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Abstract

With parallels to concussive mild traumatic brain injury (mTBI) occurring in humans, anesthetized mice subjected to a
single 30 g weight drop mTBI event to the right parietal cortex exhibited significant diffuse neuronal degeneration that
was accompanied by delayed impairments in recognition and spatial memory. To elucidate the involvement of
reversible p53-dependent apoptosis in this neuronal loss and associated cognitive deficits, mice were subjected to
experimental mTBI followed by the systemic administration of the tetrahydrobenzothiazole p53 inactivator, PFT-a, or
vehicle. Neuronal loss was quantified immunohistochemically at 72 hr. post-injury by the use of fluoro-Jade B and
NeuN within the dentate gyrus on both sides of the brain, and recognition and spatial memory were assessed by
novel object recognition and Y-maze paradigms at 7 and 30 days post injury. Systemic administration of a single
dose of PFT-a 1 hr. post-injury significantly ameliorated both neuronal cell death and cognitive impairments, which
were no different from sham control animals. Cellular studies on human SH-SY5Y cells and rat primary neurons
challenged with glutamate excitotoxicity and H,O, induced oxidative stress, confirmed the ability of PFT-a and a
close analog to protect against these TBI associated mechanisms mediating neuronal loss. These studies suggest
that p53-dependent apoptotic mechanisms underpin the neuronal and cognitive losses accompanying mTBI, and that
these are potentially reversible by p53 inactivation.
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Introduction

Traumatic brain injury (TBI) represents an important and
growing worldwide public health concern. It is a commonly
occurring injury in victims of sports and motor vehicle
accidents, especially for young men [1,2], and of falls in the
elderly [3]. According to the CDC (Centers for Disease Control
and prevention) some 1.7 million people suffer from TBI
annually within the United States alone and, of these, almost
80% are considered as mild cases [4]. Victims of TBI suffer
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from a broad range of short- and long-term physical, cognitive,
and emotional impairments consequent to their brain damage.
The adverse outcome that mild TBI (mTBI) patients most
commonly suffer is the occurrence of neurobehavioral
problems or post-concussion syndrome (PCS) [5-7]. This is
characterized by cognitive symptoms that include difficulties in
concentrating, memory loss, a decreased speed of information
processing, an inability to multitask, and difficulties in initiating
and planning [7]. Previous research in a non-invasive closed
head mTBlI mouse model demonstrates that it induces
cognitive and behavioral short- and long- term deficits [8-13]
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that, to a degree and similar to a number of other rodent
models [14], mimic the human condition. Primary brain injury is
induced by the immediate insult to the head, while the
development of secondary brain injury takes place from
minutes to days following the trauma [15]. Most of the damage
apparent in mild injury patients derives from the secondary
events of the trauma, which includes brain edema,
inflammatory responses, free radical generation, glutamate-
induced excito-toxicity and DNA damage [16-18]. When cellular
damage is sufficiently profound, the pro-apoptotic protein, p53
will initiate the process of apoptosis.

It is becoming increasingly evident that neuronal cell death
may contribute to the cognitive deficits that appear following a
TBI event [19]. Previous research from our laboratory has
revealed the occurrence of diffuse neuronal cell death
throughout the brain [20] together with elevated levels of p53
following mTBI in mice involving as little as 15 to 30 g impact
[21]. The elegant work of others has, likewise, demonstrated
elevations in p53 mRNA as well as protein levels within the
hippocampus and cortex as a result of TBI [22-24]. TBI has
additionally been described to induce the phosphorylation of
p53 within the hippocampus [25]; thus increasing its
stabilization and capacity to resist degradation pathways to,
thereby, promote its ability to initiate apoptosis [26,27].
Elevations in p53 have been reported in the penumbra
surrounding the core of both a stroke [28,29] and lesion
induced by open head cortical impact injury [23], where its
heightened levels correlated to the secondary contusion
expansion [23]. The inactivation of the p53 signaling pathway
resulted in a reduction in the volume of this secondary
contusion and an improved outcome in both conditions
[23,28,29], supporting a primary role of p53 in the neuronal cell
dysfunction and death occurring around ischemia- and TBI-
induced lesions.

The tetrahydrobenzothiazole analogue pifithrin alpha (PFT-a)
is a synthetic agent that limits apoptosis through inhibition of
p53-mediated transcription [30,31]. PFT-a has been reported to
be beneficial across a wide array of neurodegenerative models,
including ones relevant to schemic injury and stroke [28,29,32],
ALS [33], Huntington’s disease [34] and Parkinson’s disease
[35].

