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Abstract
Currently, the growing interest in radiomics within the clinical practice has prompted some researchers to differentiate the rupture 
status of intracranial aneurysm (IA) by developing radiomics-based machine learning models. However, systematic evidence support-
ing its performance remains scarce. The purpose of this meta-analysis and systematic review is to assess the diagnostic performance 
of radiomics-based machine learning for the early detection of IA rupture and to offer evidence-based recommendations for the 
application of radiomics in this area. PubMed, Cochrane, Embase, and Web of Science databases were searched systematically up 
to March 2, 2024. The Radiomics Quality Score (RQS) was employed to assess the risk of bias in all included primary studies. We 
separately discussed the diagnostic or predictive performance of machine learning for IA rupture status based on task type (diagnosis 
or prediction).  We finally included 15 original studies covering 9,111 IA cases. In the validation cohort, radiomics demonstrated a 
sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, as well as SROC curve of 0.84 (95% 
CI: 0.76–0.90), 0.82 (95% CI: 0.77–0.86), 4.7 (95% CI: 3.7–5.8), 0.19 (95% CI: 0.13–0.29), and 24 (95% CI: 15–40), respectively, for 
the diagnostic task of aneurysm rupture status. Only 2 studies (3 models) addressed predictive tasks, with sensitivity and specificity 
ranging from 0.77 to 0.89 and from 0.69 to 0.87, respectively. Radiomics-based machine learning exhibits promising accuracy for 
early identification of IA rupture status, whereas evidence for its predictive capability is limited. Further research is needed to validate 
predictive models and provide insights for developing specialized strategies to prevent aneurysm rupture.
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Introduction

Intracranial aneurysm (IA) is a common condition featuring 
significant death and morbidity rates among cerebrovascular 
diseases. The overall prevalence of unruptured intracranial 
aneurysm (UIA) is approximately 3.2% (95% CI 1.9–5.2) [1]. 
With advancements in imaging technology, the detection rate 

of UIA continues to rise. The rupture of IA is a critical con-
cern, with an annual rupture rate estimated at 1–2% [2]. Rup-
ture leads to aneurysmal subarachnoid hemorrhage (aSAH), 
which accounts for approximately 80–85% of non-traumatic 
subarachnoid hemorrhages [7]. aSAH is associated with high 
mortality and morbidity, and the median mortality rate for 
ruptured aneurysms is 32% in the United States, 43-44% in 
Europe, and 27% in Japan [8].

Early detection of IA and prediction of their rupture 
risk are thus crucial. Current diagnostic methods for 
assessing the rupture status of IA encompass Computed 
Tomography Angiography (CTA), Magnetic Resonance 
Angiography (MRA), and Digital Subtraction Angiogra-
phy (DSA). CTA is a primary tool for IA detection owing 
to its speed, cost-effectiveness, and relative non-invasive-
ness, and has become the preferred diagnostic method 
at some centers [9]. However, its capability to detect 
aneurysms with diameters less than 3 mm remains lim-
ited; even with 320-row CT, the sensitivity for detecting 
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aneurysms less than 3 mm is only 81.8% [10], leaving 
a likelihood for missed diagnoses of small aneurysms. 
Similarly, MRA has a sensitivity of only 74.1% for aneu-
rysms less than 3 mm in diameter [11], and its diagnostic 
efficacy is compromised by longer examination times 
and lower contrast enhancement [12]. DSA, as the “gold 
standard” for diagnosing IA, exhibits superior specific-
ity, sensitivity, and accuracy compared to non-invasive 
methods like MRA and CTA. However, DSA involves pro-
longed examination times, with patients and healthcare 
professionals exposed to X-ray radiation, and may lead to 
complications such as contrast agent allergy, puncture site 
hematoma, cortical blindness, or cerebral infarction [13].

In recent years, radiomics has garnered significant atten-
tion in clinical practice. Some studies have explored its 
potential for differentiating IA rupture status and predict-
ing IA rupture risk. However, systematic evidence validat-
ing the effectiveness of radiomics for detecting IA rup-
ture status and predicting IA rupture risk remains lacking. 

Therefore, this study seeks to review the accuracy of radi-
omics in detecting and predicting the status of IA rupture, 
thereby providing evidence to support the further applica-
tion of radiomics in IA.

