91 15.84 0.05 0.05 8.07 8.04 0.01 0.01
Ridge-CV 59.00 26.94 1711.00 45.40 117.00 41.00 1653.00 17.02 48.00 23.85 1722.00 20.62 13.00 3.14 1757.00 1.60
n = 500 no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS
Glasso-CV 59.00 59.00 2.55 0.13 115.23 114.57 28.81 20.54 47.99 47.91 4.01 0.57 13.00 13.00 6.95 0.13
Glasso-CV-1se 59.00 59.00 2.14 0.19 110.79 110.77 11.24 11.18 47.99 47.92 3.41 0.73 13.00 13.00 6.51 0.10
Glasso-CV2 59.00 59.00 9.88 0.16 115.05 114.48 24.63 20.13 47.99 47.93 23.79 0.35 13.00 13.00 40.12 0.16
Glasso-CV2-1se 59.00 59.00 5.41 0.15 114.92 114.34 18.53 16.74 47.99 47.93 8.93 0.66 13.00 13.00 17.85 0.15
Glasso-BIC 59.00 59.00 48.92 0.24 116.56 111.02 225.04 22.06 47.94 47.63 40.98 0.78 13.00 13.00 76.38 0.08
Glasso-EBIC 59.00 59.00 25.07 0.39 113.45 109.01 101.00 38.68 47.46 47.31 6.31 2.08 13.00 13.00 2.62 0.19
SPACE-CV 59.00 59.00 135.88 0.19 115.28 110.00 133.71 34.43 47.99 47.73 102.61 0.44 13.00 13.00 11.46 0.13
SPACE-CV-1se 59.00 59.00 64.47 0.17 101.85 101.19 41.04 35.93 47.91 47.51 16.72 1.12 13.00 13.00 5.45 0.13
SPACE-BIC 59.00 59.00 258.24 0.12 116.99 113.90 633.67 6.79 48.00 47.84 353.98 0.26 13.00 13.00 104.50 0.09
SPACE-FSR 59.00 59.00 130.22 0.15 116.96 112.82 453.52 11.60 47.99 47.79 122.34 0.34 13.00 13.00 7.68 0.10
NR-AND-CV 59.00 59.00 69.95 0.11 116.91 115.28 209.91 3.73 47.99 47.97 79.27 0.23 13.00 13.00 39.34 0.23
NR-AND-CV-1se 59.00 59.00 0.19 0.11 108.39 108.27 12.52 1.27 46.67 46.65 0.25 0.05 13.00 13.00 0.53 0.01
NR-AND-BIC 59.00 59.00 0.02 0.01 62.85 62.85 0.35 0.35 46.30 46.29 0.02 0.02 13.00 13.00 0.01 0.00
NR-AND-FSR 59.00 59.00 4.30 0.05 114.07 113.92 27.23 1.66 47.93 47.91 4.69 0.12 13.00 13.00 1.98 0.10
NR-OR-CV 59.00 59.00 277.54 0.08 116.98 114.55 491.73 4.79 48.00 47.98 270.86 0.32 13.00 13.00 164.58 0.18
NR-OR-CV-1se 59.00 59.00 2.38 0.31 113.92 113.50 43.28 1.58 47.78 47.75 4.18 0.17 13.00 13.00 9.11 0.01
NR-OR-BIC 59.00 59.00 0.05 0.03 65.82 65.82 0.88 0.79 47.27 47.27 0.07 0.06 13.00 13.00 0.03 0.01
NR-OR-FSR 59.00 59.00 26.60 0.09 115.96 115.33 87.34 2.24 47.99 47.97 25.56 0.15 13.00 13.00 14.55 0.08
Ridge-CV 59.00 59.00 1711.00 3.83 117.00 104.13 1653.00 39.56 48.00 41.55 1722.00 25.85 13.00 9.89 1757.00 19.18