In light of the favorable activity of PFT-a across such a range
of cellular and animal models involving neuronal dysfunction
and loss, and the beneficial effect of the agent in reducing
secondary lesion expansion following cortical impact injury [23],
the focus of this study was to evaluate whether acute
administration of PFT-a could ameliorate cognitive deficits
resulting from mTBI, where apoptosis is diffuse [20] and a
primary lesion is absent [11]. As TBI is associated with a
massive release of excitatory amino acid neurotransmitters,
particularly glutamate [36] whose extracellular availability
detrimentally impacts neurons and astrocytes and results in
over-stimulation of ionotropic and metabotropic glutamate
receptors inducing successive Ca?", Na*, and K*-fluxes [37-39],
the ability of PFT-a to protect neuronal cultures from glutamate
excitotoxicity, oxidative stress and natural degeneration was
evaluated. Finally, to verify that the neuroprotection of PFT-a
was due to its reported anti-apoptotic actions, brain slices from
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treated and untreated mTBI animals were immunostained with
antibodies to allow visualization of degenerating (Fluoro-Jade
B) and mature neurons (anti-NeuN).

Materials and Methods

Ethics Statement

The Ethics Committee of the Sackler Faculty of Medicine
approved the experimental protocols (M-12-063), in compliance
with the guidelines for animal experimentation of the National
Research Council (Committee for the Update of the Guide for
the Care and Use of Laboratory Animals, 2011). A minimal
number of mice were used for the study and all efforts were
made to minimize potential suffering.

Pifithrin-a (PFT-a)

PFT-a [1-(4-methyl-phenyl)-2-(4,5,6,7-tetrahydro-2-
imino-3(2H) benzothiazolyl)ethanone) was synthesized as its
HBr salt, according to the route of Zhu et al. [31], (Figure 1),
and the close analog, Y-6-159, was likewise generated to
confirm that activity was retained across p53 inactivators.
Chemical characterization confirmed the structures of the
desired compounds in high purity (>99%), which were later
dissolved in 100% dimethyl sulfoxide (DMSO) for cell culture
studies.

Neuronal Cultures

Primary cultures: primary cortical cultures were isolated from
E15 embryos obtained from timed-pregnant Sprague—Dawley
rats, as described previously [40] and in accord with approved
procedures by the NIH Animal Care and Use Committee.
Specifically, dissected brain cortices from E15 embryos were
pooled and digested for 20 min in pre-warmed (37°C) 1 ml/
embryo of 0.05% trypsin-EDTA (0.2% (Invitrogen, La Jolla,
CA)). Cortices were then triturated and diluted into plating
media to approximately 2 ml per embryo. This plating media
comprised Neurobasal media (Invitrogen), 2% heat-inactivated
fetal bovine serum (Sigma-Aldrich, Milwaukee, WI), 2% B27
supplement (Invitrogen), 200 mM L-glutamine and 25 mM L-
glutamate. Cell viability was evaluated by trypan blue staining
(Invitrogen) and cells were plated at 3 x 10* viable cells/well in
0.2 ml plating media into 96 well plates coated with 0.15-0.2%
polyethyleneimine in 150 mM sodium borate, pH 8.5 (Sigma-
Aldrich). Thereafter, plated cells were maintained in a
humidified incubator (37 °C, 5% CO,, 95% air) and fed by 50%
media exchange starting on the 4th day in vitro (DIV4) with
feed media (plating media without serum or glutamate), with
additional feedings thereafter.

To evaluate p53-dependent neuroprotection afforded by
PFT-a, neuronal cultures were either permitted to naturally
degenerate or were challenged to glutamate (Sigma-Aldrich)
excess (DIV7 and DIV8). This glutamate dose (100 uM) was
selected from preliminary time- and dose-response studies,
sufficient to induce mild cellular dysfunction and loss. Cultures
were pre-treated for 1 hr. with PFT-a (diluted to less than 0.5%
DMSO) and challenged with glutamate followed by the
assessment of cell viability 24 hr. To evaluate protection
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Figure 1. Time line of mouse studies. Anesthetized male ICR mice were subjected to either mTBI (a single 30 g weight drop) or
a sham procedure (without weight drop) and 1 hr. later were administered either PFT-a (2 mg/kg, i.p.) or vehicle (0.2% DMSO/saline
mixture, i.p.). Three parallel series of animals were then maintained for (i) 72 hr. and were prepared for immunohistochemical
analyses of their brain tissue for quantification of degenerating neurons assessed by FJB and NeuN, (ii)) 7 days and were
behaviorally evaluated by novel object recognition and Y-maze paradigms, and (iii) 30 days and underwent similar behavior
evaluation. The structure of PFT-a is shown as its synthesized HBr salt.

doi: 10.1371/journal.pone.0079837.g001

against natural degeneration, PFT-a was added to their media
over 24 hr. Cellular viability was quantified by MTS assay using
the CellTiter 96 Aqueous One Solution Cell Proliferation Assay
kit (Promega, Madison, WI, USA) according to the
manufacturer’s instructions.

