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Abstract.	 [Purpose] Cast immobilization- and cell starvation-induced loss of muscle mass are closely associated 
with a dramatic reduction in the structural muscle proteins. Heat shock proteins are molecular chaperones that 
are constitutively expressed in several eukaryotic cells and have been shown to protect against various stressors. 
However, the changes in the phosphorylation of atrophy-related heat shock protein 27 (HSP27) are still poorly un-
derstood in skeletal muscles. In this study, we examine whether or not phosphorylation of HSP27 is changed in the 
skeletal muscles after cast immobilization and serum-free starvation with low glucose in a time-dependent man-
ner. [Methods] We undertook a HSP27 expression and high-resolution differential proteomic analysis in skeletal 
muscles. Furthermore, we used western blotting to examine protein expression and phosphorylation of HSP27 in 
atrophied gastrocnemius muscle strips and L6 myoblasts. [Results] Cast immobilization and starvation significantly 
upregulated the phosphorylation of HSP27 in a time-dependent manner, respectively. [Conclusion] Our results sug-
gest that cast immobilization- and serum-free starvation-induced atrophy may be in part related to changes in the 
phosphorylation of HSP27 in rat skeletal muscles.
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INTRODUCTION

Heat shock protein 27 (HSP27), a member of the wide-
ly distributed heat shock protein family, is an ubiquitous 
small heat shock protein also called a stress protein that is 
induced in response to stimulation such as hyperthermia, 
oxidative stress and nutritional deficiency1–4). Small heat 
shock proteins including HSP27 are characterized by low 

molecular weights (12–43 kDa) and share a conserved α–
crystallin domain located at the carboxyl terminal3, 4). The 
HSP27 gene contains three exons encoding 205 amino ac-
ids and contains two functional binding sites for heat shock 
elements (HSEs)4, 5). In addition to its common roles, such 
as in chaperone functions, HSP27 can suppress apoptosis 
and oxidative stress1, 6, 7). Furthermore, HSP27 has been 
implicated in several diseases, such as atherosclerosis, Par-
kinson’s disease, Alzheimer’s disease, amyotrophic lateral 
sclerosis, renal fibrosis, and various nephropathies5, 8, 9). 
Meanwhile, muscle atrophy has proven to be a significant 
problem in the area of physical therapy10–15). However, the 
changes in the phosphorylation of HSP27 in atrophic con-
ditions are not fully understood. Therefore, in the present 
study, we demonstrated the changes in the phosphoryla-
tion of HSP27 caused by external cast immobilization- and 
serum-free starvation-induced atrophy in skeletal muscles.
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MATERIALS AND METHODS

Male Sprague-Dawley rats (n=17) were anaesthetized 
during the attachment of the plaster of paris casting mate-
rial10, 11). Two-dimensional gel electrophoresis and matrix-
assisted laser desorption ionization time-of-flight/time-of-
flight mass spectrometry were performed as reported in our 
previous studies12). L6 myoblasts were purchased from the 
American Type Culture Collection (Rockville, MD, USA) 
and cultured in Dulbecco’s modified Eagle’s medium con-
taining 10% fetal bovine serum and a high concentration of 
D-glucose (4,500 mg/L). The serum-free starvation group 
was grown to 60–70% confluence and undernourished 
in DMEM containing a low concentration of D-glucose 
(1,000 mg/L) without FBS for 3, 6, 12, 24, 48, and 72 h, 
respectively10, 15). Furthermore, to measure the phosphory-
lation of HSP27, gastrocnemius muscle strips were isolated 
after specific intervals of cast immobilization. The samples 
were then homogenized in a sample buffer. Proteins (35–50 
μg/lane) were separated on 12% polyacrylamide sodium 
dodecyl sulfate gels and then transferred electrophoretically 
to a polyvinylidene fluoride membrane (Millipore; Bedford, 
MA, USA)11). Anti-HSP27 was purchased from Santa Cruz 
Biotechnology (Santa Cruz, CA, USA). Antibody-specific 
bands were quantified using an image analyzer (Bio-Rad). 
The present investigation conformed to the Guide for the 
Care and Use of Laboratory Animals published by the US 
National Institutes of Health (NIH Publication No. 85-23, 
revised 1996). The protocol for the study was approved by 
the Committee of Ethics in Research of the University of 
Yongin, in accordance with the terms of Resolution 5-1-20, 
December 2006. Data were expressed as means±SEM. The 
data were statistically evaluated using Student’s t-tests for 
comparisons between pairs of groups and by ANOVA for 
multiple comparisons. A p value of < 0.05 was considered 
to be statistically significant.

RESULTS

The density of HSP27 spots detected in the gastrocne-
mius muscles is shown in Fig. 1A. The phosphorylation 
of HSP27 was significantly increased after 3, 7, 14, and 21 
days of cast immobilization compared with the levels of 
phosphorylation in the control group (n=4, Fig. 1B, Table 

1). Furthermore, serum-free starvation with the low con-
centration of glucose after 3, 6, 12, 24, 48, and 72 hours 
significantly increased the phosphorylation of HSP27, re-
spectively (n=4; Fig. 1B, Table 1). However, the expression 
of HSP27 was not changed in the experimental group com-
pared with that in the control group, respectively (n=4, Fig. 
1B, Table 1).