Table 5.  Average number of true positive edges (TP) and false positive edges (FP) over 100 replications when 
p = 60. For each model the number of non-zero partial correlations are: 59 for Model 1, 117 for Model 2, 48 for 
Model 3 and 13 for Model 4. Note: Standard errors for TP range from 0.000 to 1.385 and standard errors for FP 
range from 0.000 to 17.702.
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The graphical lasso.  Yuan and Lin25 and Rothman et al.24 proposed a penalized maximum likelihood approach to 
estimate the inverse of the covariance matrix Σ, denoted by Ω = [ωij]. If S denotes the sample covariance matrix, 
the problem is to minimize the following penalized log-likelihood function:
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where tr(⋅) denotes the trace of a matrix and λ1 > 0 controls the size of the penalty. The penalty term is a proxy of the 
number of zeros in the precision matrix. The smaller the value of λ1, the more non-zero elements the model includes. 
Friedman, Hastie and Tibshirani13 proposed an efficient algorithm to implement this method, which is called the 
Graphical lasso (Glasso). Afterwards, the partial correlation matrix can be computed using the known relation between 
the entries of the inverse of the covariance matrix and the partial correlation coefficients (see Lemma 1 in Peng et al.12).

For the different applications we select the regularization parameter as follows. We generate a grid of 100 equidis-
tant possible values for λ1 ranging from 0.001 to |max(S)| when p < 100. When p ≥ 100 the sequence limits are 
(0.05,|max(S)|). We propose six approaches to select the optimal value from this grid. The first one is to implement 

n = 100

Model 1 Model 2 Model 3 Model 4

TP FP TP FP TP FP TP FP

no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS

Glasso-CV 198.86 192.63 758.85 11.33 204.29 108.27 637.13 38.70 130.62 102.64 654.20 7.87 22.78 15.40 664.69 1.81

Glasso-CV-1se 198.72 192.02 351.17 13.31 127.57 102.89 91.35 34.79 123.99 102.23 217.95 10.21 21.98 14.87 121.33 1.36

Glasso-CV2 198.94 192.82 1283.12 9.31 242.43 112.48 1385.28 38.17 132.29 104.02 870.41 8.65 22.41 15.27 220.99 1.44

Glasso-CV2-1se 198.85 192.49 804.26 10.45 205.13 108.18 660.23 39.02 129.54 102.98 544.21 8.53 18.43 14.85 13.05 1.54

Glasso-BIC 198.30 191.62 198.60 14.85 0.00 0.00 0.00 0.00 85.78 73.89 58.30 7.97 0.00 0.00 0.00 0.00

Glasso-EBIC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SPACE-CV 196.49 195.78 27.26 19.45 160.83 144.91 126.05 73.34 114.93 111.52 29.78 19.71 21.40 17.27 41.19 4.33

SPACE-CV-1se 194.60 194.52 13.02 12.77 131.71 129.85 54.54 51.91 113.74 110.70 24.63 17.89 21.38 17.45 40.76 4.81

SPACE-BIC 198.44 195.26 120.78 14.80 197.37 144.83 265.74 58.57 128.87 111.73 203.32 16.20 22.65 16.52 323.32 3.62

SPACE-FSR 197.85 195.65 59.92 16.99 175.84 145.03 168.31 68.03 125.91 111.68 131.09 16.30 22.49 16.85 222.86 3.64

NR-AND-CV 198.08 189.54 360.86 42.59 202.81 142.22 571.98 80.00 124.14 106.40 306.85 20.49 21.72 12.46 192.20 1.70

NR-AND-CV-1se 181.12 180.78 17.53 8.63 74.24 67.35 37.06 29.53 87.31 83.08 11.94 3.82 12.06 8.98 12.03 0.14

NR-AND-BIC 193.65 192.08 40.27 10.54 94.41 86.01 30.52 17.18 106.49 100.25 24.06 6.20 19.29 14.64 19.94 1.70

NR-AND-FSR 94.51 94.45 0.04 0.04 4.09 3.35 0.00 0.00 48.82 48.77 0.03 0.03 5.50 5.46 0.00 0.00

NR-OR-CV 198.73 167.88 1634.23 176.68 274.34 85.16 2094.31 56.90 133.41 88.36 1459.24 53.96 22.51 6.84 1012.65 1.67

NR-OR-CV-1se 193.09 189.88 167.15 29.94 153.05 134.04 303.67 137.51 111.80 96.10 146.74 8.11 18.72 11.91 112.39 1.12