Human SH-SY5Y cultures: SH-SYSY cells from American
Type Culture Collection (ATCC, Manassa, VA, USA) were
cultured (1:1 mixture) in Eagle’s minimum essential medium
and Ham’s F12 medium containing fetal bovine serum (10%)
and penicillin-streptomycin (1%) (Invitrogen), and were plated
at a density of 20,000 cells/100 pl in 96-well plates (37 °C in a
humidified incubator with 5 % CO, and 95 % air). After 24 hr.,
cells were exposed to PFT-a analog Y-6-159 (1-10 yM) for 60
min and then were challenged with glutamate (100 mM) or
oxidative stress (H,O,: 500 uM) for 24 hr. These glutamate and
H,0, concentrations were selected from initial dose-response
studies to provoke a significant but incomplete level of cellular
toxicity. Thereafter, cellular viability was quantified by MTS
assay (Promega).

Animal Studies

Male ICR mice weighing 30-40 g were kept five per cage
under a constant 12-hr. light/dark cycle, at room temperature
(22+2°C). Food (Purina rodent chow) and water were available
ad libitum. Each mouse was used for one experiment and for
one time point alone.
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Mild traumatic brain injury (mTBI)

Experimental mTBI was induced using the concussive closed
scalp, head trauma device described previously [9,13]. Mice
were anesthetized by inhalation of Isoflurane in a closed glass
chamber and placed under a metal tube device where the
opening was positioned directly over the animal’'s head just
anterior to the right ear. The animals were held in such a way
that the force of impact to the skull generated anterio-lateral
movements without any rotational movements, analogous to
those that occur during closed head injury in car accidents. The
injury was induced by dropping a blunted cylindrical metal
weight (30 g), inside the metal tube device (inner diameter 13
mm) from a height of 80 cm. Mice were placed back in their
cages to allow for recovery from the anesthesia and TBI,
immediately after the induction of the injury. The potential
effects of the weight drop injury were studied at 72 hr. and at 7
and 30 days following the trauma (Figure 1). For each time
point, different groups of mice were utilized with a minimum of
9 mice per group.

PFT-a administration

Animals were administered PFT-a 2 mg/kg body weight by
the intraperitoneal (i.p.) route 1 hr. post injury, drug vehicle
control animals were treated with a 0.2% DMSO/saline mixture.
PFT-a was maintained in 100% DMSO as a concentrated stock
and diluted in saline immediately prior to administration.
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Behavioral tests

Behavioral analyses were undertaken 7 and 30 days after
the animals received the mTBI injury (Figure 1). The effects of
mTBIl on mouse cognition were assessed using the following
behavioral paradigms: the novel object recognition (NOR) and
the Y maze. The assessments were conducted once per day at
approximately the same time each day during the light phase of
the cycle.

Novel object recognition paradigm

The NOR task was used to evaluate recognition memory in
mice as previously described [10,12]. This task is based on the
innate tendency of rodents to explore new objects within their
environment. The use of this natural tendency allows one to
determine whether a mouse can discriminate between a
familiar and a novel object. Mice were individually habituated to
an open field Plexiglass arena (59 x 59 x 20 cm) for a period of
5 min. Twenty-four hours later, in the acquisition phase, two
identical objects (A and B) were placed in a symmetrical
position within the arena. The objects were sufficiently large to
ensure that the mice could neither move nor climb over them.
During the memory recognition assessment phase that was
assessed 24 hr. thereafter, one of the objects (A or B) was
randomly replaced by a novel one (C), and the mouse
exploratory behavior was analyzed over a 5 min period.
Exploration of an object was defined as rearing on the object,
sniffing it at a distance of less than 2 cm and/or touching it with
the nose. Successful recognition was represented by
preferential exploration of the novel object over the familiar
object. The time spent by each mouse exploring the novel
object over the familiar object was recorded and used to
generate a preference index as initially described by Dix and
Aggleton [41]. A discrimination preference index was calculated
as following: (time spent near the new object minus time spent
near the old object) / (time spent near the new object plus time
spent near the old object). After each session, the objects and
arena were thoroughly cleaned with 70% ethanol to prevent
odor recognition.