DISCUSSION

It is well known that previous studies and our reports 
using a rat model of disuse atrophy induced by cast immobi-

Fig. 1.	 Changes in phosphorylation of HSP27 and schematic 
representation of cellular response caused by cast immo-
bilization and serum-free starvation with a low concen-
tration of glucose in skeletal muscles 
Proteomic (A) and immunoblotting (B) analysis in cast-
immobilized skeletal muscle. 2DE and 1DE, two- and 
one-dimensional gel electrophoresis; HSP27, heat shock 
protein 27; PS, peptide sequence; R, arginine (Arg); V, 
valine (Val); P, proline (Pro); F, phenylalanine (Phe); S, 
serine (Ser); L, leucine (Leu); D, aspartic acid (Asp); Q, 
glutamine (Gln); A, alanine (Ala); G, glycine (Gly); N, as-
paragine (Asn); H, histidine (His); E, glutamic acid (Glu); 
T, threonine (Thr); K, lysine (Lys); I, isoleucine (Ile); 
FBS, fetal bovine serum; d, days; h, hours; p, phosphory-
lated protein; HSF, heat shock transcription factor; HSE, 
heat shock response element; HSPs, heat shock proteins 
(Kim et al.1)).

Table 1.  Changes in expression and phosphorylation of HSP27 of skeletal muscles during cast immobilization and 
serum-free starvation with a low concentration of glucose

Cast  
Immobilization

p-HSP27 
(%)

HSP27 
(%)

Serum-free Starvation 
with Low Glucose

p-HSP27 
(%)

HSP27 
(%)

0 day 100.0±0.0 100.0±0.0 0 hour 100.0±0.0 100.0±0.0
3 days 297.0±32.6* 108.3±6.6 3 hours 253.7±37.3* 92.7±7.1
7 days 193.7±31.5* 120.0±15.8 6 hours 137.0±8.5* 105.0±2.9

14 days 398.7±26.9* 101.7±6.1 12 hours 158.7±10.2* 105.3±3.2
21 days 179.3±25.7* 105.7±5.2 24 hours 304.7±53.2* 104.3±3.8

48 hours 268.3±34.9* 94.3±3.4
72 hours 175.7±15.6* 97.7±6.2

Means±SEM. p, phosphorylated protein; HSP27, heat shock protein 27. The basal levels of abundance and phosphory-
lation of HSP27 in controls (0 days and 0 hours) were considered to be 100%. *Versus the 0 day control, p<0.05.
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lization indicate the loss of muscle mass and cross-sectional 
area due to a decrease in the rate of protein synthesis10–14). 
Often, skeletal muscle atrophy is a necessary phenomenon 
in clinical conditions such as long-term bed rest, sarcope-
nia, and articular fixation in the area of orthopedic phys-
iotherapy10–12, 16, 17). The heat shock proteins consist of a 
number of highly conserved proteins thought to play pro-
tective roles, such as in molecular chaperone and antioxi-
dant effects in cells subjected to high temperature, hypoxia, 
and other stresses1, 4, 7). In particular, HSP27 is involved in 
protection against programmed cell death by inhibition of 
caspase-dependent apoptosis6, 18). Phosphorylated HSP27 
also prevents filament degeneration and promotes polym-
erization in the case of actin filament regulation19–21). In the 
present study, we demonstrated that immobilization- and 
starvation-induced atrophy increased the phosphorylation 
of HSP27 in a time-dependent manner. Based on these re-
sults, we cautiously speculate that the increment in HSP27 
phosphorylation aids in adaptation to and prevention of 
stress induced by environmental stresses, such as cast im-
mobilization and serum-free starvation with a low concen-
tration of glucose. Furthermore, our previous data showed 
that the transcriptional regulation of MuRF-1 is upregulated 
in the development of both immobilization- and starvation-
induced muscle atrophy10). Simultaneously, the mitogen-
activated protein kinases such as extracellular signal-reg-
ulated kinase 1/2, stress-activated protein kinase/c-Jun 
NH2-terminal kinase, and p38 mitogen-activated protein 
kinase are involved in muscle atrophy induced by immobi-
lization and cell starvation10, 11). Our previous reports also 
demonstrated that cast immobilization increases the expres-
sion of myoglobin and decreases the phosphorylation of co-
filin in skeletal muscle cells13–15). These reports have care-
fully suggested that the change in mitogen-activated protein 
kinases, myoglobin, and cofilin aids in adaptation to stress 
induced by cast immobilization and serum-free starvation 
with a low concentration of glucose. However, further sys-
tematic studies in the area of physiotherapy, such as with 
electro-, neuro-, hydro-, and thermotherapy, are needed to 
demonstrate the mechanism of HSP27 in muscle atrophic 
conditions22–27) (Fig. 1C). In summary, phosphorylation of 
HSP27 was increased in cast-immobilized gastrocnemius 
muscles and in L6 myoblasts subjected to serum-free star-
vation, respectively. The present results suggest that stress-
induced atrophy may be in part mediated by HSP27 from 
skeletal muscles.
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