NR-OR-BIC 196.96 193.57 190.08 33.21 150.86 114.86 178.67 35.82 118.67 108.24 131.56 18.48 20.99 14.65 162.86 2.96

NR-OR-FSR 109.58 109.55 0.14 0.13 4.09 3.37 0.00 0.00 55.29 55.18 0.07 0.07 5.80 5.72 0.00 0.00

Ridge-CV 199.00 191.26 19701.00 30.04 397.00 108.21 19503.00 29.29 142.00 102.00 19758.00 18.46 23.00 14.47 19877.00 1.31

n = 500 no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS

Glasso-CV 199.00 199.00 235.07 0.15 391.50 351.69 1245.58 85.60 140.48 138.47 110.08 10.39 23.00 23.00 453.33 0.05

Glasso-CV-1se 199.00 199.00 116.99 0.25 381.73 342.47 696.92 101.95 140.06 138.34 87.60 12.44 23.00 23.00 39.53 0.06

Glasso-CV2 199.00 199.00 1582.27 0.20 396.71 368.39 4256.19 33.63 141.92 139.90 811.90 2.83 23.00 23.00 223.51 0.05

Glasso-CV2-1se 199.00 199.00 836.46 0.12 395.60 360.63 2440.77 60.64 141.92 139.95 811.90 3.10 23.00 23.00 10.84 0.11

Glasso-BIC 199.00 199.00 435.99 0.21 359.84 336.22 332.29 129.97 140.88 138.74 159.47 8.22 23.00 23.00 10.62 0.09

Glasso-EBIC 199.00 199.00 163.43 0.28 263.95 263.73 52.35 52.17 140.12 138.30 91.93 12.09 23.00 23.00 5.01 0.10

SPACE-CV 199.00 199.00 6.18 0.18 383.35 379.74 120.06 88.04 141.79 141.24 18.01 2.79 23.00 23.00 45.25 0.06

SPACE-CV-1se 199.00 199.00 5.67 0.17 369.73 369.66 59.44 59.05 141.79 141.18 17.56 2.72 23.00 23.00 45.11 0.05

SPACE-BIC 199.00 199.00 58.63 41.28 386.42 379.77 133.83 76.95 141.97 141.42 86.76 1.73 23.00 23.00 201.15 0.12

SPACE-FSR 199.00 199.00 31.80 24.48 382.41 380.19 108.06 93.11 141.98 141.47 110.12 1.32 23.00 23.00 251.95 0.05

NR-AND-CV 199.00 199.00 265.57 0.14 395.08 388.00 952.77 14.26 141.99 141.93 274.47 0.30 23.00 23.00 161.21 0.08

NR-AND-CV-1se 199.00 199.00 0.70 0.25 346.71 346.30 46.21 3.14 137.52 137.47 0.93 0.07 22.97 22.97 6.53 0.00

NR-AND-BIC 199.00 199.00 11.90 0.05 370.60 369.99 81.03 4.87 141.65 141.61 12.19 0.27 23.00 23.00 11.03 0.05

NR-AND-FSR 199.00 199.00 0.01 0.01 200.90 200.90 0.45 0.45 133.82 133.82 0.02 0.02 23.00 23.00 0.01 0.01

NR-OR-CV 199.00 199.00 1441.19 0.05 396.47 381.86 2795.27 23.46 142.00 141.81 1319.48 0.50 23.00 23.00 729.26 0.06

NR-OR-CV-1se 199.00 199.00 12.61 0.38 374.86 372.88 197.90 4.76 140.73 140.65 21.39 0.09 22.99 22.99 60.72 0.00

NR-OR-BIC 199.00 199.00 91.27 0.06 385.83 384.12 299.27 9.28 141.88 141.82 81.60 0.19 23.00 23.00 71.15 0.10

NR-OR-FSR 199.00 199.00 0.07 0.03 205.02 205.02 0.99 0.97 136.27 136.27 0.16 0.04 23.00 23.00 0.01 0.01

Ridge-CV 199.00 199.00 19701.00 0.69 397.00 294.45 19503.00 146.53 142.00 136.96 19758.00 54.15 23.00 23.00 19877.00 0.82