Y maze paradigm

The Y maze task assesses rodent spatial memory; it is
based upon observing the preference of the animal for a ‘new’
location over a ‘familiar’ location on two separate occasions.
The maze is composed of three black Plexiglass arms
separated by a 120° angle at a central axis [42]. Each arm was
identical in construction (8 x 30 x 15 cm) yet distinctive by the
presence of different visual cues placed at the ends of the arms
(i.e. a triangle, square, or a circle). For each animal one arm
was randomly selected as the “start” arm, during the first trial (5
min in duration) one of the two remaining arms was randomly
blocked whereas on the second trial (2 min in duration) all arms
of the maze were open. The two behavioral trials were
separated by a 2 min interval during which the mouse was
returned to its home cage. The time each mouse spent by in
the arms was recorded and used to generate a preference
index as initially described by Dix and Aggleton [41]. The
discrimination preference index was calculated as follows:
(time spent in new arm minus time spent in familiar arm) / (time
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spent in new arm plus time spent in familiar arm). Between the
trials and animals, the maze was cleaned using a 70% ethanol
solution and dried in order to prevent any olfactory recognition.

Immunohistochemistry Staining

To assess for early changes neuronal cell viability, at 72 hr.
post mTBI and sections were stained for NeuN (a marker of
mature neurons) and Fluoro-Jade B (FJB: a marker of
degenerating neurons). A ratio of the numbers of degenerating
neurons over the number of mature neurons was used as an
index of trauma-induced cellular health. Mice were
anaesthetized with a combination of ketamine (100 mg/kg) and
xylazine (10 mg/kg) and perfused transcardially with 10 ml of
phosphate buffered saline (PBS) followed by perfusion with 20
ml of a 4% paraformaldehyde (PFA) buffer. The brains were
post-fixed overnight in the same fixative solution and then
transferred to 1% PFA. The brains were submerged in a 30%
sucrose solution for 48 hr. prior to sectioning. Thirty micrometer
thick free floating coronal sections were prepared on a cryostat.
The sections were collected in a cryoprotectant solution
containing phosphate buffer, ethylene glycol, and glycerin, and
stored at -20°C. Every twelfth section throughout the brain was
stained with a mouse primary antibody that detects NeuN
(Millipore; MAB377, diluted 1 in 50 in incubation buffer), after
the incubation with primary antibody the sections were washed
and incubated with a Cy3 labeled anti-mouse secondary
antibody (Jackson; 715-165-150, diluted 1 in 300 incubation
buffer). The probed sections were mounted onto 2% gelatin
coated slides and stained with FJB (Millipore; AG310) as
described by Schmued and Hopkins [43]. In light of the diffuse,
rather than local, cellular dysfunction and loss that has been
described to occur across both cerebral hemispheres in our
mTBl model [20,21], both the ipsi- and contra-lateral
hippocampi were analyzed and pooled together to attain
stricter statistical analysis. The means of 6 to 10 mouse brains
per treatment were used to assess the FJB/NeuN ratios for
each treatment group. The slides were observed using a Zeiss
Axiovert 200 fluorescence microscope (Zeiss).

Data analysis

All results are shown as mean * standard error of mean
values. Data from primary cell culture studies were subjected to
one-way analysis of variance (ANOVA) and Dunnett's multiple
comparison t-test. Data from animal studies were analyzed
using SPSS 17 software (Genius Systems, Petah Tikva,
Israel). A one way ANOVA was used to analyze data for the
behavioral paradigms: NOR and Y maze, the p values of post
hoc tests were adjusted using Bonferroni or Fisher's least
significant difference (LSD) test utilizing a nominal significance
level of 0.05.