Methods

Study registration

This study was performed in adherence to the guidelines for 
systematic reviews and meta-analyses (PRISMA 2020). The 
protocol has been prospectively registered with PROSPERO 
(Registration No: CRD42024537872).

Fig. 1  Literature selection 
process
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Eligibility criteria

Inclusion criteria

(1) The subjects in the paper are patients with IA;
(2) A comprehensive machine learning model encompass-

ing radiomics has been developed for detecting IA rup-
ture state or predicting rupture risk;

(3) The included studies are reported in English.

Exclusion criteria

(1) The study types were meta-analyses, reviews, guide-
lines, expert opinions, conference abstracts without 
peer review;

(2) Only differential factor analyses were carried out, and a 
complete machine learning model was not constructed;

(3) Studies of machine learning constructed for radiomics 
were not covered;

(4) There is a lack of outcome indicators related to the 
prediction accuracy of the machine learning model 
(e.g., ROC, c-statistic, c-index, sensitivity, specificity, 
accuracy, recall, precision, confusion matrix, diagnostic 
fourfold table, F1 score, calibration curve).

Data sources and search strategy

PubMed, Cochrane, Embase, and Web of Science were 
systematically searched until March 2, 2024. The search 

strategy in our search involved the employment of “subject 
headings + free terms”. No constraints were placed on region 
or language. The detailed strategy is presented in Table S1.

Study selection and data extraction

We imported the retrieved studies into EndNote, and after 
removing duplicates, screened titles and abstracts of the 
remaining studies to select those preliminarily eligible ones. 
Full texts were then downloaded, and final inclusion in the 
systematic review was determined based on the full text. 
Before data extraction, we created a standard electronic data 
extraction spreadsheet. The extracted information included: 
title, first author, publication year, country, study type, 
patient source, task type, radiological source, if a complete 
imaging protocol was recorded, number of participating 
investigators, whether measurements were performed repeat-
edly at different times, regions of interest (ROI) for imaging 
segmentation software, total number of IA ruptures, total 
number of cases, number of IA ruptures and cases in the 
training set, generation methods, number of cases and cases 
with outcome events in the validation set, variable selection 
methods, types of models used, if radiomics scoring was 
constructed, overfitting assessment, whether code and data 
were accessible, and model evaluation metrics.

The study screening and data extraction were indepen-
dently performed by two investigators (J. Z and J. Y), who 
cross-checked their results. When there were discrepancies, 
the third investigator (S. Y) assisted in judgment.

Table 1  Basic characteristics of included studies

No. First author Year of 
publica-
tion

Country Study type Patient source Task type Total number of ruptured 
intracranial aneurysm 
cases

Total 
number of 
cases

1 Hyeondong Yang 2022 Korea Case-control Single center Diagnosis 44 123
2 Jinjin Liu 2018 China Case-control Single center Diagnosis 540 594
3 Masayuki Yamanouchi 2022 Japan Case-control Single center Diagnosis 18 28
4 Xiaoyuan Luo 2023 China Case-control Multicenter Diagnosis 375 676
5 Hyeondong Yang 2023 Korea Case-control Single center Diagnosis 45 125
6 Yi Yang 2021 China Cohort study Multicenter Prediction 18 37
7 Jun Hyong Ahn 2021 Korea Case-control Multicenter Diagnosis 177 457
8 Xin Tong 2021 China Case-control Multicenter Diagnosis 106 254
9 Chubin Ou 2022 China Cohort study Multicenter, registration 

database
Prediction 120 947

10 QingLin Liu 2021 China Case-control Single center Diagnosis 216 719
11 Mirzat Turhon 2023 China Case-control Multicenter Diagnosis 437 1809
12 Felicitas J. Detmer 2020 USA Case-control Multicenter, registration 

database
Diagnosis 558 1880

13 Heshan Cao 2024 China Case-control Multicenter, registration 
database

Diagnosis 211 623

14 Wenjie Li 2023 China Case-control Multicenter Diagnosis 192 576
15 Tao Hu 2023 China Case-control Single center Diagnosis 125 263
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Assessment of study quality

Two researchers (J. Z and J. Y) employed the Radiomics 
Quality Score (RQS) to evaluate the methodological qual-
ity and risk of bias of the eligible studies. Following their 
assessment, a cross-check was conducted. When any dispute 
arose, a third researcher (S. Y) was involved in making a 
decision.