Table 6.  Average number of true positive edges (TP) and false positive edges (FP) over 100 replications when 
p = 200. For each model the number of non-zero partial correlations are: 199 for Model 1, 397 for Model 2, 142 
for Model 3 and 23 for Model 4. Note: Standard errors for TP range from 0.000 to 5.256 and standard errors for 
FP range from 0.000 to 41.561.
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K-fold cross-validation using the log-likelihood as performance measure (see Section 4.2 in Huang et al.52 and 
Section 2.3 in Price et al.53). We denote this procedure Glasso-CV1. We split the sample in K subsets. Using all but 
the k-th subset, we estimate the precision matrix using Glasso and denote this matrix Ω̂, for different values of λ1. On 
the basis of the discarded k-th subset we estimate the sample covariance matrix, Sk. Next, for each value of λ1 we 
compute the following loss function:

∑λ λ λΩ Ω= − .
=

^ ^SCV1( ) {tr( ( )) log det( ( ))}
(6)k

K
k

1
1

1 1

We plot CV1(λ1) versus λ1 and we select the tuning parameter that minimizes the loss function CV1(λ1).
The second approach uses the one-standard-error-rule20. We denote this procedure Glasso-CV1-1se. Using 

the loss function in Eq. (6), we first compute the standard deviation of CV11(λ1), …, CV1K(λ1):

λ λ λ= … .sd( ) sd(CV1 ( ), , CV1 ( )) (7)K1 1 1 1

Next, we compute the standard error of CV1(λ1):

λ λ= .Kse( ) sd( )/ (8)1 1

Finally, given the tuning weight that minimizes the cross-validation error in Eq. (6), denoted by λ̂1, we choose 
the tuning weight that verifies the following rule:

λ λ λ≤ +ˆ ˆCV1( ) CV1( ) se( ) (9)1 1 1

The third approach implements K-fold cross-validation using the prediction errors of each node as perfor-
mance measure. We denote this procedure Glasso-CV2. We split the sample in K subsets. Using all but the k-th 
subset, we estimate the precision matrix using Glasso and denote this matrix Ω̂, for different values of λ1. Next, for 
each value of λ1 we compute the following loss function:

ˆ
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ω

ω
= −





−






.
= = ≠

X XCV2( )
(10)k

K

i

p

i
k

j i

ij

ii
j
k

1
1 1

2

We plot CV2(λ1) versus λ1 and we select the tuning parameter that minimizes the loss function CV2(λ1).
The fourth procedure selects the tuning weight by applying the one-standard-error-rule on the cross-validation 

procedure CV2. We denote this procedure Glasso-CV2-1se.
The fifth and sixth procedures to select the optimal regularization parameter from the 100 considered λ1 

values are based on the Bayesian Information Criterion (BIC) or the Extended Bayesian Information Criterion 
(EBIC). We refer to these procedures as Glasso-BIC and Glasso-EBIC, respectively. We select the value of λ1 that 
minimizes the following loss function:

Lλ λ κ κγΩ= − + +ˆ n pEBIC( ) 2 ( ( )) log( ) 4 log( ) (11)1 1

where L ⋅( ) is the value of the log-likelihood function that corresponds to the estimated matrix Ω̂, κ is the number 
of edges in the estimated network and γ ∈ [0, 1] is a parameter that controls the penalization of the network. If 

Predictors Estimate SE t p-value

Glasso

Intercept 0.06495 0.010 6.464 0.001

Non-sparsity 0.00006 0.000 1.130 0.259

n −0.00002 0.000 -13.556 0.000

SPACE

Intercept 0.04268 0.006 6.961 0.006

Non-sparsity −0.00202 0.000 −39.938 0.000

n −0.00001 0.000 −4.455 0.000

NR-AND

Intercept 0.22450 0.021 10.460 0.002

Non-sparsity −0.00237 0.000 −12.580 0.000

n −0.00023 0.000 −43.530 0.000

NR-OR

Intercept 0.21100 0.018 12.035 0.001

Non-sparsity −0.00125 0.000 −7.235 0.000

n −0.00019 0.000 −38.923 0.000

Ridge

Intercept 0.21950 0.003 63.860 0.000

Non-sparsity −0.00744 0.000 −24.470 0.000

n −0.00015 0.000 −18.460 0.000

Table 7.  Regression coefficients, standard errors (SE), associated Wald’s t-scores and p-values for all predictors 
in the analysis.
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γ = 0, the Eq. (11) corresponds to the classical BIC. Positive values of γ lead to stronger penalization. To compute 
EBIC, we follow the recommendation of Chen and Chen54 and Foygel and Drton21 and set γ to 0.555,56.