Results
Neuronal Cultures
The effects of PFT-a on glutamate/oxidative stress

toxicity across neuronal cultures. As glutamate-induced
excitotoxicity and oxidative stress together with natural
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Figure 2. p53 inhibition by PFT-a/analog inhibits glutamate-induced excitotoxicity and oxidative stress mediated loss of
cell viability in neuronal cultures. Human SH-SY5Y cells were subjected to p53 inactivation (PFT-a analog 1 to 10 uM) and then
challenged with (A) glutamate (100 mM) excitotoxicity or (B) oxidative stress (H,O,: 500 uM). These insults alone significantly
reduced cellular viability (* p<0.05 vs. control, Dunnetts t-test), which was mitigated by p53 inactivation (# p<0.05 vs. glutamate
alone, Dunnetts t-test). (C) Rat primary cortical neuron cultures undergo time-dependent degeneration [44] that was mitigated by the
addition of PFT-a (2 nM to 1 pM; * p<0.05, ** p<0.01, *** p<0.001 vs. untreated controls that are expressed as 100% (Dunnett’s t-
test). A 10 uM PFT-a concentration proved to be toxic to primary neurons (*** p<0.001 vs. untreated controls; Dunnett’s t-test). (D)
In an alike manner to SH-SY5Y cells, exposure of primary cortical neurons to glutamate (100 uM) resulted in reduced survival (*
p<0.05 vs. control, Dunnetts t-test),) and pre-treatment with 2 to 100 nM PFT-a ameliorated this (NS not significantly different from
untreated controls, Dunnetts t-test). Analysis of viable neurons was undertaken by MTS assay at 24 hr.

doi: 10.1371/journal.pone.0079837.g002

degeneration [44], are considered to underpin, in part, the continuous time-dependent degeneration when maintained in
cellular loss in brain after a TBI insult [19,23,29], neuronal culture (Figure 2C), which was mitigated by PFT-a on
cultures were pretreated with vehicle or PFT-a/analog (primary comparison of treated with untreated control cultures. Likewise,
cortical cells: 0, 2 nM to 10 yM PFT-a; human SH-SY5Y cells 1 primary cortical neurons proved vulnerable to glutamate, which
to 10 yM PFT-a analog Y-6-159) and, 1 hr. later were exposed induced a mild cellular loss (~10% loss vs. control *p<0.05 vs.

to glutamate (SH-SY5Y cells: 100 mM; primary cells: 100 pM, controls) that was mitigated by PFT-a 2-100 nM concentrations
for 24 hr.) or oxidative stress (H,0,: 500 uM, 24 hr.) or no insult (Figure 2D). In general, PFT-a was well tolerated by SH-SY5Y
for naturally degenerating primary cortical cultures. The percent and primary neuron cultures, except at concentrations
of neuronal survivals at 24 hr. are shown in Figure 2. approaching 10 uM for the latter.

In line with prior studies [10], human SH-SY5Y cells proved
susceptible to glutamate-mediated excitoxicity that induced a Animal Studies

~26% cellular loss (*p<0.05 vs. control), which was mitigated The effects of PFT-a treatment after injury on the NOR
by p53 inhibition (Figure 2A). Likewise, challenge with oxidative paradigm. The NOR was used in order to examine the visual
stress induced a ~43% loss of cell viability (*p<0.05 vs. control) recognition memory of the mice at defined time points after
that was similarly ameliorated by p53 inhibition (Figure 2B). In injury. Seven days after the mTBI event the vehicle treated,
accord with former studies [44], primary neurons undergo injured mice exhibited impairments in visual memory when
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Figure 3. PFT-a inhibits mTBl-induce deficits in novel object recognition. (A) PFT-a administration 1 hr. post trauma
ameliorated mTBI visual memory deficits. mTBI mice had a significantly lower visual memory compared with all other groups, a
deficit that was reversed with the administration of PFT-a both 7 days post trauma (**p<0.01; Bonferroni post hoc [F;¢= 7.388,
p<0.001]), and (B) 30 days post trauma (*p<0.05; Fisher's LSD post hoc [Fg4= 3.104, p=0.039]). Performance of mice was
quantitatively assessed as a preference index, calculated as (time near the new object - time near the old object)/(time near the new

object + time near the old object). Values are mean + SEM, of n=9 - 19.

doi: 10.1371/journal.pone.0079837.g003

compared with all other treatment groups. However, the mTBI
mice treated with PFT-a 1hr. post injury demonstrated a
complete recovery of the loss of visual memory. One-way
ANOVA revealed a significant effect of group [Fes= 7.388,
p<0.001]. Bonferroni post hoc analysis revealed that the
preference index of the mTBI mice was significantly lower than
the other groups (**p<0.01, Figure 3A). Parallel groups of
different mice were similarly evaluated 30 days after injury to
characterize the long-term influence of PFT-a on the NOR
assessment. Even at 30 days following injury, the vehicle mTBI
animals demonstrated impairments in object recognition when
compared with the other treatment groups (Figure 3B). In
contrast, PFT-a treated mTBI mice (1 hr. post injury) presented
with no impairments in visual memory. One-way ANOVA
revealed a significant effect of group [F ;4= 3.104, p=0.039].
Fisher's LSD post hoc analysis revealed that the preference

PLOS ONE | www.plosone.org

index of the mTBI mice was significantly lower compared with
all other groups (*p<0.05, Figure 3A). At both time points
studied, sham PFT-a mice (no mTBIl) demonstrated no
differences in NOR performance compared to that of sham
control mice.