Synthesis methods

A bivariate mixed-effects model was utilized for a meta-
analysis of sensitivity and specificity. This model sum-
marized sensitivity, specificity, positive likelihood ratio 
(PLR), negative likelihood ratio(NLR), diagnostic odds 
ratio(OR), and the summary receiver operating character-
istic (SROC) curve along with its 95% confidence interval. 
During the analysis, it was necessary to perform meta-
analyses of sensitivity and specificity based on diagnostic 
contingency tables. Nevertheless, because these tables 
were not reported in the majority of original studies, we 

adopted two approaches to calculate the tables: (1) Calcu-
lating by sensitivity, specificity, precision, and case num-
bers; (2) Extracting sensitivity and specificity in terms of 
the optimal Youden’s index and calculating based on case 
numbers. Our meta-analysis was carried out with the help 
of R version 4.2.0 (R Development Core Team, Vienna, 
网址http:// www.R- proje ct. org).

Results

Study selection

In the current study, 3,193 studies were retrieved from online 
databases. Duplicates were removed, leaving 2,736 studies. 
After reviewing abstracts, 31 articles were obtained. After 
excluding 12 studies unrelated to radiomics, 2 studies lack-
ing necessary data, 1 study with irrelevant outcome meas-
ures, and 1 study not related to model construction, a total 
of 15 studies were selected for this meta-analysis (Fig. 1).

Fig. 2  Forest plot of meta-analysis for sensitivity and specificity of radiomics in distinguishing IA rupture status in the training set

http://www.R-project.org
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Study characteristics

The 15 eligible articles were published between 2018 and 
2024 and encompassed a total of 9,111 IA, of which 3,182 
were ruptured IA. Of these studies, 10 [15] were from China; 
3 [25] were from South Korea; the remaining two studies 
were from Japan [28] and the United States [29]. Among the 
included studies, 13 [15] focused on the diagnosis of ruptured 
IA and were case-control studies; 2 [17] were cohort stud-
ies predicting the risk of rupture. Of the included studies, 
13 employed retrospective designs, and 2 used prospective 

designs. Nine studies were conducted across multiple cent-
ers (three of which utilized data from registries), while the 
remaining six studies were single-center ones. Among the 
studies, radiomics data sources included 5 from CTA [15], 10 
from DSA [16], and 3 from MRA [28] Among these, 3 were 
externally validated, and the rest were internally validated 
through random sampling. The models used were primarily 
based on machine learning (Tables 1 and 2).

Fig. 3  SROC curve of meta-analysis for radiomics in identifying IA rupture status in the training set
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Meta‑analysis of diagnostic accuracy

Training set

In the training set, we performed a meta-analysis of 10 
diagnostic 2 × 2 tables. The pooled results for sensitivity, 
specificity, PLR, NLR, diagnostic OR, and SROC curve 
were 0.87 (95% CI: 0.78–0.92), 0.85 (95% CI: 0.79–0.90), 
5.9 (95% CI: 4.0–8.6), 0.16 (95% CI: 0.09–0.27), and 37 
(95% CI: 17–83), respectively (Figs. 2 and 3). No publica-
tion bias was observed in the detection of IA rupture status 
by radiomics in the training set according to Deek’s funnel 
plot (P = 0.31) (Fig. 4). Approximately 36% of patients in 
the included studies had ruptured IA, which was used as the 
prior probability. With a PLR of 5.9, the model predicted a 
72% probability that a rupture status indicated by the model 
was indeed a ruptured IA. Conversely, if the model indicated 
a non-ruptured aneurysm, the probability that the aneurysm 
was truly non-ruptured was 93% (Fig. 5).

Validation set

In the validation set, a meta-analysis of 16 validation cross-
tables was conducted, yielding the following summary 
statistics for sensitivity, specificity, PLR, NLR, diagnos-
tic OR, and SROC curve: 0.84 (95% CI: 0.76–0.90), 0.82 
(95% CI: 0.77–0.86), 4.7 (95% CI: 3.7–5.8), 0.19 (95% CI: 
0.13–0.29), and 24 (95% CI: 15–40), respectively (Figs. 6 
and 7). Deek’s funnel plot indicated no publication bias in 
the assessment of radiomics for detecting IA rupture status 
in the validation set (P = 0.05) (Fig. 8). Approximately 36% 
of patients in the eligible studies had ruptured IA, which 
was used as the prior probability. Given a PLR of 4.7, if the 
model suggests a ruptured status, the probability of an actual 
ruptured IA is 72%; if the model suggests a non-ruptured 
aneurysm, the probability of an actual non-ruptured aneu-
rysm is 90% (Fig. 9).