Nodewise regression.  Meinshausen and Bühlmann11 proposed to estimate the set of network edges by perform-
ing p separate lasso regressions:

∑ ∑β λ β λ β=







− + | |





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β ≠ ≠

^ X X( ) argmin 1
2

,
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ij2

2

2
ij

Figure 5.  Heatmap of the true network based on the data on 20 PTSD symptoms. White represents partial 
correlations equal to zero, and black represents partial correlations different from zero.

n = 100 n = 500

TPR FPR TPR FPR

no-PCS PCS no-PCS PCS no-PCS PCS no-PCS PCS

Glasso-CV 0.999 0.974 0.145 0.013 1.000 1.000 0.070 0.007

Glasso-CV-1se 0.979 0.968 0.052 0.031 1.000 1.000 0.055 0.011

Glasso-CV2 1.000 0.968 0.295 0.007 1.000 1.000 0.274 0.002

Glasso-CV2-1se 0.999 0.972 0.125 0.015 1.000 1.000 0.104 0.008

Glasso-BIC 1.000 0.973 0.229 0.009 1.000 1.000 0.240 0.004

Glasso-EBIC 0.908 0.889 0.088 0.017 1.000 1.000 0.141 0.006

SPACE-CV 0.983 0.983 0.015 0.014 1.000 1.000 0.013 0.009

SPACE-CV-1se 0.978 0.978 0.010 0.009 1.000 1.000 0.009 0.007

SPACE-BIC 0.989 0.988 0.022 0.020 1.000 1.000 0.015 0.010

SPACE-FSR 0.995 0.993 0.032 0.029 1.000 1.000 0.026 0.018

NR-AND-CV 0.995 0.908 0.092 0.017 1.000 1.000 0.077 0.002

NR-AND-CV-1se 0.887 0.879 0.005 0.003 1.000 1.000 0.001 0.001

NR-AND-BIC 0.976 0.931 0.017 0.006 1.000 1.000 0.009 0.001

NR-AND-FSR 0.754 0.751 0.000 0.000 0.999 0.999 0.001 0.000

NR-OR-CV 0.999 0.883 0.270 0.024 1.000 1.000 0.254 0.002

NR-OR-CV-1se 0.965 0.943 0.025 0.011 1.000 1.000 0.007 0.001

NR-OR-BIC 0.991 0.897 0.063 0.007 1.000 0.999 0.038 0.001

NR-OR-FSR 0.855 0.850 0.002 0.002 1.000 1.000 0.002 0.001

Ridge-CV 1.000 0.845 1.000 0.116 1.000 1.000 1.000 0.005

Table 8.  Average true positive rate (TPR) and false positive rate (FPR) over 100 simulations based on the PTSD 
data. Note: Standard errors for TPR range from 0.000 to 0.029 and standard errors for FPR range from 0.000 to 
0.028.
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where β̂i is a vector that contains the p − 1 estimated regression weights of node i and λ2 > 0 is the regularization 
parameter that controls the number of non-zero elements in the neighborhood of node i. The set of edges can be 
computed with the AND-rule:

estimate an edge between nodes i and j ⇔ β̂ij ≠ 0 and β̂ji ≠ 0

yielding the NR-AND procedure.

Figure 6.  Heatmaps of the frequency with which the edges for the PTSD data based simulations (n = 100) are 
set to zero by the different methods before applying PCS. White indicates that an edge was excluded from the 
network in all replications, whereas black reflects that the edge was always retained in the network.
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Alternatively, we can use the NR-OR method and compute the edge set with the OR-rule:

estimate an edge between nodes i and j ⇔ β̂ij ≠ 0 or β̂ji ≠ 0.

Next, the partial correlation matrix can be computed using the relation between the prediction errors of the 
best linear predictor of each node and the partial correlation coefficients (see Lemma 1 in Peng et al.12).

Figure 7.  Heatmaps of the frequency with which the edges for the PTSD data based simulations (n = 100) are 
set to zero by the different methods after applying PCS. White indicates that an edge was excluded from the 
network in all replications, whereas black reflects that the edge was always retained in the network.
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To select the tuning parameter λ2 for each regression separately we generate a grid of 100 possible values using 
the sequence generated with the function glmnet of the R package glmnet57. We consider four different tuning 
procedures. First, we can perform K-fold cross-validation. Discarding the k-th subset we estimate the vector of 
regression weights β̂i using a lasso regression. We select the value of λ2 that minimizes the following loss 
function:

ˆ∑ ∑λ β= −
= ≠

X XCV( ) ,
(13)k

K

i
k

j i
ij j

k
2

1

2

where Xi
k are the observations in the discarded subset k.