The effects of PFT-a treatment after injury on the Y maze
paradigm. The Y maze paradigm was used to examine the
spatial memory of the animals. Y maze paradigm
measurements obtained from mice at 7 days post trauma,
indicated that there was a significant difference between the
treatment groups. One-way ANOVA revealed a significant
change [F;7,=4.155, p=0.009], a Fisher's LSD post hoc
analysis revealed that the vehicle treated mTBl mice had
significantly lower spatial memory abilities when compared with
the other treatment groups (**p<0.01, Figure 4A). At 30 days
after injury one-way ANOVA revealed a significant difference
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Figure 4. PFT-a inhibits mTBI-induce deficits in Y maze. (A) PFT-a administration 1 hr. post trauma improved mTBI spatial
memory deficits. mTBI mice had a significantly lower visual memory compared with all other groups, a deficit that was corrected with
the administration of PFT-a 7 days post trauma (**p<0.01; Fisher's LSD post hoc [F 5 ,,,=4.155, p=0.009]). (B) 30 days post trauma
the differences between mTBI and PFT-a mice reached statistical significance (#p<0.01; Bonferroni post hoc [F.s= 4.337,
p=0.009]). Performance of mice was quantitatively assessed as a preference index, calculated as (time at the new arm - time at the

old arm)/(time at the new arm + time at the old arm). Values are mean + SEM, of n= 10 - 20.

doi: 10.1371/journal.pone.0079837.9g004

between groups [F 4= 4.337, p=0.009; Figure 4B]. Likewise,
mTBI challenged mice demonstrated lower spatial memory
skills compared to other groups. Bonferroni post hoc analysis
revealed that the spatial memory capabilities of the vehicle
treated mTBI mice were impaired when compared to the PFT-a
sham mice (PFT-a, no mTBI, #p<0.01, Figure 4B).

The effects of PFT-a on mTBIl-induced degenerating
neurons in the dentate gyrus. Mouse brain sections were
prepared from animals 72 hr. after injury. Representative
sections are shown in Figure 5A/B, that were double-stained
with FJB (shown in green) and antibodies selective for NeuN
(shown in red). The FJB/NeuN ratio was calculated (the
number of neurons undergoing degeneration (FJB stained)
divided by the number of mature neurons (anti-NeuN stained).
When numbers of mature neurons remain unchanged, as
occurred in our study (there were no statistical differences in
the mature neuron number between the groups: sham, mTBI,
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and mTBI+PFT-a mean values were 43.6, 34.1 and 46.2
respectively; p (ANOVA)=0.105)), a rise in the FJB/NeuN ratio
occurs in the presence of an increased number of degenerating
neurons.

The ratio was thereby used in order to define the fraction of
degenerating neurons compared with the total number of
neurons in the observed field within the hilus of the dentate
gyrus. One-way ANOVA revealed a significant difference
between groups [F, ;= 8.228, p=0.004]. A Bonferroni post hoc
analysis showed a significant increase in the FJB/NeuN ratio in
the mTBI alone compared with the sham mice. In addition, in
mice subjected to mTBI and treated with PFT-a, the FJB/NeuN
ratio was significantly lower versus the mTBI alone mice
(0.358+0.02 and 0.495+0.06 in mTBI+ PFT-a and mTBI mice,
respectively). No differences were found between the mTBI
PFT-a and the sham control group (0.369+0.07; N=6-10;
**p<0.01) (Figure 5C).
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Figure 5. PFT-a mitigates mTBI-induced degeneration of neurons in the dentate gyrus. (A) Representative images of Fluoro
Jade B (FJB) (green) and NeuN (red) positive neurons in the dentate gyrus 72 hr. after mTBI. Scale bar= 100um.

(B) The field in the box indicates the hilus of the dentate gyrus, which is represented in a higher magnification. (C) Bar graph shows
the quantification of neuronal degeneration in the dentate gyrus as a ratio of number of neurons positively stained with FJB
(degenerating neurons) divided by neurons positively stained with anti-NeuN in sham control, mTBI and mTBI PFT-a groups.