Review of predictive accuracy

Among the studies included, only two reported predictions 
of rupture risk for UIA based on radiomics. In light of the 
limited studies, only a summary could be provided. In the 

Fig. 4  Deek’s funnel plot of meta-analysis for radiomics in detecting IA rupture status in the training set
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study by Chubin Ou et al. [19], radiomics showed a sensi-
tivity of 0.865, specificity of 0.687, PLR of 2.764, NLR of 
0.197, and diagnostic OR of 14.064 for predicting aneu-
rysm rupture risk. The study by Yi Yang et al. [17] reported 
an AUC of 0.816 in the training set, with sensitivity and 
specificity of 0.7667 and 0.8658, respectively, demonstrating 
significant statistical relevance.

Assessment of study quality

Of the 15 studies, nine did not offer detailed imaging 
protocols, thus scoring zero points for the first criterion. 
Seven studies did not mention methods for segmenting 
multiple images, resulting in zero points for the sec-
ond criterion. None of the studies employed repeated 

Fig. 5  Nomogram of meta-anal-
ysis for radiomics in determin-
ing IA rupture status in the 
training set
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measurements across different images or imaging at multi-
ple time points, leading to zero points for the third, fourth, 
and fifth criteria. Six studies did not address multivariable 
analysis with non-radiomic features, thus scoring zero for 
the sixth criterion. None of the studies examined or dis-
cussed biological relevance, leading to zero points for the 
seventh criterion. Twelve studies did not perform cutoff 
value analysis, resulting in zero points for the eighth crite-
rion. Twelve studies did not calibrate statistical data, thus 
scoring zero for the tenth criterion. Fourteen studies did 
not register prospective studies in trial databases, result-
ing in zero points for the eleventh criterion. All studies 
did not compare with a “gold standard”, leading to zero 
points for the thirteenth criterion. Twelve studies did not 
report potential clinical applications, thus scoring zero for 
the fourteenth criterion. None of the studies conducted a 
cost-effectiveness analysis, leading to zero points for the 
fifteenth criterion. Three studies did not publicly disclose 
corresponding codes and data, resulting in zero points 
for the sixteenth criterion. The final average score for the 
included studies was 7.4 points.

Discussion

Summary of the main findings

Radiomics-based machine learning models demonstrated 
relatively ideal accuracy in diagnosing IA rupture, with 
sensitivity and specificity of 0.84 (95% CI: 0.76–0.90) and 
0.82 (95% CI: 0.77–0.86), respectively. For predicting the 
future rupture risk in UIA, only a small number of studies 
have been included, yet they also exhibited relatively satis-
factory accuracy.

Comparison with previous reviews

Previous research has also reviewed various potentially via-
ble methods for diagnosing IA rupture status. For instance, 
a systematic review and meta-analysis were carried out by 
Mohammad Amin Habibi et al. [30] to assess the potential 
of artificial intelligence algorithms in forecasting the risk of 
cerebral aneurysm rupture. Their study reported sensitiv-
ity, specificity, diagnostic OR, diagnostic score, and AUC 

Fig. 6  Forest plot of meta-analysis showing sensitivity and specificity of radiomics for differentiating IA rupture status in the validation set
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of 0.83, 0.83, 23.7, 3.2, and 0.90, respectively. Their find-
ings prove that ML algorithms are effective for predicting 
aneurysm rupture risk, with good sensitivity, specificity, 
AUC, and accuracy. However, further research is needed 
to enhance these algorithms’ diagnostic performance for 
aneurysm rupture.

Wei Zhu et al. [31] performed a stability study using clin-
ical and imaging data of IA, revealing significant advantages 
of machine learning models in stability analysis of unrup-
tured aneurysms, with the AUC, specificity and accuracy 
being 0.867, 92.9% and 82.4%, respectively.