The second approach adapts this cross-validation approach by using the one-standard-error-rule. We denote 
this procedure NR-CV-1se.

The third procedure to select the regularization parameter, NR-BIC, involves computing the Bayesian 
Information Criterion (BIC) for different values of λ2. For each node, we select the value of λ2 that minimizes the 
following loss function:

n nBIC ( ) RSS( ) log( ) (14)i i i2 βλ κ= +ˆ

where RSS(⋅) is the value of the residual sum of squares for the i-th regression and κi is the number of elements in 
the estimated neighborhood of node i.

The fourth procedure is NR-FSR and uses a Finite Sample Result. Meinshausen and Bühlmann11 show that 
under certain assumptions regarding the sparsity and regularity conditions of the covariance matrix and the 
regression weights, the neighborhood of a node i will contain at most α ∈ (0, 1) false positive edges if the 1 pen-
alty parameter is set as: λ α = Φ − α− ( )( ) 1

n p2
2 1

2 2
, where Φ−1 is the inverse of the c.d.f. of N(0, 1). We set the 

bound to the proportion of the false positive edges to α = 0.05.

Joint sparse linear regression.  Peng et al.12 proposed to estimate the partial correlation matrix by minimizing the 
following joint sparse regression (SPACE):
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where ωii is the residual variance of the optimal prediction of Xi given all remaining variables, which is equivalent 
to the the i-th diagonal element of the matrix Ω and λ3 > 0 is the regularization parameter that controls the num-
ber of non-zero elements in the partial correlation matrix Γ.

Breast Cancer BPRS PTSD

no-PCS PCS no-PCS PCS no-PCS PCS

Glasso-CV 2,318 461 172 37 126 67

Glasso-CV-1se 1,799 544 116 77 100 91

Glasso-CV2 1,799 544 124 78 109 68

Glasso-CV2-1se 1,712 640 94 84 95 56

Glasso-BIC 0 0 132 81 114 67

Glasso-EBIC 0 0 0 0 104 100

SPACE-CV 577 576 82 82 70 66

SPACE-CV-1se 433 431 62 62 57 57

SPACE-BIC 437 437 72 72 57 57

SPACE-FSR 562 561 74 74 69 61

NR-AND-CV 608 608 85 85 80 75

NR-AND-CV-1se 287 287 29 29 45 44

NR-AND-BIC 417 417 69 69 58 56

NR-AND-FSR 38 38 26 25 28 28

NR-OR-CV 1,435 820 122 122 113 88

NR-OR-CV-1se 644 644 50 46 56 54

NR-OR-BIC 943 572 87 87 77 77

NR-OR-FSR 105 102 41 39 44 43

Ridge-CV 11,175 631 276 115 190 109

Table 9.  Estimated number of edges of the gene regulatory network for the breast cancer data, the symptom 
network of patients with a diagnosis within the nonaffective psychotic spectrum using the BPRS scale and the 
symptom network of patients with PTSD.
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Given a grid of 100 equidistant values for λ3 ranging from Φ −− .( )n 1
p

1 0 9
2 2

 to Φ −− −( )n 1 e
p

1 1 4
2 2

, there are 
four different procedures to calibrate the tuning parameter λ3. We first propose to perform K-fold cross-validation, 
yielding SPACE-CV. We first split the sample into K subsets and select the parameter value that minimizes the 
following loss function:

∑ ∑ ∑λ ρ
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The second procedure again adapts this cross-validation approach by using the one-standard-error-rule. We 
denote this procedure SPACE-CV-1se.

The third procedure to select the regularization parameter involves computing the Bayesian Information 
Criterion (BIC) for the 100 values of λ3. First, we compute for each node the residual sum of squares:

∑ρ ω ρ
ω

ω
= −
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ˆ ˆ ˆ
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Next, we select the value of λ3 by minimizing:

( )n nBIC( ) RSS ( , ) log( )
(17)i

p

i ij V i j ii i3
1

{ , }^ ^∑λ ρ ω κ= +
=

where κi is the number of elements in the estimated neighborhood of node i.