(**P<0.01; Bonferroni post hoc [F, 1¢= 9.219, p=0.002). Values are mean + SEM, of n= 6 - 10 mouse brains.

doi: 10.1371/journal.pone.0079837.g005

Discussion

Our study supports a primary role for p53 in the delayed
neuronal death that occurs following a mTBI incident. Our prior
studies demonstrated that increased severity of impact to the
head positively correlates with a rise in the number of pyknotic
(where condensation and a reduction in the size of the cell and
particularly its nucleus occur, associated with
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hyperchromatosis and indicative of advancement towards
necrotic cell death) and apoptotic neurons throughout the
cerebral cortex and hippocampus both ipsi- and contralateral to
a closed head mTBI injury [21]. In these former studies, the
pro- and anti-apoptotic markers p53 and Bcl2, respectively,
were up regulated by as little as a 5 g insult when evaluated at
72 h [21], with degeneration of neurons and their processes
occurring at insults of 15 g within cortical regions and 25 to 30
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g in hippocampus and dentate gyrus, as assessed by silver
staining with verification of apoptosis by TUNEL staining [20].
Herein, we confirm the occurrence of diffuse neuronal cell
death by the use of FJB, an anionic fluorescein derivative that
is widely used to label degenerating neurons ex-vivo within the
brain [43] with quantification of total neuron numbers by the
use of NeuN immunostaining [45]. Furthermore, we link this
p53-dependent neuronal cell death to later cognitive
impairment (assessed at 7 and 30 days) by the use of a p53
inactivator, PFT-q, through its mitigation of both.

Of the 1.7 million Americans that experience TBI annually by
far the majority (over 80%) suffer mTBI [4] and endure a
spectrum of short- and long-term neurological deficits,
particularly cognitive impairments [46-48] that may appreciably
impact quality of life even following recovery from any physical
disabilities [49]. Albeit no single animal TBI model perfectly
reproduces the human condition [14], our non-invasive weight
drop mTBI model has well characterized features pertinent to
human head injury that can transpire from a traffic accident, a
sports injury, or a fall. In accord with other weight drop rodent
models [50], diffuse axonal injury arises throughout the brain
that leads to diffuse neuronal loss, neuroinflammation, and
later cognitive impairments [9,11,20,21,51-53] that are prime
features occurring in most human mTBI cases [18]. In contrast
to open head and focal TBI animal models [14,54,55] in which
a contusion or focal lesion ensues, an attribute associated with
more serious TBI in humans, neither presents in our mTBI
model [11].

In an open head controlled cortical impact (CCl) model of
TBI in mice that results in a cerebral contusion, p53 levels were
found elevated in brain within 15 min of TBI, further rose at 3, 6
and 12 h and were sustained for at least 24 hr., as assessed at
the rim and center of the contusion [23]. This rapid rise in p53
protein levels preceded neuronal cell death and correlated well
with the secondary expansion of the contusion volume.
Interestingly, however, p53 levels in brain regions unassociated
with CCI (i.e., contralaterally) were described as not different
from sham animals [23]. The administration of the p53
inactivator PFT-a (6 or 8 mg/kg, i.p.) either prior to or,
optimally, up to 3 h post CCI, substantially mitigated the rise in
p53 expression and reduced the secondary brain tissue loss
after trauma. This effect largely mirrors prior studies evaluating
p53-induced apoptosis in cerebral ischemia [28,31] in which
the infarct volume time-dependently increased with p53
expression [28,56]. Likewise, PFT-a (2 mg/kg, i.p.) mitigated
the rise in p53 levels, reduced the infarct size and improved
behavioral outcome with a therapeutic window of approximately
3 h [28], with higher (4.0 mg/kg) and lower (0.2 mg/kg) doses
proving less effective.

The current study hence followed our prior ones and used a
2 mg/kg PFT-a dose within the previously established
therapeutic window to evaluate the role of p53 in the diffuse
neuronal cell death that occurs in our concussive mTBI model.
Furthermore, neuronal degeneration was assessed at 72 hr.
post mTBI immunohistochemically using FJB in combination
with NeuN to define neurons, in accord with prior studies
defining the time of peak neuronal apoptosis following a TBI
event [11,57]. Staining with Fluoro Jade B correlates relatively
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well with Tunnel staining [58], and has been utilized to
demonstrate neurodegeneration in multiple models of TBI with
varying levels of injury severity. Marked positive staining of
neurons has been observed in the fluid percussion [59-61];
controlled cortical impact [62,63] and the open head weight
drop injury model [64]. None of these models can be
considered mild, as compared to our closed head weight drop
model, and thus the findings of these studies differ somewhat
from ours, in terms of the levels of positively stained neurons.
As indicated by Hellmich and colleagues [61], the level of FJB
staining is dependent on the level of injury severity.
Interestingly, similar to our study, these investigators also
observed a low level of FJB staining in sham animals; the
biological relevance of this is unclear and would require
additional studies to address the significance of FJB staining in
control animals.