Yu Ye et al. [32] constructed and validated a classification 
model combining CTA radiomics data with clinical factors 
for differentiating between ruptured and unruptured small IA 
(< 5 mm). The model was able to predict the rupture state 
with an AUC of 0.87 in the training cohort and 0.85 in the 
test cohort.

Furthermore, a diagnostic meta-analysis of machine 
learning algorithms for assessing rupture risk in IA [33] 
provided summary diagnostic values as follows: sensitiv-
ity, 0.84 (95% CI: 0.75–0.90); specificity, 0.78 (95% CI: 
0.68–0.85); PLR, 3.8 (95% CI: 2.4–5.9); and NLR, 0.21 

Fig. 7  SROC curve from meta-analysis assessing radiomics for differentiating IA rupture status in the validation set
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(95% CI: 0.12–0.35). This supports the prospect of artificial 
intelligence algorithms for the IA rupture risk evaluation. 
Currently, machine learning models for IA rupture mainly 
involve hemodynamics, clinical features, and radiomics. 
Although many researchers have applied machine learning 
to diagnose IA, the accuracy appears significantly influenced 
by varying modeling variables. Therefore, our study focused 
solely on radiomics-based methods.

In carrying out research on radiomics, it is crucial to thor-
oughly consider the significance of clinical characteristics 
in disease diagnosis and prediction. The RQS scale recom-
mends integrating clinical factors, gene-protein expressions, 
and other relevant factors. However, in practical studies, 
there is a greater emphasis on incorporating clinical fac-
tors, as they may serve as interpretable variables for certain 
diseases. Yet, among all selected studies, few explored the 
integration of radiomics with clinical features. Since there 
are a very limited number of such studies, no further discus-
sion was provided.

In clinical practice, real-time monitoring of the rupture 
risk for UIA holds significant clinical value. This allows 
clinicians to devise early preventive strategies based on 
the patient’s rupture risk. However, current research seems 
to focus on only a rather limited set of studies concern-
ing the rupture risk prediction in UIA during the patient’s 
future life. Our meta-analysis included only two studies 

that assessed the risk of rupture in patients with UIA. The 
results of these studies exhibited relatively ideal accuracy, 
suggesting that radiomics-based machine learning might 
be feasible for the early prediction of rupture risk in UIA. 
Nevertheless, this conclusion is drawn from limited evi-
dence and necessitates further validation.

Limitations of the study

Our study has several limitations: (1) Although we 
undertook a systematic search, the inclusion of radiom-
ics-based machine learning studies remains relatively 
limited; (2) A significant amount of the included stud-
ies involved internal validation from random sampling, 
which may constrain the result interpretation; (3) The 
selected articles were primarily on diagnostic tasks, and 
only a few addressed predictive tasks. More research is 
needed to verify the accuracy. (4) The included stud-
ies were mainly retrospective studies, which may have 
cause biased results. It is impossible to determine the 
consistency of image acquisition settings or the specific 
scanners used across studies, which may cause some bias 
in the results. (5) The original studies did not report 
whether all scans came from different devices in their 
unit. Hence, we did not discuss it deeply, which may 
have caused some bias in the results. (6) In addition, 

Fig. 8  Deek’s funnel plot from meta-analysis evaluating radiomics for IA rupture status in the validation set
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due to the extremely limited number of included stud-
ies, which mainly used DSA and CTA data, we did not 
deeply discusse the resolution and image quality of these 
three types of data. Therefore, future studies should 
evaluate the advantages of radiomics based on DSA and 
CTA. The above limitations may have a certain impact 
on the interpretation of our results. In future studies, 
we should consider adjusting these potential limitations.

Conclusions

Our research suggests that radiomics-based machine learn-
ing demonstrates promising accuracy for early differen-
tiation of rupture status in IA. Aggregated results reveal 
that radiomics-based machine learning is both sensitive 
and specific for early identification of rupture status in 
IA. However, evidence for predicting rupture status is 

Fig. 9  Nomogram of meta-anal-
ysis for radiomics in determin-
ing IA rupture status in the 
validation set
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exceedingly sparse. Therefore, future research should fur-
ther validate the prediction of rupture status in IA. Addi-
tionally, in light of the limited volume of studies employ-
ing deep learning models, future studies should prioritize 
the development of machine learning and deep learning 
models for predicting and diagnosing the rupture risk of 
IA to enable intelligent differentiation.
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