Figure 8.  Estimated gene regulatory network for the breast cancer data.
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Figure 9.  Estimated sub-network of genes in the neighborhood of ESR1 and FOXA1 for the breast cancer data.

Figure 10.  Estimated symptoms network of patients with a diagnosis within the nonaffective psychotic 
spectrum using the BPRS data.
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The fourth procedure SPACE-FSR is based on the Finite Sample Result by Peng et al.12. These authors show 
that under certain assumptions regarding the sparsity and regularity conditions of the covariance matrix and the 
regression weights, the neighborhood of a node i will contain at most α ∈ (0, 1) false positive edges if the penalty 
parameter is set as: ( )n( ) 1

p3
1

2 2λ α = Φ − α− , where Φ−1 is the inverse of the c.d.f. of N(0, 1). We again set the 
bound to the proportion of the false positive edges to α = 0.05.

Partial correlation estimation using ridge regression.  Ha and Sun19 proposed to estimate a penalized partial cor-
relations matrix using a ridge penalty. We apply a simpler version of their method by performing p separate ridge 
regressions:

∑ ∑δ λ δ λ δ=
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where δ̂i is a vector that contains the p − 1 estimated regression weights for node i and λ4 > 0 is the regularization 
parameter that controls the amount of shrinkage of the regression weights toward zero in the neighborhood of 
node i. The partial correlation matrix is computed using the relation between the prediction errors of the best 
linear predictor of each node and the partial correlation coefficients (see Lemma 1 in Peng et al.12).

To select the tuning parameter λ4 for each regression separately we generate a grid of 100 possible values using 
the sequence generated with the function glmnet of the R package glmnet57. We select the regularization param-
eter by performing K-fold cross-validation. Discarding the k-th subset we estimate the vector of regression 
weights δ̂i using ridge regression. We select the value of λ4 that minimizes the following loss function:

ˆ∑ ∑λ δ= −
= ≠
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where Xi
k are the observations in the discarded subset k. We denote this procedure Ridge-CV.

Partial correlation screening procedure.  In this subsection we present the technical details of the Partial 
Correlation Screening (PCS) algorithm. The procedure estimates the set of edges in two steps. In the first step, we 

Figure 11.  Estimated symptoms network for the PTSD data.
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determine a sparse partial correlation network, denoted by ˆ ρ̂Γ = |[ ]ij V i j\{ , } , using one of the methods that we dis-
cussed in the previous subsection.

In the second step of the algorithm, we detect unimportant pairs of variables by thresholding the partial cor-
relations estimated in the first step. For i ∈ V and a threshold parameter τ ∈ (0, 1), we estimate the neighborhood 
of node i as follows

A ρ τ= ∈ | | > .τ |
ˆ ˆj V i{ \{ }: } (20)i ij V i j, \{ , }

The algorithm outputs the estimated set of edges for a given threshold τ:

ˆ ρ̂ τ= ∈ | | > .τ |E i j V{( , ) : } (21)ij V i j\{ , }

Finally, the prediction error of the regression of each node i conditioned on the variables that belong to the 
estimated neighborhood set A τî ,  is given by

A

∑ε θ= −τ τ
∈ τ

ˆ ˆ
ˆ

X X ,i i
j

ij j, ,
i,

where θ̂ τi ,  is the vector of estimated regression coefficients of node i ∈ V given the variables in the estimated neigh-
borhood set A τî , .

Choice of the tuning parameter.  To select the threshold parameter τ, we perform K-fold cross validation. We 
generate a sequence of 100 equidistant values for the threshold τ ranging from 0.0001 to 1. The procedure to select 
the threshold uses a double-loop. First, for each of the estimation procedures proposed in the previous subsec-
tion, we select the regularization parameter λ. Second, we split the sample in K subsets. Using all but the k-the 
subset, we estimate a sparse partial correlation network using the selected regularization parameter λ. Next, for 
each value of τ in the grid, we estimate the neighborhood of each node (see Eq. (20)) and the regression weights 
vector θ̂ τi , . For each value of τ we compute the following loss function:

A
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ˆ
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We plot CV(τ) versus τ and we select the threshold parameter that minimizes the loss function CV(τ).
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