Our behavioral evaluation post mTBI was undertaken at 7
and 30 days, in accord with previous time-dependent studies
[10,52]. These involved (i) recognition memory and, (ii), spatial
memory, which as in prior studies [8,10,12,42,51,52,65,66]
were impaired by mTBIl. The former refers to the ability to
discriminate a previously encountered (familiar) item from a
novel one; a task that has become a valuable tool in basic and
preclinical research for investigating the neural basis of
memory [67], and that has parallels to visual paired-
comparison tasks in studies in humans and monkeys. Damage
to the hippocampus is sufficient to produce impaired
recognition memory [68-70]. The latter, spontaneous spatial
memory in the Y-maze, is likewise considered a hippocampal-
dependent test [70,71] and, importantly, both recognition and
spatial memory are impaired in humans with mTBI [72]. The
hippocampus, in particular, appears to be vulnerable to mTBI
induced neuronal degeneration [20,21,73,74]. PFT-a readily
enters the brain [31,35] and fully ameliorated both the neuronal
loss (Figure 5) and cognitive impairments (Figures 3 and 4),
thereby implicating p53 as an important mediator in
mechanisms underpinning these.

To further establish a role of p53 in mTBI associated
neuronal dysfunction, we challenged cultured neural cells
(human SH-SY5Y cells and primary neurons) to glutamate
excitotoxicity and oxidative stress in the presence and absence
of PFT-a and a close analog (selected to illustrate that p53
inhibition-associated neuroprotection was not compound
specific). This was undertaken as oxidative stress and
overwhelming disturbances in cellular ion homeostasis,
particularly calcium ions, have been reported to occur following
TBI that are activated by the excessive release of excitatory
amino acids, chiefly glutamate, triggering the subsequent
stimulation of glutamate receptors [39,75]. Calcium ion cellular
influx is a key incident early post-TBI and provokes
mitochondrial damage with an uncoupling of mitochondrial ATP
synthesis, a rise in free radical production, alterations in gene
expression, the activation of calcium-dependent proteases
inducing cellular damage, and a critical rise in p53 levels to
instigate apoptosis [14]. Elevated extracellular glutamate levels
are hence believed to be key in mediating primary and
secondary damage in mTBI as well as in cerebral ischemia
[76,77] and many neurodegenerative diseases [78]. Glutamate
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excitotoxcity and oxidative stress dramatically elevates p53
levels in neurons [29], and PFT-a effectively blocked cell death
(Figure 2) in accord with results from others as well as in
response to other apoptosis-inducing insults [29,74,79].
Likewise, the natural time-dependent degeneration of primary
neuron [44] was mitigated by PFT-a.

The inhibition of p53 activity, the principle action of PFT-a
and analogs to prevent the pro-apoptotic action of this tumor
suppressor protein, may involve inhibition of p53 accumulation,
inhibition of translocation from cytoplasm to the nucleus or
mitochondria, or interference of the p53 transcriptional
machinery, or a combination by PFT-a [80,81]. In general, p53
activity is chiefly determined at its protein level and, under
normal circumstances, it has a short half-life and is hardly
detectable in neurons. The interaction of p53 with the ubiquitin
ligase, Mdm2, targets p53 for degradation by proteasomes.
However in response to cellular stress, p53 becomes
phosphorylated at specific serine and threonine residues and
acetylated at several lysines. Such p53 phosphorylation
reduces Mdm2 binding to support protein stabilization and a
rise in intracellular p53 protein levels, and the acetylation
increases p53 sequence specific DNA binding to facilitate p53-
mediated transactivation [82]. The pro-apoptotic functions of
p53 are largely promoted by effectors that include p53
upregulated modulator of apoptosis (PUMA) and Bax, both
proapoptotic members of the Bcl-2 family. Additionally, p53 has
the potential to induce cell death via transcriptional
independent means, inhibiting endogenous survival cascades
following its translocation to the mitochondria [81-83] or by
processes involving transcriptional repression through
interaction with transcriptional co-activating proteins (e.g., CBP/
p300) to suppress the activity of transcription factors like
nuclear factor-kB (NF-kB) [81,84].
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